

Probing Quantum Geometry with Coupled Interferometers and Quantum Light

Ivo Pietro Degiovanni

i.degiovanni@inrim.it

Ivano RUO BERCHERA

INRIM Quantum Optics Group

Marco GENOVESE

Ivano RUO BERCHERA

INRIM Quantum Optics Group

Marco GENOVESE

Ivano RUO BERCHERA

Stefano OLIVARES

INRIM Quantum Optics Group

Marco GENOVESE

Ivano RUO BERCHERA

Stefano OLIVARES

Holographic Noise

- Quantum geometry postulates space-time and gravity emerge as an average over more fundamental degree of freedom existing at the Planck scale.
- The "emergent" space-time is said to be holographic
- Although quantum geometry approximates classical space-time on large scale, the Hogan's quantum geometry describes new quantum properties of collective positions of massive bodies

G. Hogan, Arxiv: 1204.5948

G. Hogan, Phys. Rev. D 85, 064007 (2012)

Holographic Noise

 x_1

 χ_3

 χ_2

 Hogan's effective theory postulates that position operators in different directions do not commute

$$[\hat{x}_i, \hat{x}_j] = \hat{x}_k \epsilon_{ijk} ict_P / \sqrt{4\pi}$$

Sort of space-time uncertainty principle (*L*= radial separation) $\langle \hat{x}_{\perp}^2 \rangle = Lct_P/\sqrt{4\pi} = (2.135 \times 10^{-18} \text{m})^2 (L/1\text{m})$

G. Hogan, Arxiv: 1204.5948

G. Hogan, Phys. Rev. D 85, 064007 (2012)

This new quantum uncertainty of space-time induces a slight random wandering of transverse position (called "holographic noise")

Holometer (**Holo**graphic Interfero**meter**) to measure the possible presence of a very slight random wandering of transverse position (the "holographic noise") over an extended volume of space-time is currently under construction @**Fermilab**

Holometer @Fermilab: two coupled ultra-sensitive Michelson interferometers (40 m arms)

http://holometer.fnal.gov/

In Michelson interferometer the *phase shift (\phi)* can be seen as a simultaneous measurement of the position of the beam splitter $(x_1 - x_2)$.

Holographic noise accumulates as a *random walk* becoming detectable

$$\langle [X(t) - X(t+\tau)]^2 \rangle = c^2 t_P \tau (2/\pi)$$
$$\tau \ll 2L/c$$

The random walk is bounded (an interferometer measures HN within the causal boundaries defined by a single light round trip) ($\tau = 2L/c$ the longest time over which differential random walk affects the measured phase) G. Hogan, Arxiv: 1204.5948

G. Hogan, Phys. Rev. D 85, 064007 (2012)

HOLOMETER: principles of operation

- Evaluation of the cross-correlation between two equal Michelson interferometers occupying the same space-time volume
- Reference measurement: HN correlation «turned off» by separating the space-time volumes of the two interferometers

 $\delta\phi_k = \phi_k - \phi_{k,0}$

 $\widehat{C}(\phi_1,\phi_2)$: quantum observable measured at the output of the holometer

$$\mathcal{E}_{\parallel} \left[\delta \phi_1 \delta \phi_2 \right] \approx \frac{\mathcal{E}_{\parallel} \left[\widehat{C}(\phi_1, \phi_2) \right] - \mathcal{E}_{\perp} \left[\widehat{C}(\phi_1, \phi_2) \right]}{\langle \partial_{\phi_1, \phi_2}^2 \widehat{C}(\phi_{1,0}, \phi_{2,0}) \rangle}$$

 $\delta\phi_k = \phi_k - \phi_{k,0}$

 $\widehat{C}(\phi_1,\phi_2)$: quantum observable measured at the output of the holometer

 $\delta\phi_k = \phi_k - \phi_{k,0}$

 $\widehat{C}(\phi_1,\phi_2)$: quantum observable measured at the output of the holometer

$$\mathcal{E}_{\parallel} \left[\delta \phi_1 \delta \phi_2 \right] \approx \frac{\mathcal{E}_{\parallel} \left[\widehat{C}(\phi_1, \phi_2) \right] - \mathcal{E}_{\perp} \left[\widehat{C}(\phi_1, \phi_2) \right]}{\left\langle \partial_{\phi_1, \phi_2}^2 \widehat{C}(\phi_{1,0}, \phi_{2,0}) \right\rangle}$$

The uncertainty should be reduced as much as possible sitivity Coefficient

$$\mathcal{U}(\delta\phi_{1}\delta\phi_{2}) \approx \sqrt{\frac{\operatorname{Var}_{\parallel}\left[\widehat{C}(\phi_{1},\phi_{2})\right] + \operatorname{Var}_{\perp}\left[\widehat{C}(\phi_{1},\phi_{2})\right]}{\left[\langle\partial_{\phi_{1},\phi_{2}}^{2}\widehat{C}(\phi_{1,0},\phi_{2,0})\rangle\right]^{2}}}$$

PRL **110**, 213601 (2013)

The model
(Overlapping)
(Overlapping)
Phases covariance uncertainty

$$\mathcal{U}(\delta\phi_1\delta\phi_2) \approx \sqrt{\frac{\operatorname{Var}_{\parallel}\left[\hat{C}(\phi_1,\phi_2)\right] + \operatorname{Var}_{\perp}\left[\hat{C}(\phi_1,\phi_2)\right]}{\left[\langle\partial^2_{\phi_1,\phi_2}\hat{C}(\phi_{1,0},\phi_{2,0})\rangle\right]^2}}$$

$$\operatorname{Var}_x\left[\hat{C}(\phi_1,\phi_2)\right] \equiv \mathcal{E}_x\left[\hat{C}^2(\phi_1,\phi_2)\right] - \mathcal{E}_x\left[\hat{C}(\phi_1,\phi_2)\right]^2$$

$$\mathcal{E}_x\left[\hat{O}(\phi_1,\phi_2)\right] \equiv \int \underbrace{\left(\hat{O}(\phi_1,\phi_2)\right)}_{\operatorname{Tr}\left[\rho_1\hat{C}(\phi_1,\phi_2)\right]} f_x(\phi_1,\phi_2) \, \mathrm{d}\phi_1 \, \mathrm{d}\phi_2$$
Quantum EV

$$\operatorname{Tr}\left[\rho_1\hat{C}(\phi_1,\phi_2)\right]$$

The model

$$\begin{array}{c} \text{(Overlapping)} \\ \text{Phases covariance uncertainty} \\ \text{Var}_{\parallel} \left[\widehat{C}(\phi_{1},\phi_{2}) \right] + \text{Var}_{\perp} \left[\widehat{C}(\phi_{1},\phi_{2}) \right] \\ \text{Var}_{x} \left[\widehat{C}(\phi_{1},\phi_{2}) \right] = \mathcal{E}_{x} \left[\widehat{C}^{2}(\phi_{1},\phi_{2}) \right] - \mathcal{E}_{x} \left[\widehat{C}(\phi_{1},\phi_{2}) \right]^{2} \\ \text{Var}_{x} \left[\widehat{C}(\phi_{1},\phi_{2}) \right] = \mathcal{E}_{x} \left[\widehat{C}^{2}(\phi_{1},\phi_{2}) \right] - \mathcal{E}_{x} \left[\widehat{C}(\phi_{1},\phi_{2}) \right]^{2} \\ \mathcal{E}_{x} \left[\widehat{O}(\phi_{1},\phi_{2}) \right] = \int \underbrace{\left(\widehat{O}(\phi_{1},\phi_{2}) \right)}_{\text{Uantum EV}} f_{x}(\phi_{1},\phi_{2}) d\phi_{1} d\phi_{2} \\ \underbrace{\left[f_{x}(\phi_{1},\phi_{2}) \right]}_{x = \parallel, \perp} \\ \text{pdf of phase fluctuations due to HN} \\ \hat{f}_{\perp}(\phi_{1},\phi_{2}) = \mathcal{F}_{\perp}^{(1)}(\phi_{1}) \mathcal{F}_{\perp}^{(2)}(\phi_{2}) \\ \hat{f}_{\parallel}(\phi_{k}) = \mathcal{F}_{\perp}^{(k)}(\phi_{k}) \\ \end{array} \right]$$
PRI. 110, 213601 (2013)

$$\operatorname{Var}_{x} \operatorname{Var}_{x} \left[\widehat{C}(\phi_{1},\phi_{2}) \right] = \operatorname{Var} \left[\widehat{C}(\phi_{1,0},\phi_{2,0}) \right] + \Sigma_{k} A_{kk} \mathcal{E}_{x} \left[\delta \phi_{k}^{2} \right] + A_{12} \mathcal{E}_{x} \left[\delta \phi_{1} \delta \phi_{2} \right] + \mathcal{O}(\delta \phi^{3})$$

$$\underbrace{\underbrace{O-th \ order}_{\mathcal{E}_{x}} \left[\widehat{O}(\phi_{1},\phi_{2}) \right]}_{\mathcal{O}(\phi_{1},\phi_{2})} \equiv \int \underbrace{\left[\widehat{O}(\phi_{1},\phi_{2}) \right]}_{f_{x}(\phi_{1},\phi_{2})} d\phi_{1} d\phi_{2}$$
O-th order independent from PSs fluctuations (i.e., HN)

- <u>*Q-th order*</u> quantum light noise (shot-noise in the actual Holometer)

Bayrischzell Workhop 2014, Quantized geometry and physics, [May 23-26]

 $\operatorname{Tr}[\rho_{12}C(\phi_1,\phi_2)]$

A sub-shot-noise PS measurement in a **single** interferometer (e.g. gravitational wave detector) was suggested exploiting squeezed light *Caves, PRD* **23**, 1693 (1981) *Kimble et al., PRD* **65**, 022002 (2001)

and recently realized at Ligo 600 R. Schnabel et al., Nature Commun. 1, 121 (2010) Ligo, Nature Phys. 7, 962 (2011)

A sub-shot-noise PS measurement in a **single** interferometer (e.g. gravitational wave detector) was suggested exploiting squeezed light *Caves, PRD* **23**, 1693 (1981) *Kimble et al., PRD* **65**, 022002 (2001)

and recently realized at Ligo 600 R. Schnabel et al., Nature Commun. 1, 121 (2010) Ligo, Nature Phys. 7, 962 (2011)

Does squeezed light help also in the case of the Holometer?

A sub-shot-noise PS measurement in a **single** interferometer (e.g. gravitational wave detector) was suggested exploiting squeezed light *Caves, PRD* **23**, 1693 (1981) *Kimble et al., PRD* **65**, 022002 (2001)

and recently realized at Ligo 600 R. Schnabel et al., Nature Commun. **1**, 121 (2010) Ligo, Nature Phys. **7**, 962 (2011)

Does squeezed light help also in the case of the Holometer?

Before discussing it a quick overview of "relevant" Quantum Optics concepts

Quantization of the Electromagnetic Field

Energy of a single mode quantum EM field

 $\mathscr{H}_{\mathbf{k}} = \hbar v_k \left(a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \frac{1}{2} \right)$

$$\mathscr{H}_{\mathbf{k}}|n_{\mathbf{k}}\rangle = \hbar v_{k} \left(n_{\mathbf{k}} + \frac{1}{2}\right)|n_{\mathbf{k}}\rangle$$
$$|n\rangle = \frac{(a^{\dagger})^{n}}{\sqrt{n!}}|0\rangle$$

Quantization of the Electromagnetic Field

Energy of a single mode quantum EM field

$$\mathscr{H}_{\mathbf{k}} = \hbar v_{k} \left(a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \frac{1}{2} \right) \qquad \qquad \mathscr{H}_{\mathbf{k}} | n_{\mathbf{k}} \rangle = \hbar v_{k} \left(n_{\mathbf{k}} + \frac{1}{2} \right) | n_{\mathbf{k}} \rangle$$
$$| n \rangle = \frac{(a^{\dagger})^{n}}{\sqrt{n!}} | 0 \rangle$$

Quadrature Operators

$$X_1 = \frac{1}{2}(a + a^{\dagger})$$
 "Amplitude" or "Position"
$$X_2 = \frac{1}{2i}(a - a^{\dagger})$$
 "Phase" or "Momentum"

Coherent States

<u>Coherent State:</u> eigenstate of the annihilation operator

$$a|lpha
angle=lpha|lpha
angle$$

Displacement operator: $D(\alpha) = e^{\alpha a^{\dagger} - \alpha^{*}a}$

$$|\alpha\rangle = D(\alpha)|0\rangle$$
 $D^{-1}(\alpha)aD(\alpha) = a + \alpha$

Mean photon number: $\langle \alpha | a^{\dagger} a | \alpha \rangle = | \alpha |^2$

Photon number statistics:
$$p(n) = \langle n | \alpha \rangle \langle \alpha | n \rangle = \frac{\langle n \rangle^n e^{-\langle n \rangle}}{n!}$$
 $\langle n \rangle = |\alpha|^2$

Quadrature operators

Squeezed States

Hamiltonian of a degenerate parametric process: $\mathscr{H} = i\hbar \left(ga^{\dagger 2} - g^*a^2\right)$ (Unitary) "Squeeze" Operator : $S(\xi) = \exp\left(\frac{1}{2}\xi^*a^2 - \frac{1}{2}\xi a^{\dagger 2}\right)$ $\xi = r\exp(i\theta)$

$$S^{\dagger}(\xi)aS(\xi) = a\cosh r - a^{\dagger}e^{i\theta}\sinh r$$
$$S^{\dagger}(\xi)a^{\dagger}S(\xi) = a^{\dagger}\cosh r - ae^{-i\theta}\sinh r$$

 $X_2 \blacklozenge$

Squeezed Vacuum: $|\xi\rangle = S(\xi)|0
angle$

$$X_{1} = \frac{1}{2}(a + a^{\dagger})$$
$$X_{2} = \frac{1}{2i}(a - a^{\dagger})$$
$$X_{1}$$

$$\Delta X_1 \Delta X_2 = \frac{1}{4}$$

Squeezed Vacuum obtained with an OPO operating under threshold

How to measure Quadratures

Phase measurement in an interferometer

The input-output relations of the mode operators of an interferometer are the same of a BS with T (given by the phase ϕ_p) $(n_d = |\alpha\rangle$

 $T = \left[\cos\frac{\phi}{2}\right]$ φ • $|0\rangle$ in *a*-port, $|\alpha\rangle$ in *b*-port $\langle n_{cd} \rangle = |\alpha|^2 \cos \phi_p$ $(\Delta n_{cd})^2 = |\alpha|^2$ $|\alpha\rangle$ $\langle n \rangle = |\alpha|^2$ • $|\xi\rangle$ in *a*-port, $|\alpha\rangle$ in *b*-port ($\theta = 2\phi_l$) **Below** the Shot-Noise Limit $\langle n_{cd} \rangle = (\langle n \rangle + \sinh^2 r) \cos \phi_p \cong \langle n \rangle \cos \phi_p$ $\phi_p = \pi/2$ $(\Delta n_{cd})^2 = \langle n \rangle e^{-2r} + \sinh^2 r$ $\Delta \phi = \frac{\Delta n_{cd}}{\left| \frac{\partial \langle n_{cd} \rangle}{\partial \phi_{r}} \right|} = \frac{e^{-r}}{\sqrt{n}}$

A sub-shot-noise PS measurement in a **single** interferometer (e.g. gravitational wave detector) was suggested exploiting squeezed light *Caves, PRD* **23**, 1693 (1981) *Kimble et al., PRD* **65**, 022002 (2001)

and recently realized at Ligo 600 R. Schnabel et al., Nature Commun. 1, 121 (2010) Ligo, Nature Phys. 7, 962 (2011)

Does squeezed light help also in the case of the Holometer?

 $\widehat{C}(\phi_1, \phi_2) \text{ is the covariance of photon # differences}$ $\widehat{C}(\phi_1, \phi_2) = \Delta \widehat{N}_{1-}(\phi_k) \ \Delta \widehat{N}_{2-}(\phi_k)$ $\Delta \widehat{N}_{k-}(\phi_k) = \widehat{N}_{k-}(\phi_k) - \mathcal{E}\left[\widehat{N}_{k-}(\phi_k)\right]$ $\widehat{N}_{-}(\phi) = \widehat{N}_c(\phi) - \widehat{N}_d(\phi)$

0-th order contribution to PSs covariance unc.:

$$\mathcal{U}^{(0)} = \frac{\sqrt{2 \operatorname{Var}\left[\widehat{C}(\phi_{1,0}, \phi_{2,0})\right]}}{\left|\langle \partial_{\phi_{1},\phi_{2}}^{2} \widehat{C}(\phi_{1,0}, \phi_{2,0})\rangle\right|}$$

 μ : mean # photons coherent light λ : mean # photons squeezed light

$$\begin{split} \widehat{C}(\phi_{1},\phi_{2}) \text{ is the covariance of photon \# differences} \\ \widehat{C}(\phi_{1},\phi_{2}) &= \Delta \widehat{N}_{1-}(\phi_{k}) \ \Delta \widehat{N}_{2-}(\phi_{k}) \\ \Delta \widehat{N}_{k-}(\phi_{k}) &= \widehat{N}_{k-}(\phi_{k}) - \mathcal{E}\left[\widehat{N}_{k-}(\phi_{k})\right] \\ \widehat{N}_{-}(\phi) &= \widehat{N}_{c}(\phi) - \widehat{N}_{d}(\phi) \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow \\ \downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow \\ \downarrow \\ \mu \gg \lambda \gg 1 \\ \text{ i.e. } (4\lambda)^{-1} \text{ better than the CL case } \ \mathcal{U}^{(0)}_{\text{CL}} \approx \sqrt{2}/\mu \\ \mu : \text{ mean \# photons coherent light} \end{split}$$

 λ : mean # photons squeezed light

 $\mu \gg \lambda \gg 1$

$$\begin{split} \widehat{C}(\phi_{1},\phi_{2}) & \text{ is the covariance of photon \# differences} \\ \widehat{C}(\phi_{1},\phi_{2}) &= \Delta \hat{N}_{1-}(\phi_{k}) \ \Delta \hat{N}_{2-}(\phi_{k}) \\ \Delta \hat{N}_{k-}(\phi_{k}) &= \hat{N}_{k-}(\phi_{k}) - \mathcal{E}\left[\hat{N}_{k-}(\phi_{k})\right] \\ \hat{N}_{-}(\phi) &= \hat{N}_{c}(\phi) - \hat{N}_{d}(\phi) \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) &= \sqrt{2} \ \frac{\lambda + \mu \left(1 + 2\lambda - 2\sqrt{\lambda + \lambda^{2}}\right)}{(\lambda - \mu)^{2}} \\ \downarrow &\downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{0}=\pi/2) \\ \downarrow \\ \mathcal{U}^{(0)}(\mu,\lambda,\phi_{$$

Bayrischzell Workhop 2014, Quantized geometry and physics, [May 23-26]

 $\lambda \ll 1$ and $\mu \gg 1$

PRL 110, 213601 (2013)

The "Dark-Port" configuration

What is done in practice in phase measurement (single interferometer)

Does Q-correlated (Entangled) light help in coupled interferometers?

Twin-Beam state (or Two-mode squeezed vacuum)

Hamiltonian of a non-degenerate parametric process: $H \propto a^{\dagger}b^{\dagger} + h.c.$

(Unitary) Two-mode "Squeeze" Operator : $S_2(\xi) = \exp\left\{\xi a^{\dagger}b^{\dagger} - \xi^*ab\right\}$ $S_2^{\dagger}(\xi) \begin{pmatrix} a \\ b^{\dagger} \end{pmatrix} S_2(\xi) = S_{2\xi} \begin{pmatrix} a \\ b^{\dagger} \end{pmatrix}$ $S_{2\xi} = \begin{pmatrix} \mu & \nu \\ \nu^* & \mu \end{pmatrix}$ $\mu = \cosh r$ $\nu = e^{i\psi} \sinh r$

Twin Beam state:
$$|\text{TWB}\rangle\rangle = S_2(\xi)|\mathbf{0}\rangle = \frac{1}{\sqrt{\mu}}\sum_{k=0}^{\infty} \left(\frac{\nu}{\mu}\right)^k |k\rangle \otimes |k\rangle$$

TWB shows **perfect correlation** in the **photon number**, i.e TWB is an eigenstate of the photon number difference

Quantum light in Coupled Interferometers

Fluctuations of the # of photons inside the interferometers arms induce phase fluctuations due to mirror recoil (Radiation Pressure Noise).

$$\delta \phi_{\mathsf{RP}} = (\omega \tau / 2mc) \mathcal{P}$$

 ${\mathcal P}$ photons momentum

For shorter measurement time 10^{-6} s (HN to be detected in the MHz region) > 10^{13} W

"Strong" quantum light regime: $\mu \gg \lambda \gg 1$

Radiation pressure (RP) noise is negligible for reasonable value of the optical power. It starts to appear at $P > 10^7 W$

Bayrischzell Workhop 2014, Quantized geometry and physics, [May 23¹26]

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed light provides an enhancement of the order of the mean number of photon of the squeezed light
 - Twin-Beam provides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed light provides an enhancement of the order of the mean number of photon of the squeezed light
 - Twin-Beam provides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed light provides an enhancement of the order of the mean number of photon of the squeezed light
 - Twin-Beam provides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed light provides an enhancement of the order of the mean number of photon of the squeezed light
 - Twin-Beam provides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed light provides an enhancement of the order of the mean number of photon of the squeezed light
 - Twin-Beam provides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed light provides an enhancement of the order of the mean number of photon of the squeezed light
 - Twin-Beam provides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed light provides an enhancement of the order of the mean number of photon of the squeezed light
 - Twin-Beam provides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale \rightarrow Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed lig t protect a mancer of the de of the mean number of photon of the squeezed light
 - Twin-Beam prides a complete suppression of the shot-noise contribution (0!!!!)
 - Losses (effectively) affect this enhancement
 - Radiation pressure is not an problem (for affordable light power level)

- HN is due to the "possible" Quantum Geometric structure of the Space-Time at the Planck-length scale
- HN may have "observable" effect at the macroscopic scale → Holometer (2 coupled interferometers)
- Quantum light enhance the sensitivity of the Holometer below the "Shot-Noise" limit
 - Squeezed lig t pr vide a enhancer ent of he de of e mean number of photon of the squeezed light
 - Twin-Beam price and so the second seco
 - Losses (effectively) affect this enhancement

