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Introduction
Spacetime geometry is expected to exhibit discrete features at
the Plank scale. A schematic approach to these phenomena is
provided by noncommutative models in which spacetime
coordinates are replaced by noncommuting operators.

In this talk we will consider space noncommutativity in
non-relativistic systems

[xi , xj ] = (something)

This “something” is obtained as a result of a Drinfel’d twist
deformation of a universal enveloping algebra U(G) with a Hopf
algebra structure, where G is a Lie algebra containing the
Heisenberg algebra H = {~, xi ,pj} as a subalgebra.

Notice that here the Planck constant ~ should be considered as
an element of the algebra and not as a multiple of identity.



Hopf algebras

Let A be an associative algebra over a field F(= C) with an
identity map i : F → A and a product µ : A⊗ A→ A.

A is called a Hopf algebra if

a) there exists a homomorphism ∆ : A→ A⊗ A, called
coproduct, satisfying the coassociativity condition
(id ⊗∆)(A) = (∆⊗ id)(A), and

b) there exists a homomorphism ε : A→ F called counit and an
antihomorphism S : A→ A called antipode.

Diagrams relating coproduct, counit and antipode can be found,
for example, in E. Abe, Hopf algebras, Cambridge tracts in
mathematics 74, Cambridge Univ. Press, 1980.



The noncommutativity is obtained by deformation of the
universal enveloping algebra U(G) with its Hopf algebraic
structure.
The generators gi of G are called the primitive elements.
For the primitive elements gi ∈ G the undeformed costructures
and the antipode are

∆(gi) = gi ⊗ 1 + 1⊗ gi

ε(gi) = 0
S(gi) = −gi

For the identity 1 ∈ U(G) the costructures and the antipode are

∆(1) = 1⊗ 1
ε(1) = 1
S(1) = 1



The other elements of U(G) are called composite. The
coproduct for, for example, g1g2 (g1,g2 ∈ G) is computed as

∆(g1g2) = ∆(g1)∆(g2) = (1⊗ g1 + g1 ⊗ 1) (1⊗ g2 + g2 ⊗ 1)

= 1⊗ g1g2 + g1g2 ⊗ 1 + g1 ⊗ g2 + g2 ⊗ g1

From the formula above it is clear that in physical models, when
one applies the Hopf algebraic structure, all additive observable
operators should be primitive elements of G and not composite.

Example: the energy of a 2-particle state E (2) = E1 + E2.
If the Hamiltonian is a primitive element, this can be expressed
as ∆(H) = 1⊗ H + H ⊗ 1.

Then, using the Drinfel’d twist, one is forced to twist not only
U(H) (the enveloping Heisenberg algebra), but U(G) with G
containing all elements which correspond to additive operators
in commutative (non-deformed) case. We call this G the
unfolded Lie algebra.



EXAMPLES:
I For the harmonic oscillator Hamiltonian we have

G = {xi ,pi , ~,Pii ,Xii ,Mii},

with Xii = 1
~x2

i , Pii = 1
~p2

i and Mii = 1
~xipi .

I For a particle moving in constant electric ~E and magnetic
B fields one should add Mij = 1

~xipj + pjxi to the set of
primitive elements:

G = {xi ,pi , ~,Pii ,Xii ,Mij}.

I If at least one of the potential terms in the Hamiltonian
contains a k -linear term (for k ≥ 3), the enlarged algebra is
necessarily infinite-dimensional. Examples: the
anharmonic oscillator (x4

i ) or the Coulomb 1
r potential.



Hopf algebra structure U(G).

Let V be a Hilbert space.

Mapping

ρ : U(G)→ End(V ).

Then

Ω ∈ U(G) 7→ Ω̂ = ρ(Ω) ∈ End(V ).

We have:

Ω̂(1) = Ω̂, 1-particle operator,
Ω̂(2) = ∆̂(Ω), 2-particle operator,
Ω̂(3) = ̂(∆⊕ 1)(Ω) = ̂(1⊕∆)(Ω), 3-particle operator,
. . ..



Drinfel’d twist
Just to remember:

The Drinfel’d twist F ∈ U(G)⊗ U(G) should satisfy cocycle
and counitarity conditions
1) (1⊗F)(id ⊗∆)F = (F ⊗ 1)(∆⊗ id)F
2) (ε⊗ id)F = 1 = (id ⊗ ε)F

The deformed co-structures, for a ∈ U(G), are:
∆F (a) = F∆(a)F−1

SF (a) = χS(a)χ−1

with χ = µ(id ⊗ S)F .

In order for find linear subspace of U(G) one should calculate
the deformed generators gi 7→ gFi = f̄α(gi)f̄α.
Here the Sweedler notation F−1 ≡ f̄α ⊗ f̄α has been used.
Multiplication law for functions on NC space:
m(f ⊗ g) = fg 7→ mF (f ⊗ g) = m

(
F−1 B (f ⊗ g)

)
= f ? g



Abelian Drinfel’d twist

F = eiαεijpi⊗pj ≡ f β ⊗ fβ



In d = 2 the twisted generators of HF have the form

xF1 = x1 − α~p2

xF2 = x2 + α~p1

the other twisted generators are unchanged: pFi = pi and
~F = ~.
The coordinate commutators are

[xF1 , x
F
2 ] = 2i~2α.

The second order in ~ in the r.h.s. shows that, in this model,
the NC appears in higher order in ~ (O(~2)), while the
ordinary quantum effects are of first order in ~ (O(~)).



Unfolded Lie algebra

Ĝ = {xi ,pj , ~,Xii ,XS,Pjj ,PS,Mij}

where

Xii =
1
~

x2
i

XS =
1
~

(x1x2 + x2x1)

Pjj =
1
~

p2
j

PS =
1
~

(p1p2 + p2p1)

Mij =
1
~

(xipj + pjxi)



[xi ,pj ] = i~δij

[xi ,Pii ] = 2ipi[
xi ,Mji

]
= 2ixj (i 6= j)

[pi ,Xii ] = −2ixi[
pi ,Mij

]
= −2ipj (i 6= j)

[Xii ,Pii ] = 2iMii[
Xii ,Mji

]
= 2iXS

[XS,P11] = 2iM21

[XS,P22] = 2iM12[
XS,Mij

]
= 2iMii[

Pii ,Mij
]

= −2iPS (i 6= j)
[PS,Mii ] = −2iPS[
PS,Mij

]
= −4iPjj[

Mii ,Mij
]

= 2iεijMij



A class of primitive elements Ω ∈ G:

Ω = a(P11 + P22) + b(X11 + X22) + c(M12 −M21) + dx1 + fp2,

for a,b, c,d , f arbitrary real parameters.
The Ω̂ operators are Hermitian.

Three special cases:

i) for b = 1 and a = c = d = f = 0, Ω coincides with the
“squared radius” R2 = X11 + X22;

ii) for a = 1
2 and b = 1

2ω
2, Ω is associated to the Hamiltonian of

the harmonic oscillator H = 1
2(P11 + P22) + 1

2ω
2(X11 + X22);

iii) for a = 1
2m , b = mωc

2

8 , c = ωc
4 , d = eE , f = 0, we obtain the

Quantum Hall Effect Hamiltonian in the presence of constant
electric (E) and magnetic (B) fields (e is the electron’s charge,
ωc = eB

mc is the cyclotron frequence).



The Untwisted General Operator

Ω = a (P11 + P22) + b(X11 + X22) + c(M12 −M21) + dx1 + fp2

For different choices of the constants a,b, c,d , f corresponds to
(I), (II), (III).
Twisted General Operator

ΩF = a(P11 + P22) + b(X 11 + X 22) + c(M12 −M21) + dx1

+ α
[
2b(x2p1 − x1p2)− 2c(p2

1 + p2
2)− d~p2

]
+ α2b~(p2

1 + p2
2)



Single-particle Quantization

ΩF ∈ U(G)→ Ω̂F ∈ End(V ) :

.

Ω̂F = s(N + 1) + tZ (s ≥ |t |),
in terms of the commuting operators N,Z ([N,Z ] = 0)

N = â†1â1 + â†2â2, Z = i(â2â†1 − â1â†2).

Eigenvalues: n = 0,1,2, . . .,
z = −n + 2j (j = 0,1, . . . ,n).

For s = |t |, the vacuum is infinitely degenerate.
A unique vacuum solution exists for s > |t |.

Creation and annihilation operators

ai
(λ) :=

1√
2

(λxi + i
pi

λ
) , ai

(λ)† :=
1√
2

(λxi − i
pi

λ
),

with λ suitably chosen.



The three cases:
i) the deformed squared radius operator R̂2F

λ =
1√
α

, s = t = 2α

(one should note the singular limit for α→ 0);

ii) the deformed hamiltonian ĤF of the harmonic oscillator

λ =
4

√
ω2

1 + α2ω2 , s = ω
√

1 + α2ω2, t = αω2;

iii) the deformed hamiltonian ĤQHE
F , in the presence of a

constant magnetic field B

λ = 4

√
mωc

2−mαωc
, s = −t =

1
2
ωc(1− αωc

4
).



Different NC-quantizations for single-particle case in the
literature:

i) the deformed squared radius operator
Scholtz, Gouba, Hafver, Rohwer, J. Phys. A (2009)
(quantization of the configuration space).

ii) the deformed hamiltonian of the harmonic oscillator
Kijanka, Kosinski, Phys. Rev. D (2004)

iii) the NC-quantum Hall Effect Hamiltonian
Dayi, Jellal, J. Math. Phys. (2002).

For the single-particle spectrum the “Unfolded Quantization”
recovers the results in the literature.



Eigenvalues

The eigenvalues of N are {0,1,2,3, . . . ,n, . . .}.
For each engenvalue n of N there are (n + 1) eigenvalues of Z :
{−n,−n + 2, . . . ,n − 4,n − 2,n}.

|v〉 ←→ N|v〉 = n|v〉
Z |v〉 = j |v〉

|w〉 = (αa1 + βa†2)|v〉 ←→ N|w〉 = (n + 1)|w〉
Z |w〉 = (j − 1)|w〉, for β = iα
Z |w〉 = (j + 1)|w〉, for β = −iα

At n fixed the minimal eigenvalue of the operator Ω is for
j = −n.
Ω = s(N + 1) + tZ ⇔ min eigenvalue: (s − t)n + s.



I For s > t (Hosc and Hem) there is a unique minimal
eigenvalue for n = 0.

I For s = t (R2 operator) there is∞ number of eigenstates
which correspond to minimal eigenvalue (infinitely
degenerate).



Square distance operator
Twisted square distance operator

(R2)F = X11 + X22 + 2α(x2p1 − x1p2) + α2~(p2
1 + p2

2)

Other set of oscillators ([b,b†] = ~2)

b =
1

2
√
α

(xF1 + ixF2 )

b† =
1

2
√
α

(xF1 − ixF2 ),

and

(R2)F = 2α(bb† + b†b)

with eigenvalues 4αnb + 2α for Nb = b†b.
This results are in accordance with another description of
noncommutativity given by F. G. Scholtz, L. Gouba, A. Hafver
and C. M. Rohwer, J. Phys. A 42, 175303 (2009).



Twisted Hamiltonians. One-particle state

Let us define Ω̂ ≡ ΩF acting on the Hilbert space of
one-particle states.
Here ~ = 1.

Ω̂ = (a− 2αc + α2b)(p2
1 + p2

2) + b(x2
1 + x2

2 )

+ (2c − 2αb)(x1p2 − x2p1) + dx1 + (f − αd)p2

For the case (III), for example, a = 1/2m, b = M2/2m,
c = M/2m, d = eE , f = 0. (M = eB

2c )
The set of eigenvalues coincides with the one obtained in
”fundamental” approach (many papers), see for example
O. F. Dayi and A. Jellal, Hall Effect in Noncommutative
Coordinates (2001).



2-particle state

The 2-particle state operator ((Ω)F )(2) is obtained from ∆(ΩF ).

ΩF = a(P11 + P22) + b(X 11 + X 22) + c(M12 −M21) + dx1

+ α
[
2b(x2p1 − x1p2)− 2c(p2

1 + p2
2)− d~p2

]
+ α2b~(p2

1 + p2
2)

Defining Ω0, Ω1 and Ω2 as

ΩF ≡ Ω0 + αΩ1 + α2Ω2

we have
∆(ΩF ) = ∆(Ω0) + 2αb∆(x2p1 − x1p2)− 2αc∆(p2

1 + p2
2)

−αd∆(~p2) + α2b∆[~(p2
2 + p2

2)]



The resulting 2-particle operator splits into:(
ΩF
)(2) ≡ ∆(ΩF )

= ΩF ⊗ 1 + 1⊗ ΩF + Ωr ⊗ 1 + 1⊗ Ωr + Ω̂mixed

where
Ωr = −αdp2 + α2b(p2

1 + p2
2) and

Ω̂mixed = −2αbεij(xi⊗pj +pj⊗xi)+4(−αc+α2b)(p1⊗p1+p2⊗p2)
The last term includes contributions from both particles.



Denoting Ω(2) ≡ Ω̂′ + Ω̂mixed , one could check whether Ω̂′ and
Ω̂mixed commute.

[Ω̂mixed , Ω̂
′] = −8iαb(αb − c)(xi ⊗ pi + pi ⊗ xi)

+ 4iαd(−2αb + c)(p1 ⊗ 1 + 1⊗ p1)− 2iαbd(x1 ⊗ 1 + 1⊗ x2)

The second line is equal to zero in the absence of electric field
(d = eE = 0).
The first term is equal to zero if the noncommutative parameter
is related to the magnetic field B as

α =
c
b

=
1
|B|

(
2c
e

)2

.



”Fundamental” and twisted NC, 2-particle state
Let us consider the case (II) (Harmonic oscillator) and let
m = 1.
Defining center of mass coordinates: xc.m.

i = 1/2(x (1)
i + x (2)

i ),
momenta pc.m.

i = p(1)
i + p(2)

i (i = 1,2) ,
relative coordinates: x rel

i = 1/2(x (2)
i − x (1)

i ),
and relative momenta prel

i = p(2)
i − p(1)

i .
I (A) Undeformed Hamiltonian (harmonic oscillator):

H = 1
2(pc.m.

i )2 + 2ω2(xc.m.
i )2 + 1

2(prel
i )2 + 2ω2(x rel

i )2

I (B) ”Fundamental” NC Hamiltonian:
H = 1

2(1 + α2ω2)(pc.m.
i )2 +2ω2(xc.m.

i )2−2α2ω2εij(xc.m.
i pc.m

j )

+1
2(1 + α2ω2)(prel

i )2 + 2ω2(x rel
i )2 − 2αω2εijx rel

i prel
j

I (C) Twist deformed NC Hamiltonian:
H = (1

2 + 2α2ω2)(pc.m.
i )2 + 2ω2(xc.m.

i )2−4αω2εij(xc.m.
i pc.m.

j )

+1
2(prel

i )2 + 2ω2(x rel
i )2

In the 2-particle Hamiltonian obtained via twist, contrary to
the ”fundamental” NC, the deformation appears only in the
center of mass dynamics.



In one-particle state sector the ”fundamental” and
”twist-induced” noncommutative models coincide.
The difference appears in the multi-particle sector.
This is because the energy of multiparticle state is no longer
additive but satisfies an associativity condition, induced by the
coassociativity of the coproduct
∆(HF) = Id ⊗ HF + HF ⊗ Id + (. . .),
where (. . . ) denotes the nonadditive extra terms.



Energy eigenvalues in 2-particle case

I (A) Undeformed Hamiltonian:

E12 = 2ω(n1 + n2) = 4ω

I (B) ”Fundamental” NC Hamiltonian:

E12 = 2ω
√

1 + α2ω2(n1 + n2 + 2) + 2αω2(j1 + j2)

I (C) Twist deformed NC Hamiltonian:

E12 = 2ω
√

1 + 4α2ω2(n1 + 1) + 2ω(n2 + 1) + 4αω2j1

Here n1 is associated with the center of mass coordinates while
n2 is asoociated with the relative coordinates
and j = −n,−n + 2, . . . ,n − 2,n.



Energy levels
”fundamental” NC 4ω

√
1 + α2ω2

6ω
√

1 + α2ω2 − 2αω2

6ω
√

1 + α2ω2 + 2αω2

8ω
√

1 + α2ω2 − 4αω2

8ω
√

1 + α2ω2

8ω
√

1 + α2ω2 + 4αω2

. . .

”twist” NC 4ω + 2ω
√

1 + 4α2ω2

4ω
√

1 + 4α2ω2 ∓ 4αω2

6ω + 2ω
√

1 + 4α2ω2

4ω + 4ω
√

1 + 4α2ω2 ∓ 4αω2

2ω + 6ω
√

1 + 4α2ω2 − 8αω2

2ω + 6ω
√

1 + 4α2ω2

2ω + 6ω
√

1 + 4α2ω2 + 8αω2

. . .



Jordanian Twist
There are only two inequivalent deformations of sl(2).
The first one (P. P. Kulish and N. Yu. Reshetikhin, J. Sov. Math.
23 (1983) 2435; M. Jimbo, Lett. Math. Phys. 10 (1985) 63),
depends on a non-dimensional parameter q; it leads to the
quantum group Uq(sl(2)) and cannot be obtained from Drinfel’d
twist technique.

The second one is called the Jordanian deformation of sl(2). It
can be obtained from the twist

F = exp (−iD × σ)

where σ = ln(1 + ξH), and H, D, K are sl(2) generators.

Dubois-Violette and Launer (1990), Ohn (1992), Ogievetsky
(1993), Kulish and Celeghini (1998), Boroviec, Lukierski and
Tolstoy (2003).



In sl(2) = {D,H,K} algebra

D is a dilatation operator, H is a positive and K is a negative
root

[D,H] = iH,
[D,K ] = −iK ,
[H,K ] = −2iD.



Differential realizations of sl(2)
.

I 1st order differential realization:

H = i∂t ,

D = −it∂t + β,

K = it2∂t − 2βt ;

from the hermiticity condition we have β = −i/2 + λ, λ ∈ R.
I 2nd order differential realization:

H = −∂2
x +

ρ

x2 ,

D = − i
2

x∂x + c,

K =
1
4

x2,

for arbitrary ρ and c = i/4.
The second one can act on d-dimensional space
(x1, . . . , xd ).



Two different cases for 2nd order differential realizations of
sl(2):

1. ρ̄ = 0 - free particle or harmonic oscillator Hamiltonian in
non-deformed case.
Unfolded algebra G = {~, xi ,pj ,H,D,K}.

2. ρ̄ 6= 0 - “Calogero type” Hamiltonian.
Unfolded algebra G is infinite-dimensional

G = {~, xi ,pj ,H,D,K ,
1
r4 ,

xi

r4 ,
1
r4 pi +

pi
1
r4 ,

xixj + xjxi

r6 ,
xixj + xjxi

r6 pj + pj
xixj + xjxi

r6 , . . .}

All combinations written above should be multiplied by
certain powers of ~ and considered as primitive elements
of the algebra.



Connection with conformal mechanics
Different systems can be considered depending on the choice
of Hamiltonian H (ρ is inside the twist)

1. free particle
H ≡ H0, ρ = 0,
H ≡ H0, ρ 6= 0.

2. harmonic oscillator
H ≡ H0 + K , ρ = 0,
H ≡ H0 + K , ρ 6= 0.

3. Calogero type of potential
ρ̄/x2 → Calogero (Bellucci, Galajinsky and Krivonos, 2003)
H ≡ Hρ̄, ρ = ρ̄,
H ≡ Hρ̄, ρ 6= ρ̄.

4. Calogero potential in harmonic external force
connection with free particle system: Brzezinski, C.
Gonera, Maslanka, 1998.
H ≡ Hρ̄ + K , ρ = ρ̄,
H ≡ Hρ̄ + K , ρ 6= ρ̄.



d = 1,2,3 realizations.

d = 1. There is no noncommutativity in nonrelativistic models.
But Jordanian transformation can be defined and investigated
for better understanding of unfolded algebras.
The unfolded algebra is a subalgebra of the algebra of integer
potentials of two types of generators (plus central element)
which are either [x ,p] = i~ or [a,a†] = ~ .

Denoting as a,b the operators and c the central element we
have {a,b} = c for Poisson brackets and [a,b] = c for
commutators.

d = 2,3,. . . we have Snyder noncommutative space.



I For Poisson brackets we have in d = 1
{bnap,bmaq} = (mp − nq)bn+m−1ap+q−1c

or with Wn,p ≡
bnap

cn+p−1
it can be written as
{Wn,p,Wm,q} = (mp − nq)Wn+m−1,p+q−1.

If the second index is = 1, defining Un ≡Wn+1,1 we see
that it reproduces the centerless Virasoro algebra
{Un,Um} = (m − n)Um+n.

I For commutators

[bnap,bmaq] = bn[ap,bm]aq + bm[bn,aq]ap

[ap,bn] =
n∑

j=1

p!

(p − j)!

(
n
j

)
c jbn−jap−j ≡ cp,n

If c = ~ we have other potentials of ~ as it should be
expected in quantization.



The Jordanian twist of U(G)

The twist induces a deformation g 7→ gF .
For any ρ the deformed generators are given by

xFi = xie
σ
2 , pFi = pie−

σ
2 , ~F = ~

HF = He−σ, KF = Keσ, DF = D.

The commutator of the deformed position variables has the
form:

[xFi , x
F
j ] = − iξ

2

(
xFi pFj − xFj pFi

)
+ ρO(ξ3).

For ρ = 0 (or up to third order in ξ) we have the
noncommutativity introduced by Snyder in H. S. Snyder, Phys.
Rev. 71 (1947) 38.



Twisted commutators

The nonvanishing commutators of the deformed generators at
ρ = 0:

[xFi ,p
F
j ] = i~δij − (iξ/2)pFi pFj

[xFi , x
F
j ] = (iξ/2)

(
xFj pFi − xFi pFj

)
[xFi ,H

F ] = ipFi
(
1− ξHF

)
[xFi ,K

F ] = iξ
(
KFpFi − xFi DF

)
+ (3/4)ξ2xFi HF

[xFi ,D
F ] = (i/2)xFi

(
1− ξHF

)
[pFi ,K

F ] = −i
(
xFi + ξpFi DF

)
+ (ξ2/4)pFi HF

[pFi ,D
F ] = −ipFi

(
1− (ξ/2)HF

)
[DF ,HF ] = iHF

(
1− ξHF

)
[DF ,KF ] = −iKF

(
1− ξHF

)
[KF ,HF ] = 2iDF

(
1 + ξHF

)
+ 2ξHF − 2ξ2 (HF)2



Pseudo-Hermiticity of the Hamiltonian

H = Hρ + (ρ̄− ρ)K−1 + λK ,
HF = HFρ + (ρ̄− ρ)(K−1)F + λKF

= HρT−2 + (ḡ − g)K−1T−2 + λKT 2

where T = e
σ
2 .

Two types of η-hermiticity:
1. ρ̄− ρ 6= 0, λ = 0[

HFρ + (ρ̄− ρ)(K−1)F
]†

= η
(

HFρ + (ρ̄− ρ)(K−1)F
)
η−1

with η = T−2,
2. ρ̄− ρ = 0, λ 6= 0[

HFρ + λKF
]†

= η
(
HFρ + λKF

)
η−1 with η = T 2



Multi-particle operators

here λ = 1, ρ̄ = 0
2-particle state:

∆
(
HF
)

= Keσ ⊗ eσ + eσ ⊗ Keσ − ξ2 (KH ⊗ H + H ⊗ KH)

+
∞∑

n=1

(−ξn−1)
n∑

k=0

(
n
k

)
Hk ⊗ Hn−k

3-particle state:

(id ⊗∆) ∆
(
HF
)

= (∆⊗ id) ∆
(
HF
)

=

= (K ⊗ 1⊗ 1 + perm) [eσ ⊗ eσ ⊗ eσ − ξ2 (H ⊗ H ⊗ 1 + perm)

− ξ4 (H ⊗ H ⊗ H)]

+
∞∑

n=1

(−ξ)n−1
n∑

k=0

(
n
k

) k∑
l=0

(
k
l

)
H l ⊗ Hk−l ⊗ Hn−k



Conclusions and open questions
I Drinfel’d twist prescribes a consistent way to obtain

noncommutative deformations on space(time)
I for to make deformation physical one should include all

additive operators as primitive elements into unfolded Lie
algebra

I nontrivial consequences from coproduct on deformed
multiparticle states

I Jordanian twist and its multiplication law for functions
I Snyder:”... while expressions for self-energy, polarization

of the vacuum, and possibly nuclear forces will be
considerably altered...”

I twist deformations on curved spaces (Ballesteros, Herranz,
Meusburger, Naranjo, arXiv:1403.4773 generalized
κ-Poincare)

I relastivistic case, different ways of investigations



Thank you for the attention
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