Quantization of 2-plectic Manifolds

Christian Sämann

HERIOT
 UNIVERSITY

School of Mathematical and Computer Sciences
Heriot Watt University, Edinburgh

Bayrischzell Workshop, 22.5.2011
Based on:

- Josh DeBellis, CS and Richard Szabo arXiv:1001.3275 (JMP), arXiv:1012.2236 (JHEP)
- CS and Richard Szabo, in preparation

Two-plectic Manifolds

Multisymplectic manifolds are a natural generalization of symplectic manifolds.

Symplectic manifolds

Manifold M with closed 2-form ω such that $\iota_{v} \omega=0 \Leftrightarrow v=0$.

- Poisson structure \rightarrow Phase spaces in Hamiltonian dynamics.
- Starting point for quantization.

p-plectic manifolds

Manifold M with closed $p+1$-form ω such that $\iota_{v} \omega=0 \Leftrightarrow v=0$.

- 1-plectic: symplectic, 2-plectic: 3-form ω
- (Often) Nambu-Poisson structure \rightarrow multiphase spaces in Nambu mechanics.
- Starting point for higher quantization (?)
- Why should we be interested in such manifolds?
- Why should we quantize them?

D1-D3-Branes and the Nahm Equation

D1-branes ending on D3-branes can be described by the Nahm equation.
D1-branes ending on D3-branes:

dim	0	1	2	3	\ldots	6
$D 1$	\times					\times
$D 3$	\times	\times	\times	\times		

A Monopole appears.
$X^{i} \in \mathfrak{u}(N)$: transverse fluctuations
Nahm equation: $\left(s=x^{6}\right)$

$$
\frac{\mathrm{d}}{\mathrm{~d} s} X^{i}+\varepsilon^{i j k}\left[X^{j}, X^{k}\right]=0
$$

Note SO(3)-invariance.
Solution: $X^{i}=r(s) G^{i}$ with

$$
r(s)=\frac{1}{s}, \quad G^{i}=\varepsilon^{i j k}\left[G^{j}, G^{k}\right]
$$

Nahm, Diaconescu, Tsimpis

D1-D3-Branes and the Nahm Equation

The D1-branes end on the D3-branes by forming a fuzzy funnel.

dim	0	1	2	3	\ldots	6	Solution: $X^{i}=r(s) G^{i}$
$D 1$	\times					\times	
$D 3$	\times	\times	\times	\times			

Matches profile from SUGRA analysis
The D1-branes form a fuzzy funnel:
G^{i} form irrep of $\mathfrak{s u}(2)$:
coordinates on fuzzy sphere S_{F}^{2}
D1-worldvolume polarizes: $2 d \rightarrow 4 d$

Lifting D1-D3-Branes to M2-M5-Branes

The lift to M-theory is performed by a T-duality and an M-theory lift

IIB	0	1	2	3	4	5	6
D1	\times						\times
D3	\times	\times	\times	\times			
T-dualize along x^{5} :							
IIA	0	1	2	3	4	5	6
D2	\times					\times	\times
D4	\times	\times	\times	\times		\times	
Interpret x^{4} as M-theory direction:							
M	0	1	2	3	4	5	6
M2	\times					\times	\times
M5	\times	\times	\times	\times	\times	\times	

The Basu-Harvey lift of the Nahm Equation
M2-branes ending on M5-branes yield a Nahm equation with a cubic term.

A Self-Dual String appears.

Substitute $\mathrm{SO}(3)$-inv. Nahm eqn.

$$
\frac{\mathrm{d}}{\mathrm{~d} s} X^{i}+\varepsilon^{i j k}\left[X^{j}, X^{k}\right]=0
$$

by the $\mathrm{SO}(4)$-invariant equation

$$
\frac{\mathrm{d}}{\mathrm{~d} s} X^{\mu}+\varepsilon^{\mu \nu \rho \sigma}\left[X^{\nu}, X^{\rho}, X^{\sigma}\right]=0
$$

Solution: $X^{\mu}=r(s) G^{\mu}$ with
Basu, Harvey, hep-th/0412310
$r(s)=\frac{1}{\sqrt{s}}, G^{\mu}=\varepsilon^{\mu \nu \rho \sigma}\left[G^{\nu}, G^{\rho}, G^{\sigma}\right]$

The Basu-Harvey lift of the Nahm Equation Also M2-branes end on M5-branes by forming a fuzzy funnel.

Solution: $X^{\mu}=r(s) G^{\mu}$

M	0	1	2	3	4	5	6
$M 2$	\times					\times	\times
$M 5$	\times	\times	\times	\times	\times	\times	

$$
r(s)=\frac{1}{\sqrt{s}}, G^{\mu}=\varepsilon^{\mu \nu \rho \sigma}\left[G^{\nu}, G^{\rho}, G^{\sigma}\right]
$$

Matches profile from SUGRA analysis
The M2-branes form a fuzzy funnel:
G^{μ} form a rep of $\mathfrak{s o}(4)$: coordinates on fuzzy sphere S_{F}^{3}

M2-worldvolume polarizes: $3 d \rightarrow 6 d$

- 3-form structure appears
- quantization of S^{3} required.

Further Motivation

There are more appearances of 2-plectic manifolds in string-/M-theory.

- M5-brane perspective: Turning on 3-form background,

$$
C=\theta \mathrm{d} x^{0} \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}+\theta^{\prime} \mathrm{d} x^{0} \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2},
$$

the self-dual strings move in a space with

$$
\left[x^{0}, x^{1}, x^{2}\right]=\theta \quad \text { and } \quad\left[x^{3}, x^{4}, x^{5}\right]=\theta^{\prime}
$$

Chu, Smith, 0901.1847

- Baez et al.: The phase space of the bosonic string is believed to be 2-plectic
- Using T-duality, Lüst, 1010.1361, conjectured that closed strings on T^{3} in 3-form background lead to:

$$
\left[x^{i}, x^{j}\right] \sim \varepsilon^{i j k} p_{k}, \quad\left[x^{i}, p_{j}\right] \sim \delta_{j}^{i}, \quad\left[p_{i}, p_{j}\right] \sim \varepsilon^{i j k} p_{k}
$$

Note that here, the Jacobi identity is not satisfied.

Outline

- Quantization axioms for 2-plectic manifolds
- Quantized 2-plectic manifolds as vacua of 3-algebra models
- Another approach: Quantization via Groupoids

Axioms of Quantization

Quantization is nontrivial and far from being fully understood.

Classical level: states are points on a Poisson manifold \mathcal{M}. observables are functions on \mathcal{M}.
Quantum level: states are rays in a complex Hilbert space \mathscr{H}. observables are hermitian operators on \mathscr{H}.

Full Quantization

A full quantization is a map $\hat{-}: \mathcal{C}^{\infty}(\mathcal{M}) \rightarrow$ End (\mathscr{H}) satisfying
(1) $f \mapsto \hat{f}$ is linear over $\mathbb{C}, f=f^{*} \Rightarrow \hat{f}=\hat{f}^{\dagger}$.
(2) the constant function $f=1$ is mapped to the identity on \mathscr{H}.
(3) Correspondence principle: $\left\{f_{1}, f_{2}\right\}=g \Rightarrow\left[\hat{f}_{1}, \hat{f}_{2}\right]=\hat{g}$.
(9) The quantized coordinate functions act irreducibly on \mathscr{H}.

Problem:
Groenewold-van Howe: no full quant. for $T^{*} \mathbb{R}^{n}$ or S^{2} ($T^{2} \mathrm{OK}$)

Loopholes to the obstructions to full quantizations

There are three possible weakenings to the set of axioms for quantization.

Three approaches to weaken the axioms of a full quantization:

- Drop irreducibility condition
- Quantize a subset of $\mathcal{C}^{\infty}(\mathcal{M})$
- Correspondence principle applies only to $\mathcal{O}(\hbar)$

The first two yield prequantization and geometric quantization. The last approach leads eventually to deformation quantization.

My favorite method for this talk:
Berezin quantization (or physicists' fuzzy geometry), a hybrid of geometric and deformation quantization.

Berezin Quantization of $\mathbb{C} P^{1} \simeq S^{2}$

 The fuzzy sphere is the Berezin quantization of $\mathbb{C} P^{1}$.
Hilbert space

\mathscr{H} is the space of global holomorphic sections of a certain line bundle: $\mathscr{H}=H^{0}(\mathcal{M}, L)$. For $\mathcal{M}=\mathbb{C} P^{1}: L:=\mathcal{O}(k)$.

$$
\mathscr{H}_{k} \cong \operatorname{span}\left(z_{\alpha_{1}} \ldots z_{\alpha_{k}}\right) \cong \operatorname{span}\left(\hat{a}_{\alpha_{1}}^{\dagger} \ldots \hat{a}_{\alpha_{k}}^{\dagger}|0\rangle\right)
$$

Coherent states

For any $z \in \mathcal{M}$: coherent st. $|z\rangle \in \mathscr{H}$. Here: $|z\rangle=\frac{1}{k!}\left(\bar{z}_{\alpha} \hat{a}_{\alpha}^{\dagger}\right)^{k}|0\rangle$.

Quantization

Quantization is the inverse map on the image $\Sigma=\sigma\left(\mathcal{C}^{\infty}(\mathcal{M})\right)$ of

$$
f(z)=\sigma(\hat{f})=\operatorname{tr}\left(\frac{|z\rangle\langle z|}{\langle z \mid z\rangle} \hat{f}\right), \quad \text { Bridge: } \mathcal{P}:=\frac{|z\rangle\langle z|}{\langle z \mid z\rangle}
$$

Axioms of Generalized Quantization

We propose a generalization of the quantization axioms to p-plectic manifolds.
Problem is notoriously difficult, and many people tried to extend geometric quantization. Berezin quantization should be easier. Keep: a complex Hilbert space \mathscr{H} and End (\mathscr{H}) as observables.

Generalized quantization axioms

A full quantization is a map $\hat{-}: \Sigma \rightarrow \operatorname{End}(\mathscr{H}), \Sigma \subset \mathcal{C}^{\infty}(M)$ satisfying
(1) $f \mapsto \hat{f}$ is linear over $\mathbb{C}, f=f^{*} \Rightarrow \hat{f}=\hat{f}^{\dagger}$.
(2) the constant function $f=1$ is mapped to the identity on \mathscr{H}.
(3) Correspondence principle:

$$
\lim _{\hbar \rightarrow 0}\left\|\frac{\mathrm{i}}{\hbar} \sigma\left(\left[\hat{f}_{1}, \ldots, \hat{f}_{n}\right]\right)-\left\{f_{1}, \ldots, f_{n}\right\}\right\|_{L^{2}}=0
$$

If \mathcal{M} is a Poisson manifold, this holds for Berezin quantization.

Quantization of \mathbb{R}^{3}

The quantized Nambu-Heisenberg algebra corresponds to the space \mathbb{R}_{λ}^{3}.

We start from \mathbb{R}^{3} with $\omega=\varepsilon_{i j k} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k}$.
We find $\{f, g, h\}=\varepsilon^{i j k} \frac{\partial}{\partial x^{i}} f \frac{\partial}{\partial x^{j}} g \frac{\partial}{\partial x^{k}} h$.
What is the geometry of $[\hat{x}, \hat{y}, \hat{z}]=-i \hbar \mathbb{1}$?
One possible interpretation as \mathbb{R}_{λ}^{3} :
Take a fuzzy sphere with Hilbert space $H^{0}\left(\mathbb{C} P^{1}, \mathcal{O}(k)\right)$. Define:

$$
\left[\hat{x}^{1}, \hat{x}^{2}, \hat{x}^{3}\right]=\sum_{i, j, k} \varepsilon^{i j k} \hat{x}^{i} \hat{x}^{j} \hat{x}^{k}=-\mathrm{i} \frac{6 R^{3}}{k} \mathbb{1}_{\mathscr{H}_{k}}
$$

Radius of this fuzzy sphere: $R_{F, k}=\sqrt{1+\frac{2}{k}} \sqrt[3]{\frac{\hbar k}{6}}$.
Now "discretely foliate" \mathbb{R}^{3} by fuzzy spheres. $\Rightarrow \mathbb{R}_{\lambda}^{3}$.

Brief Review: The IKKT model

Noncommutative geometries arise as stable solutions of the IKKT matrix model.
Fully dimensionally reduce maximally SUSY Yang-Mills theory:
$S=\operatorname{tr}\left(\left[X^{I}, X^{J}\right]\left[X_{I}, X_{J}\right]+\mu_{I}\left(X^{I}\right)^{2}+C_{I J K} X^{I}\left[X^{J}, X^{K}\right]+\right.$ fermions $)$ where $X^{I} \in \mathfrak{u}(N), I=0, \ldots, 9$. Stable classical solutions:

Moyal spaces	$\mu_{i}=C_{i j k}=0$	$\left[X^{i}, X^{j}\right] \sim \theta^{i j} \mathbb{1}$
Fuzzy sphere	$C_{123}=1$	$\left[X^{i}, X^{j}\right] \sim \varepsilon^{i j k} X_{k}$
NC Hpp-waves	$C_{123}=1, \mu_{1}=\mu_{2}=\mu$	$\left[X^{1}, X^{2}\right] \sim \theta^{12} \mathbb{1}$
		$\left[X^{3}, X^{i}\right] \sim \theta^{i j} X^{j}$

First two: BPS. The third: Nappi-Witten algebra.
Hpp-waves: 4d Cahen-Wallach symm. space in Brinkman coords.:

$$
\mathrm{d} s_{4}^{2}=2 \alpha \beta \mathrm{~d} x^{+} \mathrm{d} x^{-}+\gamma^{2}|\mathrm{~d} z|^{2}-\frac{1}{4} \beta^{2}\left(\gamma^{2}|z|^{2}-b\right)\left(\mathrm{d} x^{+}\right)^{2}
$$

Identification:

$$
X^{1}+\mathrm{i} X^{2} \sim z, \quad X^{3} \sim J, \quad X^{4} \sim \mathbb{1}
$$

The Dimensionally Reduced BLG Model

The theory corresponding to SYM is the BLG model, which we dimensionally reduce.

Basu-Harvey \rightarrow Bagger, Lambert and Gustavsson developed a Chern-Simons matter theory for M2-branes. Reduced form:

$$
\begin{aligned}
S= & -\frac{1}{2}\left(A_{\mu} X^{I}, A^{\mu} X^{I}\right)+\frac{\mathrm{i}}{2}\left(\bar{\Psi}, \Gamma^{\mu} A_{\mu} \Psi\right)-\frac{1}{2} \sum_{I=1}^{8} \mu_{1, I}^{2}\left(X^{I}, X^{I}\right) \\
& +\frac{\mathrm{i}}{2} \mu_{2}\left(\bar{\Psi}, \Gamma_{3456} \Psi\right)+C^{I J K L}\left(\left[X^{I}, X^{J}, X^{K}\right], X^{L}\right) \\
& +\frac{\mathrm{i}}{4}\left(\bar{\Psi}, \Gamma_{I J}\left[X^{I}, X^{J}, \Psi\right]\right)-\frac{1}{12}\left(\left[X^{I}, X^{J}, X^{K}\right],\left[X^{I}, X^{J}, X^{K}\right]\right) \\
& +\frac{1}{6} \epsilon^{\mu \nu \lambda}\left(\left(A_{\mu},\left[A_{\nu}, A_{\lambda}\right]\right)\right)+\frac{1}{4 \gamma^{2}}\left(\left(\left[A_{\mu}, A_{\nu}\right],\left[A^{\mu}, A^{\nu}\right]\right)\right)
\end{aligned}
$$

Matter fields X^{I}, Ψ in vector space forming an orth. rep. of the gauge algebra in which A_{μ} lives. (" 3 -Lie algebra")

This model should take over the role of the IKKT model!

Solutions in the 3-Lie Algebra Model

Stable solutions of the IKKT model have a 3-Lie algebra analogue.
Stable classical solutions:

\mathbb{R}_{λ}^{3}	$\mu_{I}=C_{I J K L}=0$	$\left[X^{i}, X^{j}, X^{k}\right] \sim \varepsilon^{i j k} \mathbb{1}$
Fuzzy 3	$C_{1234}=1$	$\left[X^{i}, X^{j}, X^{k}\right] \sim \varepsilon^{i j k l} X^{l}$
NC Hpp-waves	$C_{1234}=1, \mu_{1}=\mu_{2}=\mu$	$\left[X^{1}, X^{2}, X^{3}\right] \sim \theta^{123} \mathbb{1}$
		$\left[X^{4}, X^{i}, X^{j}\right] \sim \theta^{i j k} X^{k}$

First two solutions again BPS. The third: 5d Hpp-wave backgrnd.:

$$
\mathrm{d} s_{4}^{2}=2 \alpha \beta \mathrm{~d} x^{+} \mathrm{d} x^{-}+\gamma^{2}|\overrightarrow{\mathrm{~d} z}|^{2}-\frac{1}{4} \beta^{2}\left(\gamma^{2}|\vec{z}|^{2}-b\right)\left(\mathrm{d} x^{+}\right)^{2}
$$

Identification:

$$
X^{1}+\mathrm{i} X^{2} \sim z, \quad X^{3} \sim z^{3}, \quad X^{4} \sim J, \quad X^{5} \sim \mathbb{1}
$$

Further Features of the 3-Algebra Matrix Model

The 3-algebra model has more interesting features.

- Recall: IKKT expanded around sol.: NC YM theory on sol. Here: 3-algebra model exp. around sol.: expected part + ...
- Close connection to the cubic $\mathfrak{o s p}(1 \mid 32)$-cubic matrix model:

$$
S_{\mathrm{CSM}}=\operatorname{str}\left(M^{3}\right)
$$

The Groupoid Approach to Quantization

The elements of geometric quantization can be written in a groupoid language.
Groupoids: Objects + composable, invertible arrows between them.

Why groupoids?

- Quantization of the dual of a Lie algebra: Twisted convolution algebra of integrating group
- Poisson struct. \rightarrow Lie algebroid \rightarrow Conv. alg. on Lie groupoid
- Construction avoids Hilbert spaces, useful for 2-plectic case

Procedure (Eli Hawkins, math/0612363, Weinstein, Renault, ...)
(1) Integrating groupoid $s, t: \Sigma \rightrightarrows M, \omega, \partial^{*} \omega=0, t$ Poisson
(2) Construct a prequantization of Σ with data (L, ∇)
(3) Endow Σ with a groupoid polarization
(9) Construct a twist element
(5) Obtain twisted polarized convolution algebra of Σ.

Example: Groupoid quantization of \mathbb{R}^{2}

The Moyal plane is conveniently reproduced in groupoid language.
Starting point: $M=\mathbb{R}^{2}$, Poisson structure $\pi^{i j}, i, j=1,2$.
(1) Lie groupoid: $\Sigma=M \times M^{*}$, coords. $\left(x^{i}, y_{i}\right), \omega=\mathrm{d} x^{i} \wedge \mathrm{~d} y_{i}$

$$
s\left(x^{i}, y_{i}\right)=\left(x^{i}+\frac{1}{2} \pi^{i j} y_{j}\right) \quad \text { and } \quad t\left(x^{i}, y_{i}\right)=\left(x^{i}-\frac{1}{2} \pi^{i j} y_{j}\right)
$$

Note: t is indeed a Poisson map: $\left\{t^{*} f, t^{*} g\right\}_{\omega}=t^{*}\{f, g\}_{\pi}$

$$
x^{i}+\pi^{i j}\left(y_{j}+y_{j}^{\prime}\right) \longrightarrow x^{i}+\pi^{i j}\left(y_{j}-y_{j}^{\prime}\right) \longrightarrow x^{i}-\pi^{i j}\left(y_{j}+y_{j}^{\prime}\right)
$$

From this: $p r_{1}, p r_{2}$ and $m . \partial^{*} \omega=p_{1}^{*} \omega-m^{*} \omega+p_{2}^{*} \omega=0$
(2) Prequantization: L trivial line bundle over $\Sigma, F=-\mathrm{i} 2 \pi \omega$
(3) Polarization: Induced by symplectic prepotential $\theta=-x^{i} \mathrm{~d} y_{i}$
(9) Twist element: $\partial^{*} \theta=\sigma_{0}^{-1} \mathrm{~d} \sigma_{0}=\mathrm{d}\left(-\frac{1}{2} \pi^{i j} y_{i} y_{j}^{\prime}\right)$
(0) Twisted polarized convolution algebra: Moyal product on M

Towards a Groupoid Quantization of \mathbb{R}^{3}

There are two groupoid approaches quantizing \mathbb{R}^{3} : 2-groupoids and loop spaces.
How do we extend this to \mathbb{R}^{3} ?
(1) Strict approach: Look at 2-Groupoids (2-Hilbert spaces) etc. (work in progress, cf. Freed, Baez, Rogers ...)
(2) Trick: Map the 2-plectic forms back to symplectic ones.

Consider the following double fibration:

Transgression

$$
\begin{gathered}
\mathcal{T}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(\mathcal{L} M), \quad \mathcal{T}=p r!\circ e v^{*} \\
(\mathcal{T} \omega)_{x}\left(v_{1}(\tau), \ldots, v_{k}(\tau)\right):=\int_{S^{1}} \mathrm{~d} \tau \omega\left(v_{1}(\tau), \ldots, v_{k}(\tau), \dot{x}(\tau)\right)
\end{gathered}
$$

Previous application: Lift ADHMN construction to M-theory CS, Papageorgakis\&CS, Palmer\&CS

Towards a Groupoid Quantization of \mathbb{R}^{3}

The symplectic manifold

Explicitly, this works as follows:
We start from \mathbb{R}^{3} with 2-plectic form $\varpi=\varepsilon_{i j k} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k}$.
Transgression yields a symplectic form on loop space $\mathcal{L} \mathbb{R}^{3}$:

$$
\omega=\oint \mathrm{d} \tau \oint \mathrm{~d} \sigma \varepsilon_{i j k} \dot{x}^{k}(\tau) \delta(\tau-\sigma) \delta x^{i}(\tau) \wedge \delta x^{j}(\sigma)
$$

This gives a Poisson bracket

$$
\left\{x^{i}(\tau), x^{j}(\sigma)\right\}:=\varepsilon^{i j k} \dot{x}_{k}(\tau) \delta(\tau-\sigma)
$$

Corresponding commutator relation previously derived in M-theory. Kawamoto\&Sasakura Bergshoeff\&Berman\&van der Schaar\&Sundell

Groupoid Quantization of \mathbb{R}^{3}

The groupoid approach can be extended to higher structures using loop space.

Starting point: $M=\mathbb{R}^{3}$, Poisson structure $\pi^{i j k} \dot{x}_{k}, i, j=1,2$.
(1) Lie groupoid: $\Sigma=L M \times L M^{*}$, coords. $\left(x^{i}, y_{i}\right), \omega=\mathrm{d} x^{i} \wedge y_{i}$

$$
s\left(x^{i}, y_{i}\right)=\left(x^{i}+\frac{1}{2} \pi^{i j k} y_{j} \dot{x}_{k}\right) \quad \text { and } \quad t\left(x^{i}, y_{i}\right)=\left(x^{i}-\frac{1}{2} \pi^{i j k} y_{j} \dot{x}_{k}\right)
$$

Note: t is indeed a Poisson map: $\left\{t^{*} f, t^{*} g\right\}_{\omega}=t^{*}\{f, g\}_{\pi}$

$$
x^{i}+\pi^{i j}\left(y_{j}+y_{j}^{\prime}\right) \dot{x}_{k} \rightarrow x^{i}+\pi^{i j k}\left(y_{j}-y_{j}^{\prime}\right) \dot{x}_{k} \rightarrow x^{i}-\pi^{i j k}\left(y_{j}+y_{j}^{\prime}\right) \dot{x}_{k}
$$

From this: $p r_{1}, p r_{2}$ and $m . \partial^{*} \omega=p_{1}^{*} \omega-m^{*} \omega+p_{2}^{*} \omega=0$
(2) Prequantization: L trivial line bundle over $\Sigma, F=-\mathrm{i} 2 \pi \omega$
(3) Polarization: Induced by symplectic prepotential $\theta=-x^{i} \mathrm{~d} y_{i}$
(9) Twist element: $\partial^{*} \theta=\sigma_{0}^{-1} \mathrm{~d} \sigma_{0}=\mathrm{d}\left(-\frac{1}{2} \pi^{i j k} y_{i} y_{j}^{\prime} \dot{x}_{k}\right)$
(9) Twisted polar. conv. alg.: $\left[x^{i}(\tau), x^{j}(\sigma)\right]=\delta(\tau-\sigma) \pi^{i j k} \dot{x}_{k}(\tau)$

Conclusions

 Summary and Outlook.
Summary:

\checkmark Naive approach to quantizing 2-plectic manifolds works OK \checkmark IKKT-like model can be written down, has expected features.
\checkmark Groupoids offer a more general approach to quantization
Future directions:
\triangleright Extend quantization of \mathbb{R}^{3} to 2-groupoid.
\triangleright Extend groupoid constructions to other spaces $\left(S^{3}\right)$.
\triangleright Unify picture: Higher Poisson structures? Courant algebroids?
\triangleright Rewrite BLG model using the new function algebras.

Quantization of 2-plectic Manifolds

Christian Sämann

HERIOT FWATT UNIVERSITY

School of Mathematical and Computer Sciences Heriot Watt University, Edinburgh

Bayrischzell Workshop, 22.5.2011

