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HIGHER-SPIN GAUGE THEORIES : SOME MOTIVATIONS

e Gauge Principle : HS theories contain gravity ; co-dim gauge algebra;
@ Vasiliev’s unfolding : a geometric approach to field theory ;

o AdS/CFT dualities between Vasiliev’s theory and free CFT’s
[Sezgin-Sundell, Klebanov-Polyakov] for AdS,/CFT5; and
[Gaberdiel-Gopakumar| for AdSs/CFT; . Relations with statistical

physics, integrable models, strings etc.
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THE GAUGE PRINCIPLE [H. WeyL, 1929

In Classical Field Theory : remarkable achievement by M. A. Vasiliev with
formulation of fully nonlinear field equations for higher-spin gauge fields in 4D
[Vasiliev, 1990 — 1992] and in D space-time dimensions [hep-th/0304049]. Some

salient features are
o Manifest diffeomorphism invariance, no explicit reference to a metric;

e Manifest Cartan integrability = gauge invariance under

infinite-dimensional HS algebra ;

e Formulation in terms of two infinite-dimensional modules of so(2,D — 1) :
The adjoint and twisted-adjoint representations ~» master 1-form and

master zero-form. Uses unfolding in terms of FDA.
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UNFOLDED EQUATIONS AND FDA

A free (graded commutative, associative) differential algebra 2R is set {X*} of

a priori independent variables, locally-defined differential forms obeying

first-order equations of motion
R =dX*+Q*(X)~0, Q*X)=> f§ g X X,

Nilpotency of d and integrability condition dZ* ~ 0 require

Qﬁ 8LQa _ g
G
For X [O;,ﬂ] with p, > 0, gauge transformation preserving Z = 0 :
«a @ B aL a
0 X =de* — € 8X5Q
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@ The concepts of spacetime, dynamics and observables are derived from

infinite-dimensional FDA’s.

o Unfolded dynamics is an inclusion of local d.o.f. into field theories
described on-shell by flatness conditions on generalized curvatures.

@ Spin-2 couplings arise in the limit in which the s0(2, D — 1) -valued part
of the higher-spin connection one-form is treated exactly while its
remaining spin s > 2 components become weak fields together with all
curvature (Weyl) zero-forms.

— Lorentz-covariant derivative, minimal coupling.
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ACTION PRINCIPLE WITH () P-STRUCTURE

Want an action principle reproducing non-linear and background-independent

Vasiliev equations in four spacetime dimensions. These equation possess

@ an algebraic structure that enables one to construct a Hamiltonian action

with nontrivial @ P-structures in a manifold with boundary ;

@ a geometric structure which allows to construct additional boundary

deformations.
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MANIFOLD : BULK WITH NON-EMPTY BOUNDARY

o Like for the nonlinear Poisson sigma-model [yesterday’s talk by Th. Strobl],
introduce bulk with non-empty boundary, and add extra momentum-like

variables.

e Impose boundary conditions compatible with a globally well-defined
action principle
— the action S = fB L should be gauge invariant, and d.L = dK; ;
— compatibility between gauge transformations of field configurations

and transition functions between charts.

@ The action has two pieces : a bulk part plus various classically marginal

deformations on boundary — amplitudes.
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RELATION WITH FRONSDAL’S PROGRAMME

Unlike the original Fronsdal programme [formulate higher-spin gauge theory off
shell in a perturbative expansion around constantly curved spacetime],
background-independent formulation in terms of master fields living in the
correspondence space, i.e. the local product of a non-commutative
phase-spacetime containing the commutative spacetime as a Lagrangian

submanifold and a non-commutative twistor space.

Vasiliev’s system has a huge classical solution space that admits many
different perturbative expansions of which only some reduce to Fronsdal

systems (with A).
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (1)

The master fields are locally-defined (chart index £) operators
Oe(XM,dX}; 2%,dZ% Y4 K)
where
[Ye, V8] = 2ic28 | (22, 78] = —2iC°8 a,8=1,2,34,

with charge conjugation matrix C# = ¢*# | 0SB = o8 , = (a,a), and

where K = (k, k), are two outer Kleinian operators.

The operators are represented by symbols f[O¢] obtained by going to

specific bases for the operator algebra ~~ ordering prescriptions.
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (2)

One may think of the symbols as functions f(X,Z;dX,dZ;Y) on a

correspondence space €
¢ =[J&, € =BxY, By = Mx3
€

equipped with a suitable associative star-product operation % which

reproduces, in the space of symbols, the composition rule for operators.

3 The exterior derivative on ‘B is given by

d = dXMoy +dz2 9,
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (3)

The master fields of the minimal bosonic model are an adjoint one-form

A=W+V,
W = dXM Wy (X,Z;Y), V = dZeV,(X,Z;Y) ,

and a twisted-adjoint zero-form
® = P(X,Z;Y) .
Generically, start with locally-defined differential forms of total degree p

f= (XM dxM; 22,dZ% Y% k k)
p=0

foAdXM;XdZze) = NP fi,(dXM;dz%), xeC.

N. Boulanger (UMONS) An off-shell formulation of HSGRA Bayrischzell 2013 12 / 56



BRIEF REVIEW OF VASILIEV'S 4D EQUATIONS (4)

The XM’s are commuting coordinates, while (Y%, Z2) = (y®, §%; 2%, 2%) are

non-commutative , k, k are outer Kleinians :

kxf = a(f)xk, kxf = 7(f)xk, kxk =1 =

Pl
*
el

with automorphisms 7 and 7 defined by 7d = dn, 7d = d7 and

W[f(zaa2d5ya’gd)] = f(fzadeQ*yoggd) s

T[f(z%, 2%y, %) = f(z% —2%y*, —7%) .

Bosonic and irreducibility projections : 77w (f)=f=Pyxf,

P+:%(1+k*];3)7

< f= |fM(X,dX;2,dZ;Y) + fO(X,dX;Z,dZ;Y) x

(k;k) * Py .
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (5)

e Bosonic projection : removes component fields ~~ spacetime spinors.

e Irreducible minimal bosonic models : by imposing reality

conditions and discrete symmetries that remove all odd spins.

< 1 and anti-automorphism 7 defined by d[(-)T] = [d()]Jr , dr=7d,
[F(=%, 2%y g% kBT = F(2%, 2% 5%y k k)
TIf(2%, 2%y g% k)] = f(—ia®, iz iy, i ko k)
> finl' = P () ()
7(fip) * f[/p/]) = (*Upp,T(f[/p/]) *7(frp)) -
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (6)

Back to Vasiliev’s A and @, the minimal models are imposed by the following

projection and reality conditions :
T(A7©) = (_A77T((I))) ’ (Aa (I))T = (_A77r((1))) .

Full equations of motion of the minimal bosonic model with fixed interaction
ambiguity : F + ® x J = 0, with two-form J defined globally on

correspondence space, obeying 7(J) = —J = J! and
dJ =0, [f,J]. = fxJ—Jxn(f) =0 Vf st. 77(f)=rf. (1)
In the minimal model,
J = —i(bsz k+bdz’ R) ,
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (7)

... where the chiral inner Kleinians
k = exp(iy“zq) , R = ki =exp(—ig®zs) .

By making use of field redefinitions ® — A® with A € R, A ## 0, the complex

parameter b in J can be taken to obey
] = 1, arg(b) € [0,7] .
The phase breaks parity P [Pd = d P]
Pf(XM;2%, 2%y, 5%k, k)] = (PAXM; —2% —2%5% 4% k, k)
except in the following two cases :
Type-A model (parity-even physical scalar) : b=1,

Type-B model (parity-odd physical scalar) : b=1.
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (8)

[ The integrability of F' + ® x J = 0 implies that D® x J = 0, that is, D® = 0, where the
twisted-adjoint covariant derivative D® = d® + A x ® — ® x w(A) . This constraints is
integrable since D?2® = Fx® —®x7(F) = —®*xJ %P+ & x7(P®) x J gives zero, using
the constraint on F and (1).]

— Summary : minimal higher-spin gravity given by

F+®xJ =0, D& =0, dJ=0,
F:=dA+AxA, D& := dd+[A,3]_,
7(4,8) = (A7(®), (4,97 = (-4,7(9)),
S [A,J]. =0=[®,J]_.
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BRIEF REVIEW OF VASILIEV’S 4D EQUATIONS (9)

— Integrability implies invariance under Cartan gauge transformations
0A = De , 0 = —[6,9]

for zero-form gauge parameters ¢(X, Z;Y) obeying the same kinematic
constraints as the master one-form, i.e. 7(¢) = —e and (e)T = —¢.

— The closure of the gauge transformations reads

[561,562] = 5612 ) €12 = [61362}*a

defining the algebra hs(4) .
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CLASSICAL ACTION PRINCIPLE (1)

Starting from {X®} defined locally on B¢ (base manifold B = U¢Bg of dim.
P+ 1) satisfying some unfolded constraints with given @Q-structure,

— off-shell extensions based on sigma models with maps
¢¢ : T[1|Be — M,

between two N-graded manifolds, from the parity-shifted tangent bundle
T[1]B to a target space M that is a differential N-graded symplectic manifold
with two-form &', Q-structure 2 and Hamiltonian 2 with the following

degrees :

deg(0) = p+2, deg(2) 1, deg(s?) = p+1.
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Hamiltonian bulk action
bu1k¢|B Z/ f Z/B 7“/52(79_%)7
3 3

where ¢¢ = ¢|p, and 7 : Q(T'[1]B) — Q(B) degree-preserving canonical

homomorphism that takes k-forms on T[1]B of degree p to p-forms on B, viz.
x : QFIP(TB) — QlPl(B) |

and that intertwines the actions of the exterior derivative d in Q(B) and the
Lie derivative £, = iq 0od — d o, in Q(T'[1]B) along the canonical @)-structure

on T[1]B as follows :

dom = mod = 10 %, q := 60, .
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Equipping T'[1]B with coordinates
(zt, 0") | deg(z",0") = (0,1),
one has
w(f(z*, 05 dat, dO*)) = f(azt,dat; dz,0) .

Thus the exterior differential d, which has form-degree one, has degree one,

i.€.

deg(d) = deg(q) = 1.
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The assumption that the sigma-model maps ¢ have vanishing intrinsic degree

implies
Qi) &5 olkle(TB) & QFl(B) ,

that is, the pull-back ¢* of a k-form of N-degree p on M is a ditto on T'[1]B,
in its turn sent by 7 to a p-form on B ; the condition that M is N-graded
(instead of Z-graded) and deg(d) = 1 implies that p > k. Thus, since

0 = dY e Q[2|ﬁ+2](M) . 9 e Qlipt1 (M), € QLoIp+1] (M),
it follows that
m¢ (9 — ) € QPHU(B),

which can then be integrated by decomposing B into charts Be.
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CLASSICAL ACTION PRINCIPLE (2)

— Classical action principle of Hamiltonian type :

bulk¢|B Z/ = ;/857“252(19_%0)7

where ¢ is a pre-symplectic form.

— Writing ¢ = dZ%;, 0 = %dZide@j = %dZiﬁij dZ7 and defining
{A, B}I7P = (—1)P+(@+i+DA g 4 pik 5. B

where 2% Gy; = (=1)P6%, then ...
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CLASSICAL ACTION PRINCIPLE (3)

@ ... the variation of the Lagrangian :
8L = 0Z'H Oy +d(62';)
where generalized curvatures and Hamiltonian vector field

& o= A7+ 2, 9 = (“1)P @Y
9 = 2§, deg(d) = 1.

e Variational principle =— %' ~ 0, whose Cartan integrability on

shell requires § to be a Hamiltonian Q-structure

L38 =0 & 29,9 =0 o o, = 0.
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CLASSICAL ACTION PRINCIPLE (4)

Nilpotency of 3 with suitable boundary conditions on the fields and gauge

parameters ensure invariance of the action under

6eZi - dﬁi - Ejajgi aF %Gk%l 815@' f@ji 9
553&1111( = dK., K. = Eie@jgz’j + 8.2, )

Closure of gauge transformations :

i i _ gpei
[661’582]Z - 6612Z VR
where ﬁ = %'0; and
i 1 — %
612 75 [?1, 52]g .
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CLASSICAL ACTION PRINCIPLE (5)

o Under certain extra assumptions on ¢ and 7, the action can be defined
globally by gluing together the locally defined fields and gauge parameters
along chart boundaries using gauge transitions §,Z° and &€’ with
parameters {t'} = tg, defined on overlaps.

Assumptions :
() 6K. = 0, (i) 0,002 =0, (iii) K, = 0.

o Assumption (i) => cancellation of contributions to §.S¢.,, from chart
boundaries in the interior of B, s.t. the variational principle implies the

BC on fields and gauge parameters
KE|BB = 0.
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CLASSICAL ACTION PRINCIPLE (6)

e Assumptions (i) and (i4i) ensure compatibility between gauge
transformations and gauge transitions in the sense that performing a
transition transformation on fields and gauge parameters between two
adjacent charts and moving along the gauge orbit are two operations that

commute. Give access to Je, tg, and 0, e¢ .
E,

o The {t,}'s ~ subalgebra of Cartan transformations that preserve the

Lagrangian density, i.e. selects the transitions.

@ Assuming there are no constants of total degree p+ 2 on M , the

condition 9;{7, #}[=P1 = 0 is equivalent to the structure equation

(#,)07 = 0 o (-1)CVexPIeH = 0.
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CORRECT AMPLITUDES FOR UNBROKEN HS

@ In the case of Vasiliev’s model : PSM action with bulk + boundary

deformations.
STot. _ Sbulk[X, P} + Sbound. [X] )

Reproduces the full nonlinear equations, same content perturbatively.

o With the addition of suitable boundary deformations built from the
zero-forms of X, Z[u] = [ DXDP exp[% ST] reproduces, to lowest order
in 7, the correct N-point functions of the free O(N) model on boundary
[Colombo,Sundell], (N = 2,3) then [Didenko,Skvortsov] N > 4.
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ON-SHELL EQUIVALENCE TO FRONSDAL APPROACH

Concerning the correspondence with the free O(N) vector model and

Gross—Neveu model [Sezgin-Sundell] :

e for any (U, V; B) and applying perturbation theory in which
[, T'[dX* x P,] is treated as the kinetic term, it follows from the fact
that the vertices in 52 (U, V; B) are built from exterior (x-) products that
boundary correlation functions that involve only zero-forms and one-forms

are given by their semi-classical limits (as vacuum bubbles cancel), viz.

{(Boy(p1) - Bjoj(Pn) Aj1)(Prt1) - - - Ay (Pram)) pico.a

= (Byj(p1)) - (Bio) ()} (A (Pr41)) - (Ap) (Prtm))
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e assuming the existence of a perturbative completion
fa/” Y#v (Blo), dBjoj; Ay, dApy) of the Fradkin — Vasiliev action L it can
be added as a topological vertex operator and treated as an interaction

(including its kinetic terms) ;

o it follows that the expectation value of the Fradkin—Vasiliev action is

tree-level exact, i.e.
i

20) = (el [ o)) = e [ v

)

Boj=(B0));Ap1=(Apu)

with expectation values (Bjg)) and (A[;)) obeying the Vasiliev equations of

motion subject to boundary conditions at the three-dimensional boundary

of 0.4 ;

1. Whether the completion is given in the standard Fronsdal formulation or in the frame-
like formulation is immaterial as in both cases the dynamical field content can be obtained

by applying projections to the Vasiliev master fields.
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o thus, assuming a suitable topology for 0.# and that (B) and (Ap;)) are
asymptotic to AdSy, hence built from the boundary data using
boundary-to-bulk propagators, we expect that Z(u) with uN = & is equal
to the generating functional of the free O(/N) model in the case of the
Type A model with scalar field obeying A = 1 boundary conditions, and
to the generating functional of the free Gross—Neveu model (with N free
fermions) in the case of the Type B model with scalar field obeying A = 2

boundary conditions.
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o We wish to stress the fact that both of the latter higher-spin gravity
models are manifestly tree-level unitary : by the very nature of the
perturbative treatment of the Poisson sigma models (with kinetic
PdX-terms), the partition function Z(u) is completely free from
loop-corrections in the Fradkin—Vasiliev sector, in perfect agreement with
free three-dimensional CFTs. In other words, Z(u) is given by the sum of
tree Witten-diagrams in AdS, with external boundary-to-bulk and
internal bulk-to-bulk Green’s functions arising as the result of solving

classical equations of motion subject to boundary sources.
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o In the case of the strongly-coupled fixed points of the O(N) vector model
[Klebanov-Polyakov] and the Gross—Neveu model [Sezgin-Sundell],
reached by suitable double-trace deformations, the Fradkin-Vasiliev action
needs to be modified with a Gibbons-Hawking term

Yon = PO+ -+,
o2 o2
where the - - - contain a non-linear completion achieving higher-spin gauge

invariance.
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AKSZ QUANTIZATION

Classical coordinates Z* = Z[ipfg» on M is extended into coordinates on M :

i(g) (—1-g) ._ itgy \T _ }
{Z[mg]’ Zilpi1-pitg] = (Z[pi—g]) } ’ g=20..pi,

Of;’f : ghost number g and form degree p.

Total degree and GrafSmann parity (for classical theories consisting of only

bosonic fields) :

|| := deg(-)+gh(-), Gr() =[] mod2.
So,
i {g) o (—1—g) — A e
|Z[Pz'—g]| = b |Zi[ﬁ+1—:ﬂi+g]| = PP
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INTEGRATE A TOTAL FORM ON A P-CHAIN

Given a differential form L € Q(M) of fixed total degree |L|, described locally
on M by a function L(Z, Z%,dZ,dZ"), with pull-back

p+1

" (L) = [ne" (L)1 e a(B)

p=0

and a p-cycle C C B, the integral

ILIC) = T¢ fpne ™8 D) = ¢ [pne re L™

ie. gh(I(L|C)) = |L|—
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The canonical coordinates Z* = (X©,

Z'= (X",

X(Jt

N. Boulanger (UMONS)

oz(p(\,) 0‘<pa_ > >
X T Xy X+
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anti-fields

An off-shell formulation of HSGRA Bayrischzell 2013

P,) of M induce supercoordinates

P,) of M of fixed total degree :

36 / 56



Symplectic and pre-symplectic forms O and ¥ on M :

O = [(-)*HdX dP,] 0 = A9, 9 = [AXPJ{),

and we denote the corresponding graded Poisson bracket on M by
0
.} = {, .}f)ﬁ] :

and graded Poisson bracket on Maps [T'[1]B, M|, referred to as the BV
bracket, is denoted by

() = ()

with quantum numbers gh ((+,-)) =1 and deg ((-,+)) =0.
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BV BRACKET INDUCED FROM POISSON BRACKET.

As observed by AKSZ, the BV bracket (-,-) on Maps [T[1]B, M] is induced
from the graded Poisson bracket {-, -} on QI(M) via the formula

(I(F|B), ¢"(F')) = ¢"({F,F'}) .

It follows that the BV-adjoint action of the pre-symplectic form is related to

the exterior derivative as follows :
(I(dX*P,|B), ¢* (L)) = do*(L) = ¢*(dL),

for L € Q(M).
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SUPERFUNCTIONALS

Functionals built from ultra-local superfunctionals ¢*(G) where G € Q(M)
have local representatives of the form G = G(Z*,dZ") where G € Q(M). In

particular, if F', F’ are superfunctions it follows that

{F.F'} = ({F,F'}_5(2")

Zt—Z

where {F, F'}{_; denotes the Poisson bracket evaluated in the classical target

space M .
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Tue AKSZ ACTION

Spuik[@|B] = I(L|B) Z/ m¢g (L) , L = dX°P,-#(X,P)

with J# being a solution to the classical structure equation obeying
H|p. _o = 0. Defining

s() = (Sbuw, (1))
one has
sZ' = R,
where the generalized supercurvatures

R = dZ'+Q', Q' := 2/(Z)) = (-1 2uo,x(Z") .
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The locally-defined field configurations form equivalence classes modulo gauge

transformations
6.7 = de' — ej(')jQi )

where the parameters have total degree |¢’| = |Z| — 1 and expansions into
components with fixed ghost numbers and form degrees given by the
suspension of X and P, with one unit of form degree, and zero units of
ghost number.

As in the classical case, it follows from

6sSbulk = Z{faBg Ksa
K. = (-1t B + (B - 1)@+ P7) 7,

N. Boulanger (UMONS) An off-shell formulation of HSGRA Bayrischzell 2013 41 / 56



... that the AKSZ action can be defined globally using fiber-bundle type

geometries.

(1)

(1)

the local representatives Zé are glued together using transition functions

with parameters t2° = (te, 0)? obeying
(ﬁ— 1)?% =0 e ?H(n) =0 for n#1,

and

the following Dirichlet conditions are imposed :

Nalog = 0, P,lgg = 0.
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The AKSZ relation between the BV bracket and the Poisson bracket =
(Sbulks Sbulk) = (—l)ﬁz% ¢ (R*P, —2L) = 0,
¢ /OB

where the latter equality follows from the boundary conditions and the facts

that 6;L = K+ = 0 and that
5Py = —(—1)°Touit, 6R* = (—1)PCD R T
where B x := R%9,, , implying

(St(RaPa) = ﬁX
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" The AKSZ action Sy solves the classical BV master equation
(Shutks Spuik) = 0 & s = 0,
subject to the functional boundary condition

Sou[@|Bllg—y = Stuls|B] -
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HAMILTONIAN ACTION PRINCIPLE ; CHIRAL TRACE

— Integration over € of a globally-defined (p + 1)-form £ :

Af—ghﬁwm

where f¢ denotes a symbol of . and the chiral trace operation is defined by

Z/ d*yd®y fim:2.21lk=0=F @)
3% (2m)? (2m)? ’

using f[p] => . +a+a=p f[m;q@] with

q<2

f[m;q,(j] ()‘ dXMa pdz®, dzd) = A" pf ,L_Lq f[m;q,(j] (dXM, dz®, dzd) 0 (3)

One integrates over {y%, 2%} and {7, 2%} viewed as real, independent
variables.
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ACTION PRINCIPLE ; GRADED CYCLIC TRACE
This choice implies

Trir(f)] = Tr[z(f)] = Tx[f] ,
which in its turn implies graded cyclicity,
T [ £ S| = (<177 T [fon > Fi1]
Furthermore
(Tr [ = T [(HT] ., TP = Trlf], Te[m(f)] = Tr[f] , where
m : (k k) — (—k,—k),
Plf(XM; 2%, 2% 9%, 5%k, k)] = (PA(XM; =25 —2%§% y*; K, k) -

[where Pf is expanded in terms of parity-reversed component fields,]
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ODD-DIMENSIONAL BULK (p € 2N)

— Finally, we assume that, off shell : Tr[r(f)] = Tr[f], and that the
integration over € is non-degenerate : If Tr[f x g] = 0 for all f, then g =0.

In the case of an odd-dimensional base manifold of dimension p+1=2n+5

with n € {0,1,2,...} such that dim(M) = 2n + 1, we propose the bulk action

Stunl{4, B, U, V}e] = Z/M Tr [U*DB+V*(F+g(B7U; gLt sz))}
3 ¢

with interaction freedom ¢ and locally-defined master fields (m = n + 2)

A = A[1]+A[3]++A[2m_1]7 B = B[O]+B[2]++B[2m_2]7
U=Ug+Ug+ - +Usm, V =Vyg+Vg+ - +Vom-
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WHY SUCH AN EXTENSION 7

@ Because we want a P-structure and only wedge products in the
Lagrangian, (take n = 2 here) Ujg and V7] are not sufficient : Ug) x Vi7; is
not of total degree 9 =4+ 1+4.

e ¢ must be constrained in order for the action to be gauge invariant and
in order to avoid systems that are trivial. We take

g = F(B;J,J, TN+ FWU, I T, Jff) ,

F = F1U)x Ty + FrU) * Ty + Frr(U) = I
where the central and closed elements

(Jh)i=12 = —4(1, k&) « Py x &z, (Jh)i—13 = —4(1, kR) x Py xd*2
T = 4Ty
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INTERACTION FREEDOM

Denoting Z* = (A, B,U, V), the general variation of the action defines

generalized curvatures Z° as follows :

Z/ Tr (%' % 627 03 +Z/ Te[U 0B —V «64] ,
Me

oM,

where one thus has

#* = F+F+F, R = DB+ (Vay)*F,
#V = DU— (Vig)xF, X' = DV +[B,Ul,

with €;; being a constant non-degenerate matrix (defining a symplectic form

of degree p + 2 on the N-graded target space of the bulk theory).
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OBSTRUCTION TO CARTAN INTEGRABILITY 7

Generically there are obstructions to Cartan integrability of the unfolded

equations of motion %#¢ ~ 0. These obstructions vanish identically (without

further algebraic constraints on Z%) in at least the following two cases :
bilinear Q-structure : % = BxJ, J = Jo+J,

bilinear P-structure : # = UxJ', J = J[IQ} +J[/4] .

where Bx Jigj = B+ (b Jfy + b Jyy), B Juy = B* (erp Jif) , idem J'.
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CONSISTENCY

Recall that if Z° = dZ' + 2%(Z7) defines a set of generalized curvatures, then
one has the following three equivalent statements :
(1) #' obey a set of generalized Bianchi identities dZ' — (#70;) » 2" = 0;
(11) #* transform into each other under Cartan gauge transformations
8: 2" = de' — (€70;) » 2' ; and
(111) the quantity 3 = 92'0; is a Q-structure, i.e. a nilpotent x-vector field of
degree one in target space, viz. E *22'=0.

Furthermore, in the case of differential algebras on commutative base
manifolds, one can show that if Z° are defined via a variational principle as

above (with constant €;; ), then the action S remains invariant under §.Z°.
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CARTAN GAUGE TRANSFORMATIONS

In the two Cartan integrable cases at hand, one thus has the on-shell Cartan

gauge transformations

SenA = De? —(eBop)x F — (nYoy)x F ,

SenB = DeP —[e* Bl — (nVou)* F — (nV0u)x (VOu) = F ,
SenU = DU —[eA Ul + (nV08) x F + (eB0p) x (VIB) x F ,
6V = DV —[e2 V] — [, UL+ Y, Bl .

These transformations remain symmetries off shell, although we are in the

context of graded non-commutative (but still associative) base manifold.
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CARTAN GAUGE ALGEBRA

+— More precisely, the (e ;e ?)-symmetries leave the Lagrangian invariant
while the (nY,n")-symmetries transform the Lagrangian into a nontrivial

total derivative, viz.
den? = d (T’/‘ [nU * K+ 77V *%/V]) ;

for (£, #y) that are not identically zero. It follows that the Cartan gauge
algebra g is of the form

g=g1 @ g2
with g; 2 span{e4, B} and gy = span{n¥,n"}, as one can verify explicitly.
—— In order for the variational principle to be globally well-defined, one has

(like in PSM) to impose the following :

(U, V)|omr = 0.
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GLOBAL FORMULATION

Exponentiation of the infinitesimal Cartan gauge transformations leads to

locally defined gauge orbits consisting of elements

i — i :
Zyaxzo = Daxz* 2\ zi=z;

Ddrz = exp, ?Am;z ) ?/\,dA;Z = (dX' = (N9;)  2') agi ’

where A" and Z§, respectively, are gauge functions and representatives of the

orbits defined in coordinate charts of the base manifold. On shell, one has

dZi+ 21Z) ~ 0 = ng\,d)\;Zo"i_"@i(Zi,dA;Zo) ~ 0.
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UNBROKEN PHASE, GLOBAL FORMULATION

From 6., = d(T(n, Z)) it also follows that (nY,n"") € g2 need to be defined
globally on M, that is, (n¥,n")|¢ and (n¥,n")|e must be related by
transition functions across the chart boundary between M and M (in
practice : take (nEU, 775‘/) to have compact support in Mp).

The unbroken phase of the theory [no impurities inserted] thus consists of local
representatives Zg = (A,B;U,V)|¢ defined up to gauge transformations with
parameters (e£'; €) that are unrestricted on OMg and parameters (n,n")

with the aforementioned restrictions on 0Mg, with transitions of the form
Zi = 9f %2zl defined on Mg N Mg

where gél = exp, %,dt;z@l with transition functions t? € gy on Mg N My .
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CLASSICAL SOLUTIONS, BOUNDARY CONDITIONS

The natural boundary conditions compatible with the locally defined gauge

symmetries are the Dirichlet conditions (U, V)|aapr = 0.

In summary, on top of the above BC, a classical solution can thus be specified

by fixing

(1)

(111)

the transition functions {t?} elCg;

an initial datum for the zero-form By, say

B[O] |P = C(Y,k’,]}) )
at some given point p € B in the base manifold ;

boundary conditions on the gauge functions associated with the

softly-broken gauge symmetries, viz.

>\|8M for A E 91/[
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