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Motivations

Motivations

At short distance the spacetime should be non-commutative.
This feature should be encoded in the “Quantum Gravity”

No satisfactory description.

We can get information about such a theory analyzing
some particular regimes [Hawking].
Gravity classically Matter by quantum theory.

Gap = 87T< Tab>w

Doplicher, Fredenhagen and Roberts 95 use this to obtain
uncertainty relations for the coordinates on a flat quantum space.

Questions

Does it work also on curved spacetimes?
If yes, which are the implication of sp-non-commutativity on GR?
And at the early universe?



Plan of the talk

m Formation of trapped surfaces out of measurements

m A measuring process: model of the quantum detector
m The influence on the curvature and appearance of trapped surfaces

m An application in cosmological

m Energy density on Quantum Minkowski Spacetime
m Backreaction on Quantum (FRW) Spacetime
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Uncertainties

m In [DFR 95] the authors find the commutation rules among the
coordinates

[¢",q"] = iQ"
compatible with the following uncertainty relations
Axg (Axy + Axy + Axz) > N3,
Ax1Ax + AxoAxz + AxzAxy > )\f;
which are obtained using the following:

Minimal Principle (P0):

We cannot create a singularity just observing a system.

Together with the Heisenberg principle (HP) (valid in Minkowski).
The uncertainties are tailored to the flat spacetime.

On a curved spacetime we have to replace it with something else.
We use QFT on CST and their comm. rel. in combination with PO.
We shall perform such analysis on a spherically symmetric space.



Measurments and trapped surfaces

Formation of trapped surfaces out of measurements

m A measuring process: model of the quantum detector

m Influence on curvature and appearance of trapped surfaces



Measurments and trapped surfaces

A measuring process:

model of a spherically symmetric quantum detector

Idealized measurement:
light scattered by a target.

m two steps:
preparation: Incoming focused -
light ‘
detection: scattered light by an
object localized in O

m Problem when:
incoming light is too focused.

m Let's look at this.



Measurments and trapped surfaces
Simple model for light

Quantum field theory over a curved space-time M. Consider
—Op=0

Quantize using algebraic methods:

m Construct A(M) the x—algebra of observables generated by ¢(f)
and its Wick products ¢?(f),. ..

m |t encompasses the commutation relations.

[¢(f), o(&)] = A(f, 8)

m States are positive linear functionals over A
(With further nice properties: Hadamard condition).

Example: ¢(f), T, (f) are contained in A(M).
Their expectation values are

(0(F) == w(e(f)) . (Tw(f)) = w(Tpw(f))



Measurments and trapped surfaces

m Assume that on a state w it holds
G =81 w(Tw)

m Prepare the incoming light by applying ¢(f) on w.

Proposition
We call ws prepared state

w (¢(f) A ¢(f))
w(e(f)e(f))

w(A) = YA € A(M)

Thus the expectation values of the observables are changed. For example

<Tuz/>f,0 = Wf(TuV) - W(TW) .



Measurments and trapped surfaces

Evaluation of the change in (T,,)f0

Consider A(M) generated by ¢ real and a quasi free Hadamard state w

2
@000 > 51 rs Ll

x Is a point of M and A is the causal propagator.
Whenever p—direction is light-like T,,(x) = 0,¢0,¢(x)

f e (M)



Measurments and trapped surfaces

Influence on curvature and appearance of trapped surfaces

We want to solve
Gy =81 wr( Tuw).

It is very difficult. Assume spherical symmetry.
m Spacetime is R? x S?, retarded coordinates: A

m spanned by future null geodesic emanated from
the center of the sphere «
m u proper time on the worldline line
m s affine parameter along the null geodesics with
s(0)=0and 5(0) =1
m r(u,s) is the retarded distance.

m The most generic metric is

ds? := —A(u, s)du® — 2dsdu + r(u, s)>dS?

m Fix u, the family of null geodesics form a cone C,



Measurments and trapped surfaces

m For every C, consider the expansion parameter 6 of that family

6 measures the rate of change of 47r?
along C,

m f > 0 expansion
m 0 = 0 trapped surface

m 0 < 0 contraction
m Its evolution along C,, is governed by the Raychaudhuri equation

2
L Rss; lim s =2

2 s—0t

0 =
m We solve this equation semiclassically namely:
Rss = 87 wf(Tss) =8r W(Tss) + 87T<Tss>f,0 = Rs(g) + 87T<Tss>f,0

R,S?,) is the “curvature” without the influence of the measurement.



Measurments and trapped surfaces

Theorem about the formation of a trapped surfaces

M spherically symmetric. A(M) and w as before. Assume:

Semiclassical Einstein equations are satisfied by w and M;
Rs(_?) = 8mw(Tss) is positive on Cp;
For every f supported in J*(Cp)
jwa(F, ) < Cllstell2]|Os(stbr) |2,
Ve = A(f) [ Co. || - ||2 is the L% norm on Co w.r.t ds A dS2.

Consider wyr a state perturbed by a symmetric ¢(f) such that:

supp f C JT(Co) supp r C {(s,Q) € Co|s1 < s < sp} where
3 2 2 2.1
51<52<§sl7 (s2)° <57, 5 =ec

Hence semiclassically 6 vanishes in Cy and thus J*(Cp) contains a
trapped surface.



Measurments and trapped surfaces

Hypotheses about Cy and about f w.r.t. O

O D supp f

supp Yr N J~(Co)



Measurments and trapped surfaces

Comments on the obtained results

Question

Are the hypotheses 1. 2. 3. too strong?

m Solutions of the semiclassical Einstein equation do exists.
(At least in cosmology is a well posed system of equations [NP 2011]).

m Rﬁg) > 0 is realized in every reasonable cosmological model.
(So it is physically acceptable).

m The asked continuity for the state occurs in many concrete examples.
(Minkowski vacuum, many other Hadamard states of interest [DPP 2011]).

Comparison with classical results by Christodoulou:

Our hypotheses imply the Christodoulou one.




Measurments and trapped surfaces

Further comments

There is a minimal lenghtscale A under which a trapped surface occurs.
(0 becomes negative and remains negative).
principle of gravitational stability under localization of events (P0)

—> we cannot detect object smaller then that lengthscale A.

m The obtained minimal length scale does not permit to obtain a full
set of commutation relations among coordinates.

m Non spherical symmetric situations are not addressed.



A cosmological model

An application in cosmology

Which role has the lengthscale A when back reaction of matter on
curvature is considered?

m We don’t have a full set of commutation relation.
m Solving semiclassical Einstein equations is a difficult task.

Thus let us consider a cosmological model

ds® = —dt? + a(t)? [dx® + dy? + dz?]

m ais called scale factor it is the single degree of freedom in the model.
m This model fits the observation of our universe at large scales:
a(t) = exp(Ht)

with H (Hubble constant) small but strictly positive.



A cosmological model

To understand the role of A on the dynamics, we would like to solve
NC
G = 87r<TW )
in a “cosmological non-commutative spacetime”.

m Big big problem: We don’t have a complete theory in curved
space-time,

m We have info on the minimal length scale A\ which should appear in
the products of fields

m Poor man strategy: Learn how to implement the minimal length
scale from the theory in flat space.

m In flat space (T:{,C) are constructed using states of maximal
localization compatible with A [BDFP 2003].

m We implement the same effect on a curved background in order to
estimate the influence of A on the curvature.



A cosmological model

Energy density on Quantum Minkowski Spacetime

Let's have a look at non commutative Minkowski:

£ is the C*—algebra of quantum coordinates generated by g*, Q*” with
[q",q"] = iNQ",  [q¢°,Q"] =0,

Qu@” =0, (FO"(Qu) =1

any function f on M can be used to define a function on &, that is:

f(q) = / f(k) e*a d*k

T, is defined as a product of fields at the same point.



A cosmological model

Remember: on a nc space-time we cannot localize precisely.
The best approx. of points is furnished by states of optimal localization!
[Bahns, Doplicher, Fredenhagen, Piacitelli 2003]

e —gxe, q =q"®1, g =1®qg",

introduce center of mass and relative coordinates (which commutes)

1 1
"= 5a +db), &= (dl = dh),

Evaluating & on optimally localized states (partial trace) yields the
quantum diagonal map

E® @ - &= Cc*({e*9}).

On f(q1,q2) € £?, using |k|? the Euclidean length of k € R*
2 . -
E(2)(f(q1, q2)) _ /d4kld4k2 f(kl, k2) e—%lkl_k2‘2el(k1+k2)q‘

The lenghtscale ) represents the maximal localization,



A cosmological model
Wick square and Energy density

Free (scalar) field on QST can be formally defined as
o) = [ dil) @ et

which is an element of A ® &.

Using E®) we can define the Quantum Wick Square

9%(a) = EP(¢(a1)9(42))-

and the Energy Density: the 00 component of the stress tensor:

pa(@) = E@ (96(an)0o(a2) — 3n0ui(@1)0(a2))



A cosmological model

Evaluation in a Thermal state

m Our cosmologist friend: “our universe was very hot and dense in the
past” .

m A relic of this thermal matter is present in the CMB (cosmic
microwave background).

m For this reason we evaluate those observables on a KMS state wg at
fixed inverse temperature (3

e(ky)

wa(P(k1)d(k2)) = (k1 + k2)5(k12)m-

m It is “translationally invariant” — the expectation value of g does
not appear



A cosmological model
Expectation values

The energy density is
too o —A\2k?
wa(: p Q) == (ws —wo)(pQ) = 47T/ kg7 -
0 e

There are two characteristic lengths ) and .

All the information about QST is in A. It alters the spectrum of the state.
Effectively it is a change in the smearing of the two-point function

wa(: ¢ 1) == (Wi —w§)(0) = ws(: 9% 1q) == (wf —wd)(8).
where § = §(x — y) is replaced by g = Ne—(x=y)?/32
Let's study the asymptotic form of p for small and large \//3:

1-2G 1
wa(: p Q) ClTi , wa(: p i) CZW ;



A cosmological model

Backreaction on Quantum (FRW) Spacetime

G =81w(: Ty Q).

In a flat FRW space-time it reduces to the Friedmann equation
H?(t) = w(: p:Q).

Choose conformal matter.

wé/’ is a conform KMS state for the commutative theory.
Temperature scales with a, (8 = foa(t)).

The length scale ) its scale invariant.

A “reasonable expression” for the expectation value of the energy
density is

+oo —22K2
Mo —1 dk k3 €
pﬁ(t) =Wy (:pig)=4rm 0 Bk _1°



A cosmological model
Asymptotic form of the energy density

In an ethereally expanding universe with a Big Bang we have

m In the future it holds

A 1

The effect due to spacetime noncommutativity can be neglected
m When the universe was very small (close to the Big Bang)

A .G
3 >>1, pp(t) =~ Foa(O)N"

Which is less divergent for a — 0, than classical matter.



A cosmological model
Form of the Big Bang singularity

Consider

HA(r) = =

a(t)’
M = (a, b) x R3 is conf. flat => imbed M in R*

At which conformal time occurs the singularity?

to 1 ao 1
7'0—7':/ dt':/ 5 da’
¢ a(t’) a a°H(d)

Thus



A cosmological model
What does it mean? Horizon problem

m Classical solution
Radiation dominated:
T =— 10 for a — ag
Horizon problem.

ds? = a® (—d7? + dx?).

m Quantum NC Corrections
p=1/a(t)
T——oofora—0
Singularity is light like,

No Horizon Problem

Power law inflation with
Null Big Bang S~ Ui~




A cosmological model

Summary
m Analysis of the measure process.

m Semiclassical Backreaction can be used to constraint the non
commutativity.

m Using the obtained minimal length we can estimate the role of the
non commutativity on the curvature.

m In a cosmological model the Horizon problem disappears.

Open Questions
m Can we say something for the generic case?

m Can we construct a full fledged non commutative quantum theory on
curved space-time?



A cosmological model

Thanks a lot for your attention!



{&n} C C§°(M) converging weakly to 9,0(x). Notice that

1im (6(€n)P(En)) 70 = (Tuu(x))r0

el &) el &) + lwas(F )P
($(En)o(En))ro = 250 i = 2 )
Hence
2
(oo > 5 B!



A cosmological model

Raychauduri equation in integral form
S2 92 S2
0(s2) = 0(s1) —/ —ds—/ Rssds .
s1 2 s
Use hypothesis 1 and hypothesis 2 to get
2
S 9(52) S S> 0(51) — 871'52 / <Tss>f,0d5-
S1

In the past of s; the space-time is unperturbed and from hypothesis 3

5 |0sv¢ |13
s50(sy) <2—= — =
20(%) < 200 = C TsgralloxsonT

thanks to the support properties of ¢, using standard properties of L2 norms

[1¢ll2 < s2/|0s¥¢ ]2 [0s(s¥r)ll2 < 252[|0s7)¢ |2

Using the constraints on s; and s,

L
2C (52)2 '

Thus 6(sp) is surely negative because (s,)? < 1/(6C) per hypothesis.

529(52) S 33—
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