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Main goal

Study the algebraic structure of phase space in non-commutative geometry,
in the presence of a non-trivial frame (gravitational field). cf. Buri¢, Madore

Main assumptions

Parallelizability.
Symplectic structure.
Leibniz rule.

Jacobi identities.

v Role of left and right acting operators, symplectic duality.
v Extended algebras, quadratic in momenta. Madore

v Class of non-trivial examples, symplectic nilmanifolds.
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Classical vs. Quantum

In classical mechanics:
e Phase space of d-dimensional space ~~ 2d-dimensional, (x?, p,) .
o Symplectic structure, w = §2dx? A dpy .
e Poisson bracket, {f,g} = 62(0,sf0p,g8 — 0p,fOxsg) -
Players: dx?,dp,, Oxs, Op, -



Classical vs. Quantum

In classical mechanics:
e Phase space of d-dimensional space ~~ 2d-dimensional, (x?, p,) .
o Symplectic structure, w = §2dx? A dpy .
e Poisson bracket, {f,g} = 62(0,sf0p,g8 — 0p,fOxsg) -

Players: dx?,dp,, Oxs, Op, -

In quantum mechanics:
e Hermitian operators X? and p, .
e “Complex structure”: X — p, p — —X
(cf. role in matrix compactifications with flux) A.C., Jonke '12, '13
e Wave functions do not depend on both positions and momenta,
but only on one set, depending on the chosen representation.

Simultaneous consideration of Oy, 0p, is unnecessary and redundant.



Quantum vs. Non-commutative
Phase space of quantum mechanics (use flat indices i, , . . . ; curved indices are a, b, . . . ):

[)?ia)?j] =0, [)?ia,b\j] = ’héj ) [ﬁiaﬁj] =0.

e Position rep.: x, —ihdy .
e Momentum rep.: p,ihd, .
e Momenta are outer derivations of the position algebra (position rep.).



Quantum vs. Non-commutative
Phase space of quantum mechanics (use flat indices i, , . . . ; curved indices are a, b, . . . ):

[)?ia)?j] =0, [X pj] = ’héj ) [ﬁivﬁj] =0.

e Position rep.: x, —ihdy .
e Momentum rep.: p, k0,
e Momenta are outer derivations of the position algebra (position rep.).

Phase space of non-commutative quantum mechanics (in absence of magnetic sources):
Al Af “nif . i A A
KL% =07, [K,p] = iho; , [P, Pl =0.

Duval, Horvathy '00; Nair, Polychronakos '00; Morariu, Polychronakos '01; Horvathy '02
e 0¥ constant parameters; components of symplectic 2-vector.
e %' € A, non-commutative, associative algebra (e.g. matrix algebra).
e p;: inner derivations. Adjoint action, p; = hw;i[%/, ] .
wjj: symplectic 2-form; lwy = —5j

e Jacobi identities and Leibniz rule.



An alternative picture

Ansatz: p; = hwu(fd + }7]) . Nair, Polychronakos '00
Assumption: [8, 9] =0 = [§/,9/]=—i0" .
~~ momenta need two mutually commuting copies of A .

Equivalence to previous picture: ' = —X, = p; = hw;(X] — R%) .

Gross, Nekrasov '00



An alternative picture

Ansatz: p; = hw;j(%/ + $7) . Nair, Polychronakos ‘00

Assumption: [8, 9] =0 = [§/,9/]=—i0" .

~~ momenta need two mutually commuting copies of A .

Equivalence to previous picture: ' = —%f, = p; = hw(& — £%) .

Gross, Nekrasov '00

Message

Actions via commutators always involve two copies of A, namely A; and Ag .



Compact case - Torus

Periodicity condition: %" ~ %' + 27 R/4] .
~ %' are not the position operators anymore (not single-valued, not observables).

X

Physical operators of position: X' = eR" .

Phase space of compact case: cf. Connes, Douglas, Schwarz '97
o igh ..
X'X! = e RRX/X',
~ i _ N h osJ
pxX = X(bi+ %6) ,

Representations and quantum bundles...Brace, Morariu, Zumino '98; Morariu, Polychronakos '01

Q: Can we do more than planar and toroidal?



Interlude: Symplectic duality (or L vs. R)

Test R-operators on f € A (note: curved indices): [)?,%,)?,g]f = —jhf + i[@ab, f] .

Two assumptions:
e f e A, . Justified.
° 0“”’ S AR .

Full X-relations:
sa osby _ :pab sa osby1 sa ob1 :nab
[XvaL]_’e ) [XL7XR =0 ) [XRaXR]__Ie .

Symplectic duality (if manifold with w/6, dual with —w/ — ) . Bates, Weinstein



The plan

© Non-trivial frames and phase space



Gravitational field

Assume a non-trivial frame e’,, as in the treatment of gravity as a gauge theory.
Extension of canonical commutation relations: Buri¢, Madore

%3 5] — ihe? b

[X ,P:]—’ ei(X )7
with non-commutative frame €’,(%).

No assumption on L- or R-dependence of frame. Let consistency decide.



<

<

v

v

Assumptions

Parallelizability of classical manifold. Global 1-forms e’ = e’ (x)dx? ,
de' = f%fz-kej nek = f}k = ZeaUebklﬁbeia .

Symplectic structure. Non-degenerate, closed 2-form w = Zwje' A€/ |
constant in the global basis. 2-vector 6 = %9’19,- A 0 (6;: the dual vectors),

01 = —(wh)¥ .

Leibniz rule.
[f.ghl =g[f,h] +[f,glh, f.g.he A .

Jacobi identities.
Jac(f, g, h) == [f,[g. h]] + [h,[f. gl] + [g,[h,f]] = 0O .

Since Ag will play a role too, extend validity to full A; x Ag .



The operator algebra

e Position commutator ~ components of symplectic 2-vector.
[&2,%P] = il%6%" .

(L2 ~ Gy or o or ... (here1)).

e Mixed commutator ~ extended canonical commutation relation.
[%2, Bi] = ihe®; .
e Momentum commutator ~ unspecified, to be determined.

h2

[ﬁivﬁj] =



Determining the momenta

Consistency vyields:
pi = he’wan(R) — %g) ,
appropriately ordered when necessary. It requires e%(%p) .
The momentum commutator is determined and it is quadratic: cf. Madore
[6i Pi] = My + N.*py + P pip
pl7pj y 7 pk 7 pkp/ ]

Coefficients:

kI
P’J == e e dL[U] 5
Nijk — h(*‘)bde (2K(’:bed]+Pm/(KCb d +K(db C))) ,
MU - EwacwdekIKES /db >

with the definitions: [e?,X8] = K22, [e?, e‘}] = LZ-” )

Additionally: [R3, pi] = ihe® — eX KPp, ~» L and R asymmetry.
R i b"Y Y y



The plan

e Application to symplectic nilmanifolds



Non-triviality?

Are the assumptions so strong that only the trivial (planar and toroidal) cases survive?
e.g. spheres are out. Quantized with different techniques Madore, Ramgoolam, ..
A large pool of candidates: nilmanifolds (parallelizable).

4D and 6D classification: 3426 symplectic nilmanifolds (2+25 if tori are counted out).
Goze, Khakimdjanov '96

Odd-dimensional too, via symplectic leaves, with deformation quantization. e.g. Rieffel '89



Bird's eye view on nilmanifolds

As compact manifolds: rdn C 5 pd=Zid;
Iterated toroidal fibrations.

Associated to nilpotent Lie algebras
(ab,cd,...,yz) = fL,, fzcd,...,f‘)’,z )
Non-compact group manifolds.

o - o 0 d3 ( S dq +dp+d:
Nipotency step ~ fiber iteration. ™ QAR RS
Step 1 — torus (Kahler nilmanifold).

Benson, Gordon '88

Step 2 to d-1— non-Kahler, often symplectic. 7y C Ao

Always exists a global basis e'.

Th
Frame components:

eia = 6ia + #fiabxb + #fibcfgdxcxd +

b DR XX IXT O R X XXX



Step classification of symplectic nilmanifolds

4D

Class Step

(0,0,0,12) 2
(004212) 3

Symplectic form
el 4 B
e 4 &3

6D - Step 2

Class

(0,0,0,0,0,12)

(0,0,0,0,13+42,14+23)

(0,0,0,0,12,13)
(0,0,0,0,12,34)

(0,0,0,0,12,14+23)

(0,0,0,12,13,23)

Symplectic form

616 -+ e23 + e45
elﬁ + e25 + e34
elG -+ 625 -+ e34
615 4 e36 4 e24
e13 -+ e26 + e45
elS + e24 + e36

6D - Step 3

Class
(0,0,0,0,12,14+25)
(0,0,0,0,12,15)
(0,0,0,12,14+23,13+42)
(0,0,0,12,14,13+42)
(0,0,0,12,14,23+24)
(0,0,0,12,13,14)
(0,0,0,12,13,24)
(0,0,0,12,13,14+23)

Symplectic form
el3 4 2 4 %

616 + 625 + e34




Step classification of symplectic nilmanifolds

6D - Step 4
Class Symplectic form
0,0,0,12,14-23,15+34 o164 % 4 o
(
(0,0,0,12,14,15) eld 4 26 _ %
0,0,0,12,14,15+24 eld 4 % _ %
(
0,0,0,12,14,15+23+24 el 4 26 _ %
(
0,0,0,12,14,23+15 eld 4 20 _ %
( )
(0,0,12,13,23,14) o5 4 e | M _ 2

(0,0,12,13,23,14-25) e’ 4 e — ¥ 4 elf
(0,0,12,13,23,14+4-25) el® e 4 &% 4 e

6D - Step 5
Class Symplectic form
(0,0,12,13,14,15) O —®
(0,0,12,13,14,15+23) elf &3 p et —e®
(0,0,12,13,14+23,15+24) el® 4263 —




Particulars of step 2 cases

Frame is simple: e, = &', + Jr(p) L, %5 K(ab) T K(ba) = 2 -
K and L parameters: K?* = —1r(i)f3.0° and L3 = {ricyr(ja)f 3. o0% .

The coefficients of the momentum commutator:
Mj=0, N =—ihfl;, Pf = ircyrgafficf a0 -

ij o

~> there are quadratic cases already at step 2.

Additionally: [%3, pj] = ihe? + Lr(ic) FX.07py .



Particulars of step 2 cases

Frame is simple: e, = &', + Jr(p) L, %5 K(ab) T K(ba) = 2 -
K and L parameters: K?* = —1r(i)f3.0° and L3 = {ricyr(ja)f 3. o0% .

The coefficients of the momentum commutator:
_ k _ 3k Kl __ i k gl pd
~> there are quadratic cases already at step 2.

Additionally: [%3, pj] = ihe? + Lr(ic) FX.07py .

The Jacobi identities are always satisfied, but they are not always trivial.
E.g., although Jac(p;, pj, px) = 0 identically, on the other hand

Jac(pi, pj, £°) =0 = [€% pj] — [¢%, Bil = inf% — 2P ey

which at this level is just a constraint.



A benchmark case
(0,0,0,0,13 + 42,14 + 23): 6D, step 2.

1-forms:
e =dx',i=1,..,4, & =dP+x3dx!—x*dx?, e = dx®+x*dxt+x3dx?.
Dual vectors:

O =01 —x305 —x*0s, Or=0r+x%5—x30s, 0;=0;,i=3,...,6.

Symplectic 2-form: e'® 4 €25 + 34 .



A benchmark case
(0,0,0,0,13 + 42,14 + 23): 6D, step 2.

1-forms:
e =dx',i=1,..,4, & =dP+x3dx!—x*dx?, e = dx®+x*dxt+x3dx?.
Dual vectors:

:81—x385—x486, 92232+X485—X386, 0i=0;,i=3,...,6.
Symplectic 2-form: 6 + 25 4 €34
Inverse non-commutative frame components:

=8, =%, & =-%, &&=-22.

The momenta:

pro= (R +RRL2 T+ RRIRN D) . B = AR, ] - RRIR% T+ RRIRY, )
ps = h[X47'] , Pa= 7h[X ], Ps= 7h[)?27 1, Pe= *h[X 2 -



The commutation relations:

v Positions:
&L, 2] = [f3, %] = [£3, %% =i .
v Mixed I:
[)?S’ﬁl] = [26’ﬁ2] = _Ih)?,‘g? ) [)?57:62] = _[)?Gaﬁl] = ’h)?f?. :
v Momenta:
[Pr, 3] = [Pa, o] = —ihps , [P1,Pa]l = [P2, P3] = —ihps ,
[B1,p2] = i(Bs)? + i(Ps)? ~~ quadratic.
v Mixed II:
[)?,‘:}\’7.62] = [S%I%7ﬁ1] = ’ﬁS 5 [)?}%aﬁl] = 7[5%,‘%7[32] = ’ﬁﬁ )
[)’2.‘5?7ﬁ1] = [)?.‘6?7ﬁ2] = _’h)?lg ) [)%IgvﬁZ] = _[)?.2’7131] = lh)?;% 0

v Jacobi identities: e.g.
(1, 2], 8] = 2hps ,
[[)?5’ﬁ1],ﬁ2] _hﬁ5 5
[(p2, 2°], 1] = —hps .



The plan

@ Compact case



Compactification of nilmanifolds

Classically

Tori: RY/Z4  ~» identifications: x' ~ x' + 2w RI§} .
Nilmanifolds: A//T , A nilpotent, I' discrete co-compact.
Identifications? e.g. for step 2: e = (0! + %n(ab)f"abxb)dx" .

Invariance under shifts = x? ~ x? +27RiT?
with 7% = 0% + 383X (e &% = 8% — b fix®)



“Non-commutatively"”

Periodicity: X3 ~ %3 + 2mR'T%(RB) .

. . i%?
Exponentiate position operators: X = eR*
New algebra:

"eab

XXP = e RRX"X?,
pA/'Xa = X (P/+ R a_)



“Non-commutatively"”

Periodicity: X3 ~ %3 + 2mR'T%(RB) .

Exponentiate position operators: X2 = e R

New algebra:

’eab
XXt = e RREXbX?,
piX? = X(pi+ €% .

Recall benchmark case: €® = dx® + x3dx! — x*dx? , €% = dx® + x*dx! + x3dx? ,
which means that classically:

Boax4+2tR? = XS xP—2rR3x, X0 = X0 —27R3x?
o xt42rRY = XX+ 21R*x%, X0 = x® —27R4X .

Inverse frame (enters algebra) T-coefficients (enter periodicity conditions)
5 _ 46 _— _¢3 5 _ 6 _ ¢l

el—e26—fo, 7'3—7'46—*/2?7

5 __ _ 5 _ — &

62——61—XR. Ty = —T3=Xp -




Main messages
v Phase space + non-trivial frame — consistent algebraic structures.
v Many examples, at least the nilmanifold class.

v Even though one might be looking at Ay, all A; x Ag is important.




Main messages

v Phase space + non-trivial frame — consistent algebraic structures.

v Many examples, at least the nilmanifold class.

v Even though one might be looking at Ay, all A; x Ag is important.

Things to do

Calculate curvature.
E.g. for. nilmanifolds, classically: RQP = 231, “fpeq — FIFyE — FSuF9.) .
Corrections due to non-commutativity?

Beyond symplectic.
All 6D nilmanifolds admit generalized complex structures Cavalcanti, Gualtieri '04
Dirac structures (classified), coexistence of all flux types A.C., Jonke, Lechtenfeld '13

Include sources.
More parallelizable examples; solvmanifold class. Beyond parallelizability.
Dynamics of non-commutative phase space?
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