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Basic Ideas

Analogy: Almost-comm. geometry ↔ Kaluza-Klein space
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Idea:

M → C∞(M), F → some ”finite space”,

differential geometry → spectral triple
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Basic Ideas

Almost-commutative Geometry
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AfAfAfAfAf

Replacing manifolds by algebras

extra dimension: F → Af = M1(K)⊕ M2(K)⊕ . . .

Kaluza-Klein space: M × F → A = C∞(M)⊗Af
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Basic Ideas

General Relativity & Standard Model: The spectral point of view

Euclidean space(-time)!

Space(-Time)

(S-T)

4-dim Manifold M

S-T Symmetries

Diffeomorphisms

of M

equiv. equiv.

act on

Spectral Triple

(C∞(M), /∂,H)

Automorphisms

Aut(C∞(M))

Gravity

Spectral Action =

E-H Act.+Cosm.Const.

act on

leave invariantDynamics
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Basic Ideas

General Relativity & Standard Model: The spectral point of view

Almost-Commutative Standard Model (A.Chamseddine,

A.Connes):

Almost-Commutative

Spectral Triple

A = C∞(M)⊗Af

Int.+Ext. Symmetries

Aut(A) ⊃ Diff(M)⋊
U(1)× SU(2)× SU(3)

Spectral Action =

E-H Act.+Cosm.Const.

+ Stand. Model Action

act on

leave invariantDynamics
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Basic Ideas

General Relativity & Standard Model: The spectral point of view

The almost-commutative standard model automatically

produces:

• The combined Einstein-Hilbert and standard model action

• A cosmological constant

• The Higgs boson with the correct quartic Higgs potential

The generalised Dirac operator plays a multiple role:

D = /∂⊗ 1f + /ω+ γ5 ⊗Φ

Higgs & Gauge

Bosons

Metric of M,

Internal Metric

Particle Dynamics,

Ferm. Mass Matrix
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Geometry

Spectral Triples: the Input

An even, real spectral triple (A,H,D)

The ingredients (A. Connes):

A real, associative, unital pre-C∗-algebra A
A Hilbert space H on which the algebra A is faithfully

represented via a representation ρ

A self-adjoint operator D with compact resolvent,

the Dirac operator

An anti-unitary operator J on H, the real structure

or charge conjugation

A unitary operator γ on H, the chirality

or volume element



Noncommutative Geometry and the Spectral Action in the LHC-Era

Geometry

The Classical Conditions

The axioms of noncommutative geometry (A. Connes):

Axiom 1: Classical Dimension n (we assume n even)

Axiom 2: Regularity

Axiom 3: Finiteness

Axiom 4: First Order of the Dirac Operator

Axiom 5: Reality

Axiom 6: Orientability

Axiom 7: Poincaré Duality
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Geometry

The Reconstruction Theorem

Connes’ Reconstruction Theorem (sloppy version):

Compact Riemannian spin manifolds are equivalent to real

spectral triples with A commutative.

One can therefore replace a compact 4-dim. Riemannian

space-time M by the spectral triple (C∞(M),H, /∂).
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Geometry

Finite Spectral Triples

Finite spectral triples:

Af = M1(K)⊕ M2(K)⊕ . . .
K = R, C or H

gauge group: Aute(Mn(C)) = Unc(Mn(C)),

Hf ≃ C
N

N is the total number of particles

left-/right-handed particles/antiparticles counted separately

Df ∈ MN(C), Df is the fermionic mass matrix.

Axioms → Restrictions for Df and Hf
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Geometry

Almost-Commutative Geometry

Almost-commutative geometry:

An almost-commutative spectral triple (A,H,D) is a tensor

product of a spectral triple of a manifold M

(AM = C∞(M),HM ,DM = /∂) with dimensions nM > 0

and a finite spectral triple

(Af ,Hf ,Df ) with metric dimension nf = 0

(i.e. Af matrix algebra).

A = C∞(M)⊗Af , H = HM ⊗Hf ,

J = JM ⊗ Jf , γ = γ5 ⊗ γf ,

D = /∂ ⊗ 1f + γ5 ⊗ Df

Aut(C∞(M)⊗Af ) ≃Diff(M)⋊ Unc(Af )
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Geometry

Almost-Commutative Geometry

The geometric setup imposes constraints:

mathematical axioms

→ Restrictions on particle content

symmetries of finite space

→ determines gauge group

representation of matrix algebra

→ representation of gauge group

(only fundamental and adjoint representations)

Dirac operator → allowed mass terms / Higgs fields
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Physics

The Action

The generalised Dirac operator

The Dirac operator /∂ ⊗ 1f + γ5 ⊗ Df is fluctuated with inner

unitaries Unc(Af ) and becomes

D = /∂ ⊗ 1f + /ω + γ5 ⊗ Φ

The Spectral Action (A. Connes, A. Chamseddine 1996)

(Ψ,DΨ) + SD(Λ) with Ψ ∈ H

(Ψ,DΨ) = fermionic action

includes Yukawa couplings

& fermion–gauge boson interactions

SD(Λ) = ♯ eigenvalues of D up to cut-off Λ
= Einstein-Hilbert action + Cosm. Const.

+ full bosonic SM action + constraints at Λ

constraints => less free parameters than classical SM
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Physics

The Action

Asymptotic expansion of the Spectral Action

From the heat trace asymptotics for Λ → ∞

Tr

(

e
−

D2

Λ2

)

∼
∑

n≥0

Λ2−na2n(D
2)

(with Seeley-deWitt coefficients a2n(D
2))

one gets an asymptotics for the spectral action

SD(Λ) = Tr f
(

D2

Λ2

)

∼ Λ4 f4 a0(D
2) + Λ2 f2 a2(D

2) + Λ0 f0 a4(D
2)

as Λ → ∞.

Here f4, f2, f0 are moments of the cut-off function f .



Noncommutative Geometry and the Spectral Action in the LHC-Era

Physics

The Action

Spectral action for Connes-Chamseddine Dirac operator

For the Connes-Chamseddine Dirac operator

(or fluctuated Dirac operator)

D := /∂ + /ω + γ5 ⊗ Φ

we find the Seeley-deWitt coefficients

a2(D
2) = −dim(Hf )

96π2

∫

M

R dvol − 1
48π2

∫

M

tr(Φ2)dvol

a4(D
2) = 11 dim(Hf )

720 χ(M)− dim(Hf )
320π2

∫

M

‖W‖2 dvol

+ 1
8π2

∫

M

tr
(

[∇Hf ,Φ]
)

+ tr(Φ4)dvol

+ 5
96π2

∫

M

tr
(

Ω2
f

)

dvol + 1
48π2

∫

M

R tr(Φ2)dvol
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Physics

The Action

Spectral action for Connes-Chamseddine Dirac operator

For the Connes-Chamseddine Dirac operator
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Physics

The Standard Model

The Standard Model

Af = C⊕H⊕ M3(C)(⊕C)

Unc(Af ) = SU(2)× U(3)

Hf = HSM Hilbert space of minimal standard model

fermion multiplets

Df : Fermionic mass matrix with CKM matrix and PMNS

matrix

Df → Φ Higgs field(s) by inner fluctuations

Majorana masses and SeeSaw mechanism for

right-handed neutrinos (J. Barrett & A. Connes ’06)
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Physics

The Standard Model

Constraints on the SM parameters at the cut-off Λ:

5 g2
1 = NSM g2

2 = NSM g2
3 = 3

Y 2
2

H
λ
24

= 3
4

Y2

g1, g2, g3: U(1)Y , SUw(2), SUc(3) gauge couplings

λ: quartic Higgs coupling

Y2: trace of the Yukawa matrix squared

H: trace of the Yukawa matrix to the fourth power

NSM : number of standard model generations
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Physics

The Standard Model

Consequences from the SM constraints:

Input:

Big Desert

g1(mZ ) = 0.3575, g2(mZ ) = 0.6514, g3(mZ ) = 1.221

renormalisation group equations

(mtop = 171.2 ± 2.1 GeV)

Output:

g2
2(Λ) = g2

3(Λ) at Λ = 1.1 × 1017 GeV

mtop < 190 GeV (Thumstädter, Tolksdorf 05)

no 4th SM generation

Excluded by Tevatron & LHC since:

mSMS 6= 168.3 ± 2.5 GeV
5
3 g1(Λ)

2 6= g2(Λ)
2
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Physics

The Standard Model

Vacuum instability and inflation

Higgs vacuum is meta-stable: λ < 0 at µI ∼ 1010GeV

vacuum decay probability (Hawking-Moss instantons)

Pdec. = (1 − e−x) = 1 x = (Ne)
4 exp(πβλ

2e

µ4
I

H4
inf

)

Ne ≈ 60, Hinf ≈ 1014GeV (BICEP, 2014)

need new “stabilising” physics below ∼ 1010GeV

A. Spencer-Smith, arXiv:1405.1975v1 [hep-ph]
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Physics

Classifying Almost-Commutative Spectral Triples

How unique is the Standard Model?

The aim: Classifying the internal spaces

Af = M1(K)⊕ M2(K)⊕ . . .

with respect to the number of summands in the algebra

with respect to physical criteria

Little Reminder

For the Standard Model we have

Af = C⊕H⊕ M3(C)(⊕C)

or alternatively

Af = C⊕ M2(C)⊕ M3(C)⊕C
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Physics

The Requirements

Physicist’s ”shopping list” (B. Iochum, T. Schücker, C.S. ’03):

The physical models emerging from the spectral action are

required to

be irreducible i.e. to have the smallest possible internal

Hilbert space (minimal approach)

allow a non-degenerate Fermionic mass spectrum

be free of harmful anomalies

have unbroken colour groups

possess no uncharged massless Fermions
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Physics

The Results

Classification Results

(B.Iochum, J.-H. Jureit, T.Schücker, C.S. 2003-2008):

# sum. in Af KO 0 KO 6

1 no model no model

2 no model no model

3 SM2 no model

4 SM2, SM2,

el.-str.1 el.-str.1

6 SM2 + el.-str.1,

2 × el.-str.1

1 Electro-Strong Model: ”electron+proton”, no Higgs,

Af = C⊕C⊕ C⊕ Mn(C),
Ggauge = U(1)× SU(n)/SO(n)/Sp(n)

2 first family, colour group = SU(n)/SO(n)/Sp(n)
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Beyond the Standard Model

Beyond SM: the general strategy (bottom-up approach)

find finite geometry that has SM as sub-model (tricky)

=> particle content, gauge group & representation

make sure everything is anomaly free

compute the spectral action => constraints on parameters

determine the cut-off scale Λ with suitable sub-set

of the constraints

use renorm. group equations to obtain low energy values

of (hopefully) interesting parameters

(Higgs couplings, Yukawa couplings)

check with experiment! (and here we usually fail)
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Beyond the Standard Model

New Scalars

SM + U(1)X scaler field + U(1)X fermion singlet (C.S. 2009):

Internal space: C⊕ M2(C)⊕ M3(C)⊕ C⊕ C⊕ C

Gauge group: U(1)Y × SU(2)w × SU(3)c × U(1)X

New fermions: U(1)X -vector singlets (X -particles)

neutral w.r.t SM gauge group , MX ∼ Λ

New scalar: U(1)X singlet σ, neutral w.r.t SM gauge group

Lscalar = −µ2
1|H|2 + λ1

6 |H|4 − µ2
2|σ|2 + λ2

6 |σ|4 + λ3

3 |H|2|σ|2

U(1)Y × SU(2)w × SU(3)c × U(1)X → U(1)el . × SU(3)c

Lferm+gauge = X̄LMX XR +gν,X ν̄RσXL+ h.c. +1/g2
4F

µν
X FX ,µν
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Beyond the Standard Model

New Scalars

The constraints at Λ:

only top-quark & ντ

valid at g2 = g3

=> Λ = 1.1 × 1017 GeV

g2
2 = λ1

24

(3g2
t +g2

ν)
2

3g4
t +g4

ν

g2
2 = λ2

24

g2
2 = λ3

24

3g2
t +g2

ν

g2
ν

g2
2 = 1

4
(3g2

t + g2
ν )

free parameters: |〈σ〉|, g4

mSMS ∼ 120 − 130 GeV

Problem:
√

5/3g1 6= g2 = g3

1000800600400200

200

600

300

400

500

100

v2/ GeV

m
/

G
e

V

Mass EVs of scalar fields for

v2 =
√

2 |〈σ〉|,√
2|〈H〉| = 246 GeV, g4(mZ ) = 0.3
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Beyond the Standard Model

New Scalars

SM + U(1)X scalar field + new fermions (C.S. ’13):

SM as a sub-model: comme il faut!

Internal space: C⊕ M2(C)⊕ M3(C)⊕ C⊕6
i=1 Ci

gauge group: U(1)Y × SU(2)w × SU(3)c × U(1)X

new fermions in each SM-generation:

X 1
l ⊕ X 2

l ⊕ X 3
l : (0,1,1,+1)⊕ (0,1,1,+1)⊕ (0,1,1,0)

X 1
r ⊕ X 2

r ⊕ X 3
r : (0,1,1,+1)⊕ (0,1,1,0)⊕ (0,1,1,+1)

V w
ℓ , V w

r : (0, 2̄,1,0)
V c
ℓ , V c

r : (−1/6,1, 3̄,0)

new scalar: σ : (0,1,1,+1)
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Beyond the Standard Model

New Scalars

The Lagrangian (scalar potential & new terms):

Lscalar = −µ2
1|H|2 − µ2

2|σ|2 +
λ1
6 |H|4 + λ2

6 |σ|4 + λ3

3 |H|2|σ|2

Lferm = gν,X1 ν̄rσX 1
ℓ + X̄ 1

ℓ mX X 1
r + gX2 X̄ 2

ℓ σX 2
r

+gX3 X̄ 3
ℓ σX 3

r + V̄ c
ℓ mcV c

r + V̄ w
ℓ mw V w

r + h.c.

Lgauge = 1
g2

4

F
µν
X FX ,µν

Symmetry breaking:

U(1)Y ×SU(2)w ×SU(3)c×U(1)X → U(1)eℓ.×SU(3)c×Z2
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Beyond the Standard Model

New Scalars

The constraints at Λ:

g2(Λ) = g3(Λ) =
√

7
6

g1(Λ) =
√

4
3

g4(Λ)

λ1(Λ) = 36 H
Y2

g2(Λ)
2, λ2(Λ) = 36

tr(g4

ν,X1
)

tr(g2

ν,X1
)2 g2(Λ)

2

λ3(Λ) = 36
tr(g2

ν )
Y2

g2(Λ)
2

Y2(Λ) = tr(g2
ν,X1)(Λ) + tr(g2

X1)(Λ) + tr(g2
X2)(Λ) = 6 g2(Λ)

2

Some simplifications:

Y2 ≈ 3gtop + gντ

tr(g2
X1)(Λ) ≈ tr(g2

X2)(Λ) ≈ 0

tr(g2
ν,X1)(Λ) ≈ gν,X (Λ)

2 = 6 g2(Λ)
2

(mw )ij ≈ Λ, (mc)ij ≈ 1015 GeV
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Beyond the Standard Model

New Scalars

Results for 1-loop renormalisation groups:

Constraints

=> Λ ≈ 2 × 1018 GeV

mtop ≈ 172.9 ± 1.5 GeV

mσ1,SMS
≈ 125 ± 1.1 GeV

mσ2
≈ 445 ± 139 GeV

mZX
≈ 254 ± 87 GeV

g4(mZ ) ≈ 0.36

mX2,X3
- 50 GeV

free parameter: |〈σ〉|
1000800600400200

200

600

300

400

500

100

√
2 |〈σ〉| GeV

m
/

G
e

V

Mass EVs of scalar fields
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Beyond the Standard Model

New Scalars

Running of the gauge couplings with normalisation factors

2520 351550

1,2

1

0,4

3010

0,6

0,8

t[log(GeV)]

√

7/6g1(t)

g2(t)

g3(t)

√

4/3g4(t)
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Beyond the Standard Model

New Scalars

Further promising alternatives:

Grand symmetric models + Spectral Action

Devastato, Lizzi, Martinetti

Pati-Salam type models + Spectral Action

Chamseddine, Connes, van Suijlekom

Non-associative “Spectral Triples”

Boyle, Farnsworth, Wulkenhaar

Pauli-Dirac-Yukawa operators on Clifford module bundles

+ Wodzicki residue as bosonic action

Ackermann, Thumstädter, Tolksdorf et al.

Note: Following Tolksdorf et al. the Chamseddine-Connes Dirac

operator can be considered to be a generalised Dirac operator

in the sense of Quillen / Berline, Getzler and Vergne.
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Conclusions

Questions & to-do-list

Is the SM + scalar model compatible with LHC and

BICEP/Planck data?

Does the SM + scalar model contain viable dark matter

candidates?

Explore parameter space (gν,X1 , g2
X2 , g2

X3 , mX1 , mV w , mV c )

Extend renormalisation group analysis to n-loop, n ≥ 2

Is the geometry a “sub-geometry” of a Connes-

Chamseddine-type geometry?

Classify Models beyond the Standard Model
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