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Motivations

Motivations

At short distance the spacetime should be non-commutative.

This feature should be encoded in the “Quantum Gravity”

No satisfactory description.

We can get information about such a theory analyzing
some particular regimes [Hawking].

Gravity classically Matter by quantum theory.

Gab = 8π〈Tab〉ω
Doplicher, Fredenhagen and Roberts 95 use this to obtain
uncertainty relations for the coordinates on a flat quantum space.

Questions

Does it work also on curved spacetimes?
If yes, which are the implication of sp-non-commutativity on GR?
And at the early universe?



Plan

Plan of the talk

Formation of trapped surfaces out of measurements

A measuring process: model of the quantum detector
The influence on the curvature and appearance of trapped surfaces

An application in cosmological

Energy density on Quantum Minkowski Spacetime
Backreaction on Quantum (FRW) Spacetime
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Uncertainties

In [DFR 95] the authors find the commutation rules among the
coordinates

[qµ, qν ] = iQµν

compatible with the following uncertainty relations

∆x0 (∆x1 + ∆x2 + ∆x3) ≥ λ2
P ,

∆x1∆x2 + ∆x2∆x3 + ∆x3∆x1 ≥ λ2
P

which are obtained using the following:

Minimal Principle (P0):

We cannot create a singularity just observing a system.

Together with the Heisenberg principle (HP) (valid in Minkowski).

The uncertainties are tailored to the flat spacetime.

On a curved spacetime we have to replace it with something else.

We use QFT on CST and their comm. rel. in combination with P0.

We shall perform such analysis on a spherically symmetric space.



Measurments and trapped surfaces

Formation of trapped surfaces out of measurements

A measuring process: model of the quantum detector

Influence on curvature and appearance of trapped surfaces



Measurments and trapped surfaces

A measuring process:
model of a spherically symmetric quantum detector

Idealized measurement:
light scattered by a target.

two steps:

1 preparation: Incoming focused
light

2 detection: scattered light by an
object localized in O

Problem when:
incoming light is too focused.

Let’s look at this.



Measurments and trapped surfaces

Simple model for light

Quantum field theory over a curved space-time M. Consider

−�φ = 0

Quantize using algebraic methods:

Construct A(M) the ∗−algebra of observables generated by φ(f )
and its Wick products φ2(f ), . . .

It encompasses the commutation relations.

[φ(f ), φ(g)] = ∆(f , g)

States are positive linear functionals over A
(With further nice properties: Hadamard condition).

Example: φ(f ), Tµν(f ) are contained in A(M).
Their expectation values are

〈φ(f )〉 := ω(φ(f )) , 〈Tµν(f )〉 := ω(Tµν(f ))



Measurments and trapped surfaces

Assume that on a state ω it holds

Gµν = 8π ω(Tµν)

Prepare the incoming light by applying φ(f ) on ω.

Proposition

We call ωf prepared state

ωf (A) =
ω (φ(f ) A φ(f ))

ω(φ(f )φ(f ))
∀A ∈ A(M)

Thus the expectation values of the observables are changed. For example

〈Tµν〉f ,0 := ωf (Tµν)− ω(Tµν) .



Measurments and trapped surfaces

Evaluation of the change in 〈Tµµ〉f ,0

Proposition

Consider A(M) generated by φ real and a quasi free Hadamard state ω

〈∂µφ∂µφ(x)〉f ,0 ≥
1

2

|∂µ∆(f )(x)|2

ω (φ(f )φ(f ))
, f ∈ C∞0 (M)

x is a point of M and ∆ is the causal propagator.
Whenever µ−direction is light-like Tµµ(x) = ∂µφ∂µφ(x)

Proof



Measurments and trapped surfaces

Influence on curvature and appearance of trapped surfaces

We want to solve
Gµν = 8π ωf (Tµν).

It is very difficult. Assume spherical symmetry.
Spacetime is R2 × S2, retarded coordinates:

spanned by future null geodesic emanated from
the center of the sphere γ

u proper time on the worldline line γ
s affine parameter along the null geodesics with
s(0) = 0 and ṡ(0) = 1
r(u, s) is the retarded distance.

The most generic metric is

ds2 := −A(u, s)du2 − 2dsdu + r(u, s)2dS2

Fix u, the family of null geodesics form a cone Cu



Measurments and trapped surfaces

For every Cu consider the expansion parameter θ of that family

θ measures the rate of change of 4πr2

along Cu

θ > 0 expansion

θ = 0 trapped surface

θ < 0 contraction

Its evolution along Cu is governed by the Raychaudhuri equation

θ̇ = −θ
2

2
− Rss ; lim

s→0+
sθ = 2

We solve this equation semiclassically namely:

Rss = 8π ωf (Tss) = 8π ω(Tss) + 8π〈Tss〉f ,0 = R
(0)
ss + 8π〈Tss〉f ,0

R
(0)
µν is the “curvature” without the influence of the measurement.



Measurments and trapped surfaces

Theorem about the formation of a trapped surfaces

M spherically symmetric. A(M) and ω as before. Assume:

1 Semiclassical Einstein equations are satisfied by ω and M;

2 R
(0)
ss = 8πω(Tss) is positive on C0;

3 For every f supported in J+(C0)

|ω2(f , f )| ≤ C‖sψf ‖2‖∂s(sψf )‖2,

ψf = ∆(f ) � C0. ‖ · ‖2 is the L2 norm on C0 w.r.t ds ∧ dS2.

Consider ωf a state perturbed by a symmetric φ(f ) such that:

supp f ⊂ J+(C0) supp ψf ⊂ {(s,Ω) ∈ C0|s1 < s < s2} where

s1 < s2 <
3

2
s1, (s2)2 < s2 , s2 :=

1

6C
.

Hence semiclassically θ vanishes in C0 and thus J+(C0) contains a
trapped surface.



Measurments and trapped surfaces

Hypotheses about C0 and about f w.r.t. O

C0

O ⊃ supp f

s1

s2

supp ψf ∩ J−(C0)

s1 < s2 <
3

2
s1, (s2)2 < s2 , s2 :=

1

6C
.

Proof



Measurments and trapped surfaces

Comments on the obtained results

Question

Are the hypotheses 1. 2. 3. too strong?

Solutions of the semiclassical Einstein equation do exists.
(At least in cosmology is a well posed system of equations [NP 2011]).

R
(0)
ss ≥ 0 is realized in every reasonable cosmological model.

(So it is physically acceptable).

The asked continuity for the state occurs in many concrete examples.
(Minkowski vacuum, many other Hadamard states of interest [DPP 2011]).

Comparison with classical results by Christodoulou:

Our hypotheses imply the Christodoulou one.



Measurments and trapped surfaces

Further comments

Fact

There is a minimal lenghtscale λ under which a trapped surface occurs.
(θ becomes negative and remains negative).

principle of gravitational stability under localization of events (P0)

=⇒ we cannot detect object smaller then that lengthscale λ.

The obtained minimal length scale does not permit to obtain a full
set of commutation relations among coordinates.

Non spherical symmetric situations are not addressed.



A cosmological model

An application in cosmology

Question:

Which role has the lengthscale λ when back reaction of matter on
curvature is considered?

We don’t have a full set of commutation relation.

Solving semiclassical Einstein equations is a difficult task.

Thus let us consider a cosmological model

ds2 = −dt2 + a(t)2
[
dx2 + dy2 + dz2

]
a is called scale factor it is the single degree of freedom in the model.

This model fits the observation of our universe at large scales:

a(t) = exp(Ht)

with H (Hubble constant) small but strictly positive.



A cosmological model

To understand the role of λ on the dynamics, we would like to solve

Gµν = 8π〈TNC
µν 〉

in a “cosmological non-commutative spacetime”.

Big big problem: We don’t have a complete theory in curved
space-time,

We have info on the minimal length scale λ which should appear in
the products of fields

Poor man strategy: Learn how to implement the minimal length
scale from the theory in flat space.

In flat space 〈TNC
µν 〉 are constructed using states of maximal

localization compatible with λ [BDFP 2003].

We implement the same effect on a curved background in order to
estimate the influence of λ on the curvature.



A cosmological model

Energy density on Quantum Minkowski Spacetime

Let’s have a look at non commutative Minkowski:

E is the C ∗−algebra of quantum coordinates generated by qµ,Qµν with

[qµ, qν ] = iλ2Qµν , [qρ,Qµν ] = 0,

QµνQ
µν = 0,

(1

4
Qµν(∗Q)µν

)2
= 1,

any function f on M can be used to define a function on E , that is:

f (q) :=

∫
f̌ (k) e ikq d4k ,

Tµν is defined as a product of fields at the same point.



A cosmological model

Remember: on a nc space-time we cannot localize precisely.
The best approx. of points is furnished by states of optimal localization!
[Bahns, Doplicher, Fredenhagen, Piacitelli 2003]

E(2) := E ⊗ E , qµ1 := qµ ⊗ 1, qµ2 := 1⊗ qµ,

introduce center of mass and relative coordinates (which commutes)

q̄µ :=
1

2
(qµ1 + qµ2 ), ξµ :=

1

λ
(qµ1 − qµ2 ),

Evaluating ξµ on optimally localized states (partial trace) yields the
quantum diagonal map

E (2) : E(2) → Ē := C ∗({e ikq̄}) .

On f (q1, q2) ∈ E(2), using |k |2 the Euclidean length of k ∈ R4

E (2)(f (q1, q2)) =

∫
d4k1d

4k2 f̌ (k1, k2) e−
λ2

4
|k1−k2|2e i(k1+k2)q̄.

The lenghtscale λ represents the maximal localization.



A cosmological model

Wick square and Energy density

Free (scalar) field on QST can be formally defined as

φ(q) =

∫
d4kφ̌(k)⊗ e ikq

which is an element of A⊗ E .

Using E (2) we can define the Quantum Wick Square

φ2
Q(q̄) := E (2)(φ(q1)φ(q2)).

and the Energy Density: the 00 component of the stress tensor:

ρQ(q̄) := E (2)
(
∂0φ(q1)∂0φ(q2)− 1

2
ηµν∂µφ(q1)∂νφ(q2)

)
.



A cosmological model

Evaluation in a Thermal state

Our cosmologist friend: “our universe was very hot and dense in the
past”.

A relic of this thermal matter is present in the CMB (cosmic
microwave background).

For this reason we evaluate those observables on a KMS state ωβ at
fixed inverse temperature β

ωβ(φ̌(k1)φ̌(k2)) = δ(k1 + k2)δ(k2
1 )

ε(k0
1 )

1− e−βk
0
1

.

It is “translationally invariant” =⇒ the expectation value of q does
not appear



A cosmological model

Expectation values

The energy density is

ωβ(: ρ :Q) := (ωβ − ω0)(ρQ) = 4π

∫ +∞

0
k3 e−λ

2k2

eβk − 1
dk .

There are two characteristic lengths λ and β.

All the information about QST is in λ. It alters the spectrum of the state.
Effectively it is a change in the smearing of the two-point function

ωβ(: φ2 :) := (ω2
β − ω2

0)(δ) =⇒ ωβ(: φ2 :Q) := (ω2
β − ω2

0)(g).

where δ = δ(x − y) is replaced by g = Ne−(x−y)2/λ2

Let’s study the asymptotic form of ρ for small and large λ/β:

ωβ(: ρ :Q) ' C1

1− λ2

β2C2

β4
, ωβ(: ρ :Q) ' C2

1

βλ3
,



A cosmological model

Backreaction on Quantum (FRW) Spacetime

Gµν = 8πω(: Tµν :Q).

In a flat FRW space-time it reduces to the Friedmann equation

H2(t) = ω(: ρ :Q).

Choose conformal matter.

ωM
β is a conform KMS state for the commutative theory.

Temperature scales with a, (β = β0a(t)).

The length scale λ its scale invariant.

A “reasonable expression” for the expectation value of the energy
density is

ρβ(t) := ωM
β (: ρ :Q) = 4π

∫ +∞

0
dk k3 e−λ

2k2

eβ(t)k − 1
.



A cosmological model

Asymptotic form of the energy density

In an ethereally expanding universe with a Big Bang we have

β(t) = a(t)β0

In the future it holds

λ

β
<< 1 , ρβ(t) ' C1

1

β4
0a(t)4

The effect due to spacetime noncommutativity can be neglected

When the universe was very small (close to the Big Bang)

λ

β
>> 1 , ρβ(t) ' C2

β0a(t)λ3
.

Which is less divergent for a→ 0, than classical matter.



A cosmological model

Form of the Big Bang singularity

Consider

H2(t) =
C

a(t)
.

M = (a, b)× R3 is conf. flat =⇒ imbed M in R4

At which conformal time occurs the singularity?

τ0 − τ =

∫ t0

t

1

a(t ′)
dt ′ =

∫ a0

a

1

a′2H(a′)
da′

=
2√
C

(
1√
a
− 1
√
a0

)

Thus
lim
a→0

τ = −∞



A cosmological model

What does it mean? Horizon problem

ds2 = a2
(
−dτ2 + dx2

)
.

Classical solution
Radiation dominated:
τ =→ τ0 for a→ a0

Horizon problem.

Quantum NC Corrections
ρ = 1/a(t) :
τ → −∞ for a→ 0
Singularity is light like,
No Horizon Problem

Power law inflation with
Null Big Bang =− ∪ i−



A cosmological model

Summary
Analysis of the measure process.

Semiclassical Backreaction can be used to constraint the non
commutativity.

Using the obtained minimal length we can estimate the role of the
non commutativity on the curvature.

In a cosmological model the Horizon problem disappears.

Open Questions
Can we say something for the generic case?

Can we construct a full fledged non commutative quantum theory on
curved space-time?



A cosmological model

Thanks a lot for your attention!



A cosmological model

Proof

{ξn} ⊂ C∞0 (M) converging weakly to ∂µδ(x). Notice that

lim
n→∞
〈φ(ξn)φ(ξn)〉f ,0 = 〈Tµµ(x)〉f ,0

〈φ(ξn)φ(ξn)〉f ,0 = 2
|ω2(f , ξn)|2

ω2(f , f )
= 2
|ω2,A(f , ξn)|2 + |ω2,S(f , ξn)|2

ω2(f , f )

Hence

〈φ(ξn)φ(ξn)〉f ,0 ≥
1

2

|〈ξn,∆(f )〉|2

ω2(f , f )
.

back



A cosmological model

Proof

Raychauduri equation in integral form

θ(s2) = θ(s1)−
∫ s2

s1

θ2

2
ds −

∫ s2

s1

Rssds .

Use hypothesis 1 and hypothesis 2 to get

s2 θ(s2) ≤ s2 θ(s1)− 8πs2

∫ s2

s1

〈Tss〉f ,0ds .

In the past of s1 the space-time is unperturbed and from hypothesis 3

s2θ(s2) ≤ 2
s2

s1
− s2

C

‖∂sψf ‖2
2

‖sψf ‖2‖∂s(sψf )‖2

thanks to the support properties of ψf , using standard properties of L2 norms

‖ψf ‖2 ≤ s2‖∂sψf ‖2 , ‖∂s(sψf )‖2 ≤ 2s2‖∂sψf ‖2

Using the constraints on s1 and s2

s2θ(s2) ≤ 3− 1

2C (s2)2
.

Thus θ(s2) is surely negative because (s2)2 < 1/(6C ) per hypothesis. back
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