Quantum space-time and the horizon problem

Nicola Pinamonti

Dipartimento di Matematica Università di Genova

Bayrischzell, May, 26th 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivations

- At short distance the spacetime should be **non-commutative**.
- This feature should be encoded in the "Quantum Gravity"

No satisfactory description.

- We can get information about such a theory analyzing some particular regimes [Hawking].
- Gravity classically Matter by quantum theory.

$$G_{ab} = 8\pi \langle T_{ab} \rangle_{\omega}$$

 Doplicher, Fredenhagen and Roberts 95 use this to obtain uncertainty relations for the coordinates on a flat quantum space.

Questions

Does it work also on curved spacetimes? If yes, which are the implication of sp-non-commutativity on GR? And at the early universe? Formation of trapped surfaces out of measurements

- A measuring process: model of the quantum detector
- The influence on the curvature and appearance of trapped surfaces
- An application in cosmological
 - Energy density on Quantum Minkowski Spacetime
 - Backreaction on Quantum (FRW) Spacetime

Biblipgraphy

- S. Doplicher, K. Fredenhagen, J. Roberts CMP 172, 187 (1995)
- D. Bahn, S. Doplicher, K. Fredenhagen, G. Piacitelli CMP 237, 221 (2003)

S. Doplicher, G. Morsella, NP, [arXiv:1201.2519] (2012)

Uncertainties

In [DFR 95] the authors find the commutation rules among the coordinates

$$[q^{\mu},q^{\nu}]=iQ^{\mu\nu}$$

compatible with the following uncertainty relations

$$\Delta x_0 \left(\Delta x_1 + \Delta x_2 + \Delta x_3 \right) \geq \lambda_P^2,$$

$$\Delta x_1 \Delta x_2 + \Delta x_2 \Delta x_3 + \Delta x_3 \Delta x_1 \geq \lambda_P^2$$

which are obtained using the following:

Minimal Principle (P0):

We cannot create a singularity just observing a system.

- Together with the Heisenberg principle (HP) (valid in Minkowski).
- The uncertainties are tailored to the flat spacetime.
- On a curved spacetime we have to **replace** it with something else.
- We use **QFT on CST** and their comm. rel. in combination with **P0**.
- We shall perform such analysis on a spherically symmetric space.

Measurments and trapped surfaces

Formation of trapped surfaces out of measurements

- A measuring process: model of the quantum detector
- Influence on curvature and appearance of trapped surfaces

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A measuring process: model of a spherically symmetric quantum detector

Idealized measurement:

light scattered by a target.

- two steps:
 - 1 preparation: Incoming focused light
 - 2 detection: scattered light by an object localized in \mathcal{O}

Problem when:

incoming light is too focused.

Let's look at this.

Simple model for light

Quantum field theory over a curved space-time M. Consider

 $-\Box \phi = \mathbf{0}$

Quantize using algebraic methods:

- Construct A(M) the *-algebra of observables generated by φ(f) and its Wick products φ²(f),...
- It encompasses the commutation relations.

$$[\phi(f),\phi(g)] = \Delta(f,g)$$

 States are positive linear functionals over A (With further nice properties: Hadamard condition).

Example: $\phi(f)$, $T_{\mu\nu}(f)$ are contained in $\mathcal{A}(M)$. Their **expectation values** are

 $\langle \phi(f) \rangle := \omega(\phi(f)) , \qquad \langle T_{\mu\nu}(f) \rangle := \omega(T_{\mu\nu}(f))$

Assume that on a state ω it holds

$$G_{\mu
u} = 8\pi \; \omega(T_{\mu
u})$$

• Prepare the incoming light by applying $\phi(f)$ on ω .

Proposition

We call ω_f prepared state

$$\omega_f(A) = rac{\omega\left(\phi(f) \mid A \mid \phi(f)
ight)}{\omega(\phi(f)\phi(f))} \qquad orall A \in \mathcal{A}(M)$$

Thus the expectation values of the observables are changed. For example

$$\langle T_{\mu\nu} \rangle_{f,0} := \omega_f(T_{\mu\nu}) - \omega(T_{\mu\nu}) .$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Measurments and trapped surfaces

Evaluation of the change in $\langle T_{\mu\mu} \rangle_{f,0}$

Proposition

Consider $\mathcal{A}(M)$ generated by ϕ real and a quasi free Hadamard state ω

$$\langle \partial_{\mu}\phi\partial_{\mu}\phi(x)
angle_{f,0}\geq rac{1}{2}rac{|\partial_{\mu}\Delta(f)(x)|^2}{\omega\left(\phi(f)\phi(f)
ight)}, \qquad f\in C_0^\infty(M)$$

x is a point of M and Δ is the causal propagator. Whenever μ -direction is light-like $T_{\mu\mu}(x) = \partial_{\mu}\phi\partial_{\mu}\phi(x)$

▶ Proof

Influence on curvature and appearance of trapped surfaces

We want to solve

$$G_{\mu\nu}=8\pi\;\omega_f(T_{\mu\nu}).$$

It is very difficult. Assume spherical symmetry.

- Spacetime is $\mathbb{R}^2 \times \mathbb{S}^2$, retarded coordinates:
- \blacksquare spanned by future null geodesic emanated from the center of the sphere γ
 - u proper time on the worldline line γ
 - s affine parameter along the null geodesics with s(0) = 0 and $\dot{s}(0) = 1$
 - r(u, s) is the retarded distance.

The most generic metric is

$$ds^2 := -A(u,s)du^2 - 2dsdu + r(u,s)^2 d\mathbb{S}^2$$

Fix u, the family of null geodesics form a cone C_u

K A 3 K A 3 K

For every C_u consider the **expansion parameter** θ of that family

 θ measures the rate of change of $4\pi r^2$ along C_u

- $\theta > 0$ expansion
- $\theta = 0$ trapped surface
- $\theta < 0$ contraction

• Its evolution along C_u is governed by the **Raychaudhuri** equation

$$\dot{\theta} = -\frac{\theta^2}{2} - R_{ss}; \qquad \lim_{s \to 0^+} s\theta = 2$$

We solve this equation semiclassically namely:

$$R_{ss} = 8\pi \ \omega_f(T_{ss}) = 8\pi \ \omega(T_{ss}) + 8\pi \langle T_{ss} \rangle_{f,0} = R_{ss}^{(0)} + 8\pi \langle T_{ss} \rangle_{f,0}$$
$$R_{\mu\nu}^{(0)} \text{ is the "curvature" without the influence of the measurement.}$$

Theorem about the formation of a trapped surfaces

M spherically symmetric. $\mathcal{A}(M)$ and ω as before. Assume:

Semiclassical Einstein equations are satisfied by ω and M;
 R⁽⁰⁾_{ss} = 8πω(T_{ss}) is positive on C₀;

3 For every f supported in $J^+(\mathcal{C}_0)$

 $|\omega_2(f,f)| \leq C \|s\psi_f\|_2 \|\partial_s(s\psi_f)\|_2,$

 $\psi_f = \Delta(f) \upharpoonright C_0$. $\| \cdot \|_2$ is the L^2 norm on C_0 w.r.t $ds \wedge d\mathbb{S}^2$.

Consider ω_f a state **perturbed** by a symmetric $\phi(f)$ such that:

supp $f \subset J^+(\mathcal{C}_0)$ supp $\psi_f \subset \{(s, \Omega) \in \mathcal{C}_0 | s_1 < s < s_2\}$ where

$$s_1 < s_2 < \frac{3}{2}s_1, \qquad (s_2)^2 < \overline{s}^2, \qquad \overline{s}^2 := \frac{1}{6C}.$$

Hence semiclassically θ vanishes in C_0 and thus $J^+(C_0)$ contains a trapped surface.

Measurments and trapped surfaces

Hypotheses about C_0 and about f w.r.t. O

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Measurments and trapped surfaces

Comments on the obtained results

Question

Are the hypotheses 1. 2. 3. too strong?

- Solutions of the semiclassical Einstein equation do exists. (At least in cosmology is a well posed system of equations [NP 2011]).
- R⁽⁰⁾_{ss} ≥ 0 is realized in every reasonable cosmological model. (So it is physically acceptable).
- The asked continuity for the state occurs in many concrete examples. (Minkowski vacuum, many other Hadamard states of interest [DPP 2011]).

Comparison with classical results by Christodoulou:

Our hypotheses imply the Christodoulou one.

Further comments

Fact

There is a minimal lenghtscale λ under which a trapped surface occurs. (θ becomes negative and remains negative).

principle of gravitational stability under localization of events (P0)

- \implies we cannot detect object smaller then that lengthscale λ .
 - The obtained minimal length scale does not permit to obtain a full set of commutation relations among coordinates.
 - Non spherical symmetric situations are not addressed.

An application in cosmology

Question:

Which role has the lengthscale λ when back reaction of matter on curvature is considered?

- We don't have a full set of commutation relation.
- Solving semiclassical Einstein equations is a difficult task.

Thus let us consider a cosmological model

$$ds^{2} = -dt^{2} + a(t)^{2} \left[dx^{2} + dy^{2} + dz^{2} \right]$$

• *a* is called **scale factor** it is the single degree of freedom in the model.

This model **fits the observation** of our universe at large scales:

$$a(t) = exp(Ht)$$

E + E + E - OQO

with H (Hubble constant) small but strictly positive.

To understand the role of λ on the dynamics, we would like to solve

$$G_{\mu
u} = 8\pi \langle T^{NC}_{\mu
u} \rangle$$

- in a "cosmological non-commutative spacetime".
 - Big big problem: We don't have a complete theory in curved space-time,
 - We have info on the **minimal length scale** λ which should appear in the products of fields
 - Poor man strategy: Learn how to implement the minimal length scale from the theory in flat space.
 - In flat space $\langle T_{\mu\nu}^{NC} \rangle$ are constructed using states of maximal localization compatible with λ [BDFP 2003].
 - We implement the same effect on a curved background in order to estimate the influence of λ on the curvature.

Energy density on Quantum Minkowski Spacetime

Let's have a look at non commutative Minkowski:

 ${\cal E}$ is the C^*- algebra of **quantum coordinates** generated by $q^\mu, Q^{\mu
u}$ with

$$[q^{\mu}, q^{
u}] = i\lambda^2 Q^{\mu
u}, \qquad [q^{
ho}, Q^{\mu
u}] = 0,$$

 $Q_{\mu
u}Q^{\mu
u} = 0, \qquad \left(rac{1}{4}Q^{\mu
u}(*Q)_{\mu
u}
ight)^2 = 1,$

any function f on M can be used to define a function on \mathcal{E} , that is:

$$f(q) := \int \check{f}(k) e^{ikq} d^4k$$
,

 $T_{\mu\nu}$ is defined as a product of fields at the same point.

A cosmological model

Remember: on a nc space-time we cannot localize precisely. The **best approx.** of points is furnished by states of optimal localization! [Bahns, Doplicher, Fredenhagen, Piacitelli 2003]

$${\mathcal E}^{(2)}:={\mathcal E}\otimes {\mathcal E}\;,\qquad q_1^\mu:=q^\mu\otimes 1,\qquad q_2^\mu:=1\otimes q^\mu,$$

introduce center of mass and relative coordinates (which commutes)

$$ar{q}^{\mu}:=rac{1}{2}(q_{1}^{\mu}+q_{2}^{\mu}),\qquad \xi^{\mu}:=rac{1}{\lambda}(q_{1}^{\mu}-q_{2}^{\mu}),$$

Evaluating ξ^{μ} on optimally localized states (partial trace) yields the **quantum diagonal map**

$$E^{(2)}: \mathcal{E}^{(2)} o ar{\mathcal{E}} := C^*(\{e^{ikar{q}}\}) \; .$$

On $f(q_1,q_2)\in \mathcal{E}^{(2)}$, using $|k|^2$ the Euclidean length of $k\in \mathbb{R}^4$

$$E^{(2)}(f(q_1,q_2)) = \int d^4k_1 d^4k_2 \check{f}(k_1,k_2) \ e^{-rac{\lambda^2}{4}|k_1-k_2|^2} e^{i(k_1+k_2)\bar{q}}.$$

The lenghtscale λ represents the maximal localization, is in a significant set of the maximal localization of the set of the set

Wick square and Energy density

Free (scalar) field on QST can be formally defined as

$$\phi(q) = \int d^4k \check{\phi}(k) \otimes e^{ikq}$$

which is an element of $\mathcal{A} \otimes \mathcal{E}$.

Using $E^{(2)}$ we can define the **Quantum Wick Square**

$$\phi_Q^2(\bar{q}) := E^{(2)}(\phi(q_1)\phi(q_2)).$$

and the Energy Density: the 00 component of the stress tensor:

$$ho_Q(ar q):= {\sf E}^{(2)}\Bigl(\partial_0\phi(q_1)\partial_0\phi(q_2)-rac{1}{2}\eta_{\mu
u}\partial_\mu\phi(q_1)\partial^
u\phi(q_2)\Bigr) \; ,$$

Evaluation in a Thermal state

- Our cosmologist friend: "our universe was very hot and dense in the past".
- A relic of this thermal matter is present in the CMB (cosmic microwave background).
- For this reason we evaluate those observables on a KMS state ω_{β} at fixed inverse temperature β

$$\omega_eta(\check{\phi}(k_1)\check{\phi}(k_2))=\delta(k_1+k_2)\delta(k_1^2)rac{arepsilon(k_1^0)}{1-e^{-eta k_1^0}}.$$

• It is "translationally invariant" \implies the expectation value of \overline{q} does not appear

Expectation values

The energy density is

$$\omega_eta(:
ho:_Q):=(\omega_eta-\omega_0)(
ho_Q)=4\pi\int_0^{+\infty}k^3rac{e^{-\lambda^2k^2}}{e^{eta k}-1}\;dk\,.$$

There are two characteristic lengths λ and β .

All the information about QST is in λ . It alters the **spectrum** of the state. Effectively it is a change in the smearing of the two-point function

$$\omega_{\beta}(:\phi^2:):=(\omega_{\beta}^2-\omega_0^2)(\delta) \implies \qquad \omega_{\beta}(:\phi^2:_Q):=(\omega_{\beta}^2-\omega_0^2)(g).$$

where $\delta = \delta(x - y)$ is replaced by $g = Ne^{-(x-y)^2/\lambda^2}$

Let's study the **asymptotic form** of ρ for small and large λ/β :

$$\omega_{\beta}(:\rho:_Q) \simeq C_1 rac{1-rac{\lambda^2}{eta^2}C_2}{eta^4} , \qquad \omega_{\beta}(:\rho:_Q) \simeq C_2 rac{1}{eta\lambda^3} ,$$

Backreaction on Quantum (FRW) Spacetime

$$G_{\mu\nu}=8\pi\omega(:T_{\mu\nu}:_Q).$$

In a flat FRW space-time it reduces to the Friedmann equation

$$H^2(t) = \omega(: \rho :_Q).$$

Choose conformal matter.

- ω_{β}^{M} is a **conform KMS state** for the commutative theory.
- Temperature scales with *a*, $(\beta = \beta_0 a(t))$.
- The length scale λ its scale invariant.
- A *"reasonable expression"* for the expectation value of the energy density is

$$ho_eta(t):=\omega^M_eta(:
ho:_Q)=4\pi\int_0^{+\infty}dk\,k^3rac{e^{-\lambda^2k^2}}{e^{eta(t)k}-1}.$$

Asymptotic form of the energy density

In an ethereally expanding universe with a Big Bang we have

 $\beta(t) = a(t)\beta_0$

In the **future** it holds

$$rac{\lambda}{eta} << 1 \;, \qquad \qquad
ho_eta(t) \simeq \mathcal{C}_1 rac{1}{eta_0^4 \mathsf{a}(t)^4}$$

The effect due to spacetime noncommutativity can be neglected

• When the universe was very small (close to the Big Bang)

$$rac{\lambda}{eta} >> 1 \;, \qquad \qquad
ho_eta(t) \simeq rac{\mathcal{C}_2}{eta_0 a(t) \lambda^3}.$$

Which is **less divergent** for $a \rightarrow 0$, than classical matter.

Form of the Big Bang singularity

Consider

$$H^2(t) = rac{C}{a(t)}.$$

 $M = (a, b) \times \mathbb{R}^3$ is conf. flat \Longrightarrow imbed M in \mathbb{R}^4

At which conformal time occurs the singularity?

$$\begin{aligned} \tau_0 - \tau &= \int_t^{t_0} \frac{1}{a(t')} dt' = \int_a^{a_0} \frac{1}{a'^2 H(a')} da' \\ &= \frac{2}{\sqrt{C}} \left(\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{a_0}} \right) \end{aligned}$$

Thus

$$\lim_{a\to 0}\tau=-\infty$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

What does it mean? Horizon problem

$$ds^2 = a^2 \left(-d\tau^2 + d\mathbf{x}^2 \right).$$

• Classical solution Radiation dominated: $\tau = \rightarrow \tau_0$ for $a \rightarrow a_0$ Horizon problem.

Quantum NC Corrections $\rho = 1/a(t)$: $\tau \rightarrow -\infty$ for $a \rightarrow 0$ Singularity is light like, No Horizon Problem

Power law inflation with Null Big Bang $\Im^- \cup i^-$

Summary

- Analysis of the measure process.
- Semiclassical Backreaction can be used to constraint the non commutativity.
- Using the obtained minimal length we can estimate the role of the non commutativity on the curvature.
- In a cosmological model the Horizon problem disappears.

Open Questions

- Can we say something for the generic case?
- Can we construct a full fledged non commutative quantum theory on curved space-time?

Thanks a lot for your attention!

Proof

$\{\xi_n\} \subset C_0^{\infty}(M)$ converging weakly to $\partial_{\mu}\delta(x)$. Notice that

$$\lim_{n\to\infty} \langle \phi(\xi_n)\phi(\xi_n)\rangle_{f,0} = \langle T_{\mu\mu}(x)\rangle_{f,0}$$

$$\langle \phi(\xi_n)\phi(\xi_n) \rangle_{f,0} = 2 \frac{|\omega_2(f,\xi_n)|^2}{\omega_2(f,f)} = 2 \frac{|\omega_{2,A}(f,\xi_n)|^2 + |\omega_{2,S}(f,\xi_n)|^2}{\omega_2(f,f)}$$

Hence

$$\langle \phi(\xi_n)\phi(\xi_n)
angle_{f,0}\geq rac{1}{2}rac{|\langle\xi_n,\Delta(f)
angle|^2}{\omega_2(f,f)}\;.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ back

Proof

Raychauduri equation in integral form

$$\theta(s_2) = \theta(s_1) - \int_{s_1}^{s_2} \frac{\theta^2}{2} ds - \int_{s_1}^{s_2} R_{ss} ds$$

Use hypothesis 1 and hypothesis 2 to get

$$s_2 \ \theta(s_2) \leq s_2 \ \theta(s_1) - 8\pi s_2 \ \int_{s_1}^{s_2} \langle T_{ss} \rangle_{f,0} ds$$
.

In the past of s_1 the space-time is unperturbed and from hypothesis 3

$$s_2 heta(s_2) \le 2rac{s_2}{s_1} - rac{s_2}{C} rac{\|\partial_s\psi_f\|_2^2}{\|s\psi_f\|_2 \|\partial_s(s\psi_f)\|_2}$$

thanks to the support properties of ψ_{f} , using standard properties of L^2 norms

$$\|\psi_f\|_2 \le s_2 \|\partial_s \psi_f\|_2$$
, $\|\partial_s (s\psi_f)\|_2 \le 2s_2 \|\partial_s \psi_f\|_2$

Using the constraints on s_1 and s_2

$$s_2 heta(s_2) \leq 3 - rac{1}{2\,C\,(s_2)^2}\;.$$

Thus $\theta(s_2)$ is surely negative because $(s_2)^2 < 1/(6C)$ per hypothesis. 2^{back}

