Consistent compactification of Double Field Theory on non-geometric backgrounds

Falk Haßler
based on 1401.5068 with
Dieter Lüst

Arnold Sommerfeld Center
LMU Munich
May 24, 2014

String theory...

- string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain background spacetime

String theory...

String theory...

- string theory is a quantum gravity \rightarrow spacetime is not fixed
- it should evolve from the theory itself

PROBLEM:

"usual" implementations of string theory describe dynamic of strings in a certain background spacetime

SOLUTION:

1. pick a spacetime compatible with string theory
2. use it as background
3. describe strings moving in the background

String theory...

- string theory is a quanturngravity \rightarrow spacetime is not fixed
- it should evolve from the theory itsgh

PROBLEM:

"usual" implementations of string thedry describe dynamic of strings in a certain background spacetime

SOLUTION:

1. pick a spacetime compatible with string theory
2. use it as background
3. describe strings moving in the background

... and the string theory landscape [3].

- How to choose such a background?
- Is (are) there one, ten, hunderts or billions of them?

1. parameterize "shape" of background
2. assign energy to each background
3. find minima

How we explore this landscape?

How we explore this landscape?

SUGRA in a nutshell

- low engery effective theory for (super) string theory
- here the NS/NS sector only

$$
S_{\mathrm{NS}}=\int \mathrm{d}^{D} x \sqrt{g} e^{-2 \phi}\left(\mathcal{R}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}\right)
$$

- Einstein-Hilbert like part = general relativity
- 2-form gauge field $B_{\mu \nu}$ with
- field strength $H_{\mu \nu \rho}=\partial_{[\mu} B_{\nu \rho]}$
\sim Einstein-Maxwell theory \rightarrow point particles
- backgrounds solve S_{NS} 's field equations

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Backgrounds "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Strings have a different perspective [4]:

- closed strings also wind around the torus \rightarrow T-duality

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
- moduli stabilization
- effective cosmological constant
- spontaneous SUSY breaking

Strings have a different perspective [4]:

- closed strings also wind around the torus \rightarrow T-duality

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
- moduli stabilization
- effective cosmological constant
- spontaneous SUSY breaking

Strings have a different perspective [4]:

- closed strings also wind around the torus \rightarrow T-duality

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
- moduli stabilization
- effective cosmological constant
- spontaneous SUSY breaking

Double Field Theory [5, 6] in a nutshell

- considers both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2 D$

$$
S_{\mathrm{DFT}}=\int \mathrm{d}^{2 D} X e^{-2 \phi^{\prime}} \mathcal{R}
$$

Double Field Theory [5, 6] in a nutshell

- considers both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2 D$

$$
\begin{gathered}
X^{M}=\underset{\left(\begin{array}{ll}
\tilde{x}_{i} & x^{i}
\end{array}\right) \quad \phi^{\prime}=\phi-\frac{1}{2} \log \sqrt{g}}{\longleftrightarrow} S_{\mathrm{DFT}}=\int \mathrm{d}^{2 D} X e^{-2 \phi^{\prime} \mathcal{R}} \\
\mathcal{R}=4 \mathcal{H}^{M N} \partial_{M} \phi^{\prime} \partial_{N} \phi^{\prime}-\partial_{M} \partial_{N} \mathcal{H}^{M N}-4 \mathcal{H}^{M N} \partial_{M} \phi^{\prime} \partial_{N} \phi^{\prime}+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} \phi^{\prime} \\
+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K}
\end{gathered}
$$

Double Field Theory [5, 6] in a nutshell

- considers both, winding and momentum mode of string
- doubling of coordinates $D \rightarrow 2 D$

$$
\begin{gathered}
X^{M}=\begin{array}{ll}
\left(\begin{array}{ll}
\tilde{x}_{i} & x^{i}
\end{array}\right) & \phi^{\prime}=\phi-\frac{1}{2} \log \sqrt{g} \\
\partial_{M}=\left(\begin{array}{cc}
\tilde{\partial}^{i} & \partial_{i}
\end{array}\right) \quad S_{\mathrm{DFT}}=\int \mathrm{d}^{2 D} X & e^{-2 \phi^{\prime}} \mathcal{R}
\end{array} \\
\mathcal{R}=4 \mathcal{H}^{M N} \partial_{M} \phi^{\prime} \partial_{N} \phi^{\prime}-\partial_{M} \partial_{N} \mathcal{H}^{M N}-4 \mathcal{H}^{M N} \partial_{M} \phi^{\prime} \partial_{N} \phi^{\prime}+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} \phi^{\prime} \\
+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K}
\end{gathered}
$$

Gauge transformations and the strong constraint [7, 8]

- generalized Lie derivative combines

1. diffeomorphisms $\}$ available in SUGRA
2. B-field gauge transformations
3. β-field gauge transformations

$$
\begin{aligned}
\mathcal{L}_{\xi} \mathcal{H}^{M N} & =\xi^{P} \partial_{P} \mathcal{H}^{M N}+\left(\partial^{M} \xi_{P}-\partial_{P} \xi^{M}\right) \mathcal{H}^{P N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) \mathcal{H}^{M P} \\
\mathcal{L}_{\xi} \phi^{\prime} & =\xi^{M} \partial_{M} \phi^{\prime}+\frac{1}{2} \partial_{M} \xi^{M}
\end{aligned}
$$

- closure of this algebra needs $\mathcal{L}_{\xi_{1}} \mathcal{L}_{\xi_{2}}-\mathcal{L}_{\xi_{2}} \mathcal{L}_{\xi_{1}}=\mathcal{L}_{\xi_{3}}$ with $\xi_{3}=\left[\xi_{1}, \xi_{2}\right]_{\mathrm{C}}$ (C-bracket)
- only possible when strong constraint holds

$$
\partial_{M} \partial^{M} \cdot=0
$$

- trivial implementation of SC $\tilde{\partial}_{i} \cdot=0 \rightarrow$ DFT $=$ SUGRA

Scherk-Schwarz compactification [9]

Scherk-Schwarz compactification [9]

Scherk-Schwarz compactification [9]

Scherk-Schwarz compactification [9]

Scherk-Schwarz compactification [9] or

a tool to construct backgrounds and fluctuations

Group manifold = Scherk-Schwarz ansatz in doubled coordinates

1. Homogenious space in $2(D-d)$ dimensions

- space "looks" at every point the same
- $2(D-d)$ linear independent Killing vector $K_{J}{ }^{J}$

$$
\mathcal{L}_{K_{I}} \mathcal{H}^{M N}=0 \quad \text { and } \quad \mathcal{L}_{K_{l}^{J}} \phi^{\prime}=0
$$

- infinitesimal translations $\mathcal{L}_{K_{I}}{ }^{J}$ form group G_{L}

2. Gauge transformations

- map space to itself by

$$
\mathcal{L}_{U_{N}{ }^{M}} \mathcal{H}^{I J}=-\mathcal{F}_{I M L} U_{N}{ }^{M} \mathcal{H}^{L J}-\mathcal{F}_{J M L} U_{N}{ }^{M} \mathcal{H}^{I L}
$$

- infinitesimal translations $\mathcal{L}_{U_{N}{ }^{M}}$ form group G_{R}
- structure coefficients $\mathcal{F}_{I J K}=$ covariant fluxes
- closure of $G_{R} \rightarrow$ constraints on $\mathcal{F}_{I J K}$

Gauged SUGRA $[10,11]$ and its vaccua

- DFT action + Scherk-Schwarz ansatz gives rise to

$$
\begin{aligned}
S_{\mathrm{eff}}= & \int \mathrm{d} x^{(D-d)} \sqrt{-g} e^{-2 \phi}\left(\mathcal{R}+4 \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{12} H_{\mu \nu \rho} H^{\mu \nu \rho}\right. \\
& \left.-\frac{1}{4} \mathcal{H}_{M N} F^{M \mu \nu} F^{N}{ }_{\mu \nu}+\frac{1}{8} D_{\mu} \mathcal{H}_{M N} D^{\mu} \mathcal{H}^{M N}-V\right)
\end{aligned}
$$

with scalar potential

$$
V=-\frac{1}{4} \mathcal{F}_{I}^{K L} \mathcal{F}_{J K L} \mathcal{H}^{I J}+\frac{1}{12} \mathcal{F}_{I K M} \mathcal{F}_{J L N} \mathcal{H}^{I J} \mathcal{H}^{K L} \mathcal{H}^{M N}
$$

- maximally symmetric vacuum = Minkowski (no warping implemented yet)
- e.o.m for vacuum reduce to

$$
0=\mathcal{R}_{\mu \nu}, \quad V=0 \quad \text { and } \quad \mathcal{K}^{M N}=\frac{\delta V}{\delta \mathcal{H} M N} \sim 0
$$

- additional constraints on covariant fluxes $\mathcal{F}_{I J K}$

Covariant fluxes as classification tool

- covariant fluxes $\mathcal{F}_{I J K}$ combine

1. geometric fluxes f and H-flux (known from SUGRA)
2. non-geometric fluxes Q and R

- find fluxes which fulfill all constraint discussed so far
- solution for $D-d=3$ (non-vanishing fluxes)

$$
H_{123}=Q_{1}^{23}=H \quad \text { and } \quad f_{31}^{2}=f_{12}^{3}=f
$$

- three different cases

1. $H=0$ and $f \neq 0$: Solvmanifold, known from SUGRA
2. $H \neq 0$ and $f=0$: T-dual version of 1 .
3. $H \neq 0$ and $f \neq 0$: genuinely non-geometric background, called double elliptic

Covariant fluxes as classification tool

- covariant fluxes $\mathcal{F}_{I J K}$ combine

1. geometric fluxes f and H-flux (known from SUGRA)
2. non-geometric fluxes Q and R

- find fluxes which fulfill all constraint discussed so far
- solution for $D-d=3$ (non-vanishing fluxes)

$$
H_{123}=Q_{1}^{23}=H \quad \text { and } \quad f_{31}^{2}=f_{12}^{3}=f
$$

- three different cases

1. $H=0$ and $f \neq 0$: Solvmanifold, known from SUGRA
2. $H \neq 0$ and $f=0$: T-dual version of 1 .
3. $H \neq 0$ and $f \neq 0$: genuinely non-geometric background, called double elliptic

How do these backgrounds "look" like?

- fibration of T^{2} over a S^{1} base with coordinate x

- T^{2} parameterized by ρ and τ (functions of x)
- fixed point of twist is $\rho(0)=\tau(0)=i$

How do these backgrounds "look" like?

- fibration of T^{2} over a S^{1} base with coordinate x

- T^{2} parameterized by ρ and τ (functions of x)
- fixed point of twist is $\rho(0)=\tau(0)=i$

How do these backgrounds "look" like?

- fibration of T^{2} over a S^{1} base with coordinate x

- T^{2} parameterized by ρ and τ (functions of x)
- fixed point of twist is $\rho(0)=\tau(0)=i$

Moduli stabilization

- scalar potential for fiber moduli $\rho(0)=\rho$ and $\tau(0)=\tau$

$$
V=\frac{f^{2}\left(1+2\left(\tau_{\mathrm{R}}^{2}-\tau_{\mathrm{I}}^{2}\right)+|\tau|^{4}\right)}{2 \tau_{\mathrm{I}}^{2}}+\frac{H^{2}\left(1+2\left(\rho_{\mathrm{R}}^{2}-\rho_{\mathrm{I}}^{2}\right)+|\rho|^{4}\right)}{2 \rho_{\mathrm{I}}^{2}}
$$

- minimum at fixed point of twist with $V_{\min }=0$ (Minkowski)
- mass terms for ρ and τ

modulus	ρ_{R}	ρ_{I}	τ_{R}	τ_{I}
mass	$2\|H\|$	$2\|H\|$	$2\|f\|$	$2\|f\|$

- volume ρ_{I} of fiber torus is stabilized
\rightarrow no large volume limit!
- still 5 flat directions, e.g. radius of base R

Moduli stabilization

- scalar potential for fiber moduli $\rho(0)=\rho$ and $\tau(0)=\tau$

$$
V=\frac{f^{2}\left(1+2\left(\tau_{\mathrm{R}}^{2}-\tau_{\mathrm{I}}^{2}\right)+|\tau|^{4}\right)}{2 \tau_{\mathrm{I}}^{2}}+\frac{H^{2}\left(1+2\left(\rho_{\mathrm{R}}^{2}-\rho_{\mathrm{I}}^{2}\right)+|\rho|^{4}\right)}{2 \rho_{\mathrm{I}}^{2}}
$$

- minimum at fixed point of twist with $V_{\min }=0$ (Minkowski)
- mass terms for ρ and τ

- volume ρ_{I} of fiber torus is stabilized
\rightarrow no large volume limit!
- still 5 flat directions, e.g. radius of base R

Duality orbits and flux quantization

- double elliptic solution is invariant under global $O(3,3)$
\rightarrow not one solution but a family of them = duality orbit [12]

PROBLEM:

Minimum of potential is arbitrary! How can we fix it?

SOLUTION:

Use insights from string theory. Monodromy has to be in T-duality group $O(2,2, Z)$

- H and f gets quantized
- minimum of the potential at T^{2} orbifold points
$=$ volume at order of string length
- closely related the asymmetric orbifold [13, 14]

A hidden violation of the strong constraint

We have found a background

- without large volume limit
- stabilizes additional moduli
- generalized metric fulfills the strong constraint
not in scope of SUGRA or generalized geometry

BUT, looking more closely, we see

- one Killing vector which violates the strong constraint

$$
K^{\prime}=\left(\begin{array}{llllll}
0 & -\frac{1}{2}\left(H x^{3}+f \tilde{x}^{3}\right) & \frac{1}{2}\left(H x^{2}+f \tilde{x}^{2}\right) & 1 & -\frac{1}{2}\left(f x^{3}+H \tilde{x}^{3}\right) & \frac{1}{2}\left(f x^{2}+H \tilde{x}^{2}\right)
\end{array}\right)
$$

\rightarrow patched by diffeomorphisms, B-field and β-transformations

- algebra of Killing vectors still closes
at the border of DFT's scope

Applications to inflation

BICEP2 [15]:

- detection of B-modes from gravitational waves
- large value of $r=0.2_{-0.05}^{+0.07}$ compared to previous results

\rightarrow chaotic inflation with trans-Planckian field range
- problem for inflation in an effective theory

SOLUTION:

axion as inflaton + monodromy to enlarge field range
monodromy inflation [16, 17]

Monodromy on double elliptic background [18]

Summary, conclusions and outlook

Summary, conclusions and outlook

Summary, conclusions and outlook

- $H=0$ and $f \neq 0$
- $H \neq 0$ and $f=0$
- $H \neq 0$ and $f \neq 0$

new applications, e.g. inflation, non-associative geometry[19], ...

Thank you for your attention.
Do you have any questions?

References I

目 M．R．Douglas，＂The Statistics of string／M theory vacua，＂ JHEP 0305 （2003）046，arXiv：hep－th／0303194 ［hep－th］．
目 S．Ashok and M．R．Douglas，＂Counting flux vacua，＂JHEP 0401 （2004）060，arXiv：hep－th／0307049［hep－th］．
围 L．Susskind，＂The Anthropic landscape of string theory，＂ arXiv：hep－th／0302219［hep－th］．
囯 C．M．Hull，＂Doubled Geometry and T－Folds，＂JHEP 0707 （2007）080，arXiv：hep－th／0605149［hep－th］．

囯 C．Hull and B．Zwiebach，＂Double Field Theory，＂JHEP 0909 （2009）099，arXiv：0904．4664［hep－th］．
嗇 O．Hohm，C．Hull，and B．Zwiebach，＂Generalized metric formulation of double field theory，＂JHEP 1008 （2010）008， arXiv：1006．4823［hep－th］．

References II

E．Hull and B．Zwiebach，＂The Gauge algebra of double field theory and Courant brackets，＂JHEP 0909 （2009）090， arXiv：0908．1792［hep－th］．
围 O．Hohm and B．Zwiebach，＂Large Gauge Transformations in Double Field Theory，＂JHEP 1302 （2013）075， arXiv：1207．4198［hep－th］．
圊 J．Scherk and J．H．Schwarz，＂How to Get Masses from Extra Dimensions，＂Nucl．Phys．B153（1979）61－88．

围 G．Aldazabal，W．Baron，D．Marques，and C．Nunez，＂The effective action of Double Field Theory，＂JHEP 1111 （2011） 052，arXiv：1109．0290［hep－th］．
围 M．Grana and D．Marques，＂Gauged Double Field Theory，＂ JHEP 1204 （2012）020，arXiv：1201． 2924 ［hep－th］．

References III

囯 G．Dibitetto，J．Fernandez－Melgarejo，D．Marques，and D．Roest，＂Duality orbits of non－geometric fluxes，＂ Fortsch．Phys． 60 （2012）1123－1149，arXiv：1203． 6562 ［hep－th］．
C．Condeescu，I．Florakis，and D．Lüst，＂Asymmetric Orbifolds，Non－Geometric Fluxes and Non－Commutativity in Closed String Theory，＂JHEP 1204 （2012）121， arXiv：1202．6366［hep－th］．
围 C．Condeescu，I．Florakis，C．Kounnas，and D．Lüst， ＂Gauged supergravities and non－geometric Q／R－fluxes from asymmetric orbifold CFT‘s，＂JHEP 1310 （2013）057， arXiv：1307．0999［hep－th］．

䍰 BICEP2 Collaboration Collaboration，P．Ade et al．， ＂BICEP2 I：Detection Of B－mode Polarization at Degree Angular Scales，＂arXiv：1403．3985［astro－ph．CO］．

References IV

目 E．Silverstein and A．Westphal，＂Monodromy in the CMB： Gravity Waves and String Inflation，＂Phys．Rev．D78（2008） 106003，arXiv：0803．3085［hep－th］．
围 L．McAllister，E．Silverstein，and A．Westphal，＂Gravity Waves and Linear Inflation from Axion Monodromy，＂ Phys．Rev．D82（2010）046003，arXiv：0808．0706 ［hep－th］．
國 F．Hassler，D．Lüst，and S．Massai，＂On Inflation and de Sitter in Non－Geometric String Backgrounds，＂ arXiv：1405．2325［hep－th］．
（ R．Blumenhagen，M．Fuchs，F．Hassler，D．Lüst，and
R．Sun，＂Non－associative Deformations of Geometry in Double Field Theory，＂arXiv：1312．0719［hep－th］．

