BEREZIN'S COHERENT STATES, SYMBOLS AND TRANSFORM REVISITED

Martin Schlichenmaier

Mathematics Research Unit
University of Luxembourg
Bayrischzell, May 20-23, 2011

Outline

1. review of coherent state techniques related to the quantization of Kähler manifolds
2. covariant symbols, Berezin transform, equivalent star products
3. More details: in Berezin-Toeplitz quantization for Compact Kähler manifolds. A Review of results, Advances in Math. Phys. 38 pages, doi:10.1155/2010/927280
4. mainly restrict the treatment to the compact Kähler case but some of the constructions work also in the non-compact case.
Results:
partly joint with M. Bordemann, E. Meinrenken, and A. Karabegov

BT QUANTIZATION OF COMPACT KÄHLER MANIFOLDS

(M, ω) a (compact) Kähler manifold.
i.e. M a complex manifold, ω a Kähler form (closed $(1,1)$ form which is positive), $\quad d \omega=0$
in local holomorphic coordinates $\left\{z_{i}\right\}_{i=1, \ldots n}$

$$
\omega=\mathrm{i} \sum_{i, j=1}^{n} g_{i j}(z) d z_{i} \wedge d \bar{z}_{j}
$$

$\left(g_{i j}(z)\right)_{i, j=1, \ldots, n}$ is hermitian and positive definite matrix

Examples

1. $\mathbb{C}^{n}, \quad \omega=\mathrm{i} \sum_{i=1}^{n} d z_{i} \wedge d \bar{z}_{i}$
2. $\mathbb{P}^{1}, \quad \omega=\frac{i}{(1+z \bar{z})^{2}} d z \wedge d \bar{z}$
3. every Riemann surface
4. every (complex) torus
5. every (quasi-)projective manifold
6. very often moduli spaces

Quantization condition: $\quad(M, \omega)$ is called quantizable, if there exists an associated quantum line bundle (L, h, ∇)
L is a holomorphic line bundle over M, h a hermitian metric on L,
∇ a compatible connection fullfilling additionally

$$
\operatorname{curv}_{(L, \nabla)}=-\mathrm{i} \omega
$$

locally this means $\mathrm{i} \bar{\partial} \partial \log \hat{h}=\omega$.
Note: Not all Kähler manifolds are quantizable e.g. the tori are only quantizable if they have enough theta functions, i.e. if they are abelian varieties
(M, ω) a (compact) Kähler manifold
Consider now $L^{m}:=L^{\otimes m}$, with metric $h^{(m)}$.
$\Gamma_{\infty}\left(M, L^{m}\right)$ the space of smooth sections
$\Gamma_{\text {hol }}\left(M, L^{m}\right)=\mathrm{H}^{0}\left(M, L^{m}\right)$ the space of global holomorphic sections

scalar product

$$
\begin{aligned}
\langle\varphi, \psi\rangle:= & \int_{M} h^{(m)}(\varphi, \psi) \Omega, \quad \Omega:=\frac{1}{n!} \underbrace{\omega \wedge \omega \cdots \wedge \omega}_{n} \\
& \Pi^{(m)}: L^{2}\left(M, L^{m}\right) \longrightarrow \Gamma_{h o l}\left(M, L^{m}\right)
\end{aligned}
$$

BEREZIN-TOEPLITZ OPERATOR QUANTIZATION

Take $f \in C^{\infty}(M)$, and $s \in \Gamma_{\text {hol }}\left(M, L^{m}\right)$

$$
s \mapsto \quad \Pi^{(m)}(f \cdot s)=: T_{f}^{(m)}(s)
$$

defines

$$
T_{f}^{(m)}: \quad \Gamma_{\text {hol }}\left(M, L^{m}\right) \rightarrow \Gamma_{\text {hol }}\left(M, L^{m}\right)
$$

the Toeplitz operator of level m.
The Berezin-Toeplitz operator quantization is the map

$$
f \mapsto\left(T_{f}^{(m)}\right)_{m \in \mathbb{N}_{0}} .
$$

The BT quantization has the correct semi-classical behavior

SEMI-CLASSICAL BEHAVIOUR

Theorem (Bordemann, Meinrenken, and Schl.)
(a)

$$
\lim _{m \rightarrow \infty}\left\|T_{f}^{(m)}\right\|=|f|_{\infty}
$$

(b)

$$
\left\|m_{\mathrm{i}}\left[T_{f}^{(m)}, T_{g}^{(m)}\right]-T_{\{f, g\}}^{(m)}\right\|=O(1 / m)
$$

(c)

$$
\left\|T_{f}^{(m)} T_{g}^{(m)}-T_{f \cdot g}^{(m)}\right\|=O(1 / m)
$$

Poisson bracket $\{.,$.$\} is given by$

$$
\{f, g\}:=\omega\left(X_{f}, X_{g}\right) \quad \text { with } \quad \omega\left(X_{f}, \cdot\right)=d f(\cdot)
$$

GEOMETRIC QUANTIZATION

Further result: The Toeplitz map

$$
T_{(m)}: C^{\infty}(M) \rightarrow \operatorname{End}\left(\Gamma_{h o l}\left(M, L^{m}\right)\right)
$$

is surjective
This implies operator $Q_{f}^{(m)}$ of geometric quantization (with holomorphic polarization) can be written as Toeplitz operator of a function (different for every m)
Indeed Tuynman relation:

$$
Q_{f}^{(m)}=\mathrm{i} T_{f-\frac{1}{2 m} \Delta f}^{(m)}
$$

$u(N), N \rightarrow \infty$ LIMIT

If we choose basis in $\Gamma_{\text {hol }}\left(M, L^{m}\right)$ then $T_{f}^{(m)}$ can be represented as $N \times N$ matrices, $N=\operatorname{dim} \Gamma_{\text {hol }}\left(M, L^{m}\right)$.
$C^{\infty}(M) \rightarrow g I(N, \mathbb{C}), f \mapsto \mathrm{i} T_{f}^{(m)}$ is a surjective linear map and we obtain an infinite sequence of matrices.
Fact: $T_{\bar{f}}^{(m)}=\left(T_{f}^{(m)}\right)^{*}$,
hence for real valued f the operator $T_{f}^{(m)}$ is selfadjoint.
$C^{\infty}(M, \mathbb{R}) \rightarrow u(n), f \mapsto \mathrm{i} T_{f}^{(m)}$ (again surjective) gives a sequence of $u(N), N \rightarrow \infty$ matrices.

BEREZIN-TOEPLITZ DEFORMATION QUANTIZATION

Theorem (BMS, Schl., Karabegov and Schl.)

\exists a unique differential star product

$$
f \star_{B T} g=\sum \nu^{k} C_{k}(f, g)
$$

such that

$$
T_{f}^{(m)} T_{g}^{(m)} \sim \sum_{k=0}^{\infty}\left(\frac{1}{m}\right)^{k} T_{C_{k}(f, g)}^{(m)}
$$

Further properties: it is of separation of variables type, (also called of Wick type)
with classifying Deligne-Fedosov class $\frac{1}{\mathrm{i}}\left(\frac{1}{\nu}[\omega]-\frac{\epsilon}{2}\right)$ and Karabegov form $\frac{-1}{\nu} \omega+\omega_{\text {can }}$

equivalence of star products:

\star and \star^{\prime} (for the same Poisson structure) are equivalent iff there exists a formal series of linear operators

$$
B=\sum_{i=0}^{\infty} B_{i} \nu^{i}, \quad B_{i}: C^{\infty}(M) \rightarrow C^{\infty}(M),
$$

with $B_{0}=i d$ such that $B(f) \star^{\prime} B(g)=B(f \star g)$

- BMS Theorem (using Tuynman relation) \Longrightarrow there exists a star product $\star_{G Q}$ given by asymptotic expansion of product of geometric quantisation operators
- $\star_{G Q}$ is equivalent to $\star_{B T}, \quad B(f):=\left(i d-\nu \frac{\Delta}{2}\right) f$
- it is not of separation of variable type

The DISC BUNDLE

- quantization condition says L is a positive line bundle, by Kodaira embedding theorem there exists $m_{0} \in \mathbb{N}$, such that $L^{\left(m_{0}\right)}$ has enough global holomorphic sections which can be used to embed M into projective space (such $L^{\left(m_{0}\right)}$ is called very ample),
- assume that bundle L is already very ample,
- pass to its dual $(U, k):=\left(L^{*}, h^{-1}\right)$ with dual metric k
- inside of the total space U, consider the circle bundle

$$
Q:=\{\lambda \in U \mid k(\lambda, \lambda)=1\}
$$

- $\tau: Q \rightarrow M($ or $\tau: U \rightarrow M)$ the projection,
- the bundle Q is a contact manifold, i.e. there is a 1 -form ν $\left(=\left(\frac{1}{2 \mathrm{i}}(\partial-\bar{\partial}) \log \hat{h}\right)_{Q}\right)$ such that $\mu=\frac{1}{2 \pi} \tau^{*} \Omega \wedge \nu$ is a volume form on Q

$$
\int_{Q}\left(\tau^{*} f\right) \mu=\int_{M} f \Omega, \quad \forall f \in C^{\infty}(M)
$$

- $\mathcal{H}^{(m)}$ space of m-homogenous functions on Q which can be extended to the disc bundle ("interior" of the circle bundle), homogenous means $\psi(c \lambda)=c^{m} \psi(\lambda)$
- \mathcal{H} is the space of all extendable functions
- Q is a S^{1}-bundle, L^{m} are associated line bundles
- sections of $L^{m}=U^{-m}$ are identified with those functions ψ on Q which are homogeneous of degree m,
- identification given via the map

$$
\begin{gathered}
\gamma_{m}: \mathrm{L}^{2}\left(M, L^{m}\right) \rightarrow \mathrm{L}^{2}(Q, \mu), \quad s \mapsto \psi_{s} \quad \text { where } \\
\psi_{s}(\alpha)=\alpha^{\otimes m}(s(\tau(\alpha)))
\end{gathered}
$$

- Restricted to the holomorphic sections we obtain the unitary isomorphism

$$
\gamma_{m}: \Gamma_{h o l}\left(M, L^{m}\right) \cong \mathcal{H}^{(m)}
$$

COHERENT STATES

Recall

$$
\psi_{s}(\alpha)=\alpha^{\otimes m}(s(\tau(\alpha))),
$$

Now we fix $\alpha \in \boldsymbol{U} \backslash 0$ and vary the sections s.

- coherent vector (of level m) associated to the point $\alpha \in U \backslash 0$ is the element $e_{\alpha}^{(m)}$ of $\Gamma_{\text {hol }}\left(M, L^{m}\right)$ with (for all $\left.s \in \Gamma_{\text {hol }}\left(M, L^{m}\right)\right)$

$$
\left\langle e_{\alpha}^{(m)}, s\right\rangle=\psi_{s}(\alpha)=\alpha^{\otimes m}(s(\tau(\alpha)))
$$

for all $s \in \Gamma_{\text {hol }}\left(M, L^{m}\right)$.

- check:

$$
e_{c \alpha}^{(m)}=\bar{c}^{m} \cdot e_{\alpha}^{(m)}, \quad c \in \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}
$$

- coherent state (of level m) associated to $x \in M$ is the projective class

$$
\mathrm{e}_{x}^{(m)}:=\left[e_{\alpha}^{(m)}\right] \in \mathbb{P}\left(\Gamma_{h o l}\left(M, L^{m}\right)\right), \quad \alpha \in \tau^{-1}(x), \alpha \neq 0 .
$$

- The coherent state embedding is the antiholomorphic embedding

$$
M \rightarrow \mathbb{P}\left(\Gamma_{\text {hol }}\left(M, L^{m}\right)\right) \cong \mathbb{P}^{N}(\mathbb{C}), \quad x \mapsto\left[e_{\tau^{-1}(x)}^{(m)}\right] .
$$

COVARIANT BEREZIN SYMBOL

Covariant Berezin symbol $\sigma^{(m)}(A)$ (of level m) of an operator $A \in \operatorname{End}\left(\Gamma_{\text {hol }}\left(M, L^{(m)}\right)\right.$ is defined as

$$
\sigma^{(m)}(A): M \rightarrow \mathbb{C}, \quad x \mapsto \sigma^{(m)}(A)(x):=\frac{\left\langle e_{\alpha}^{(m)}, A e_{\alpha}^{(m)}\right\rangle}{\left\langle e_{\alpha}^{(m)}, e_{\alpha}^{(m)}\right\rangle}, \quad \alpha \in \tau^{-1}(x) .
$$

Can be rewritten as

$$
\sigma^{(m)}(A)=\operatorname{Tr}\left(A P_{x}^{(m)}\right) .
$$

with the coherent projectors

$$
P_{x}^{(m)}=\frac{\left|e_{\alpha}^{(m)}\right\rangle\left\langle e_{\alpha}^{(m)}\right|}{\left\langle e_{\alpha}^{(m)}, e_{\alpha}^{(m)}\right\rangle}, \quad \alpha \in \tau^{-1}(x)
$$

Importance of the covariant symbol

- Construction of the Berezin star product, under very restrictive conditions on the manifolds
- $\mathcal{A}^{(m)} \leq C^{\infty}(M)$, of level m covariant symbols.
- the symbol map is injective (follows from Toeplitz map surjective)
- for $\sigma^{(m)}(A)$ and $\sigma^{(m)}(B)$ the operators A and B are uniquely fixed, and we set

$$
\sigma^{(m)}(A) \star_{(m)} \sigma^{(m)}(B):=\sigma^{(m)}(A \cdot B)
$$

- $\star_{(m)}$ on $\mathcal{A}^{(m)}$ is an associative and noncommutative product
- Crucial problem, how to obtain from $\star_{(m)}$ a star product for all functions (or symbols) independent from the level m ?
- in general not possible, only for limited classes of manifolds
- Also the notion of a contravariant symbol exists.
- for a Toeplitz operator $T_{f}^{(m)}$ a contravariant symbol is f itself
- General definition will be given maybe later.

BEREZIN TRANSFORM

The map

$$
I^{(m)}: C^{\infty}(M) \rightarrow C^{\infty}(M), \quad f \mapsto I^{(m)}(f):=\sigma^{(m)}\left(T_{f}^{(m)}\right)
$$

is called the Berezin transform (of level m).

THEOREM

Given $x \in M$ then the Berezin transform $I^{(m)}(f)$ has a complete asymptotic expansion in powers of $1 / m$ as $m \rightarrow \infty$

$$
l^{(m)}(f)(x) \quad \sim \quad \sum_{i=0}^{\infty} l_{i}(f)(x) \frac{1}{m^{i}},
$$

where $I_{i}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ are maps with $I_{0}(f)=f, \quad I_{1}(f)=\Delta f$.

- Δ is the Laplacian with respect to the metric given by the Kähler form ω,
- Complete asymptotic expansion: Given $f \in C^{\infty}(M), x \in M$ and an $r \in \mathbb{N}$ then there exists a positive constant A such that

$$
\left|I^{(m)}(f)(x)-\sum_{i=0}^{r-1} I_{i}(f)(x) \frac{1}{m^{i}}\right|_{\infty} \leq \frac{A}{m^{r}}
$$

Application 1: BEREZIN STAR PRODUCTS

- take from asymptotic expansion of the Berezin transform the formal expression

$$
I=\sum_{i=0}^{\infty} \iota_{i} \nu^{i}, \quad l_{i}: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

- set $f \star_{B} g:=I^{-1}\left(I(f) \star_{B T} I(g)\right)$
- as $I_{0}=i d$ this \star_{B} is a star product, called the Berezin star product
- I gives the equivalence to $\star_{B T}$.
- if the definition with the covariant symbol works it will coincide with the star product defined there.

APPLICATION 2: NORM PRESERVATION OF BT QUANTUM OPERATORS

Statement:

$$
|f|_{\infty}-\frac{C}{m} \leq\left\|T_{f}^{(m)}\right\| \leq|f|_{\infty}
$$

First,

$$
\left|I^{(m)}(f)\right|_{\infty}=\left|\sigma^{(m)}\left(T_{f}^{(m)}\right)\right|_{\infty} \leq\left\|T_{f}^{(m)}\right\| \leq|f|_{\infty} .
$$

Second,

- take $x_{e} \in M$ a point with $\left|f\left(x_{e}\right)\right|=|f|_{\infty}$
- asymptotic expansion of the Berezin transform yields $\left|\left(I^{(m)} f\right)\left(x_{e}\right)-f\left(x_{e}\right)\right| \leq C / m$ with a constant C
- hence,

$$
\left|\left|f\left(x_{e}\right)\right|-\left|\left(I^{(m)} f\right)\left(x_{e}\right)\right|\right| \leq C / m
$$

- and

$$
|f|_{\infty}-\frac{C}{m}=\left|f\left(x_{e}\right)\right|-\frac{C}{m} \leq\left|\left(I^{(m)} f\right)\left(x_{e}\right)\right| \leq\left|I^{(m)} f\right|_{\infty}
$$

- This gives the statement

BERGMAN KERNEL

- Main tool: for the asymptotic expansion of the Berezin-transform is asymptotic expansion of the Bergman kernel function in the neighbourhood of the diagonal (joint work with A. Karabegov).
- Szegö projectors $\Pi: \mathrm{L}^{2}(Q, \mu) \rightarrow \mathcal{H}$, and its components $\hat{\Pi}^{(m)}: \mathrm{L}^{2}(Q, \mu) \rightarrow \mathcal{H}^{(m)}$, the Bergman projectors
- Bergman projectors have smooth integral kernels, the Bergman kernels $\mathcal{B}_{m}(\alpha, \beta)$ on $Q \times Q$, i.e.

$$
\begin{gathered}
\hat{\Pi}^{(m)}(\psi)(\alpha)=\int_{Q} \mathcal{B}_{m}(\alpha, \beta) \psi(\beta) \mu(\beta) \\
\mathcal{B}_{m}(\alpha, \beta)=\psi_{e_{\beta}^{(m)}}(\alpha)=\overline{\psi_{e_{\alpha}^{(m)}}(\beta)}=\left\langle e_{\alpha}^{(m)}, e_{\beta}^{(m)}\right\rangle
\end{gathered}
$$

- connected to Berezin transform via

$$
\left(I^{(m)}(f)\right)(x)=\frac{1}{\mathcal{B}_{m}(\alpha, \alpha)} \int_{Q} \mathcal{B}_{m}(\alpha, \beta) \mathcal{B}_{m}(\beta, \alpha) \tau^{*} f(\beta) \mu(\beta)
$$

CONTRAVARIANT SYMBOLS

We need: Rawnsley's epsilon function

$$
\epsilon^{(m)}: M \rightarrow C^{\infty}(M), \quad x \mapsto \epsilon^{(m)}(x):=\frac{h^{(m)}\left(e_{\alpha}^{(m)}, e_{\alpha}^{(m)}\right)(x)}{\left\langle e_{\alpha}^{(m)}, e_{\alpha}^{(m)}\right\rangle}, \alpha \in \tau^{-1}(x)
$$

As $\epsilon^{(m)}>0$ we introduce the modified measure

$$
\Omega_{\epsilon}^{(m)}(x):=\epsilon^{(m)}(x) \Omega(x)
$$

on the space of functions on M.

Given $A \in \operatorname{End}\left(\Gamma_{\text {hol }}\left(M, L^{(m)}\right)\right)$ then a contravariant Berezin symbol $\check{\sigma}(m)(A) \in C^{\infty}(M)$ of A is defined by the representation of the operator A as an integral

$$
A=\int_{M} \check{\sigma}^{(m)}(A)(x) P_{x}^{(m)} \Omega_{\epsilon}^{(m)}(x)
$$

if such a representation exists.

- The Toeplitz operator $T_{f}^{(m)}$ admits such a representation with $\check{\sigma}^{(m)}\left(T_{f}^{(m)}\right)=f$, i.e. the function f is a contravariant symbol of the Toeplitz operator $T_{f}^{(m)}$. It is not unique.
- The Toeplitz map is surjective \Longrightarrow every operator has a contravariant symbol,
- on $\operatorname{End}\left(\Gamma_{\text {hol }}\left(M, L^{(m)}\right)\right)$ introduce the Hilbert-Schmidt norm

$$
\langle A, C\rangle_{H S}=\operatorname{Tr}\left(A^{*} \cdot C\right)
$$

- the Toeplitz map $f \rightarrow T_{f}^{(m)}$ and the covariant symbol map $A \rightarrow \sigma^{(m)}(A)$ are adjoint:

$$
\left\langle A, T_{f}^{(m)}\right\rangle_{H S}=\left\langle\sigma^{(m)}(A), f\right\rangle_{\epsilon}^{(m)}
$$

- Using this, from the surjectivity of the Toeplitz map the injectivity of the covariant symbol map follows.

