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Basic Ideas

Analogy: Almost-comm. geometry «» Kaluza-Klein space

QOOOO

M — C>(M), F — some "finite space”,

differential geometry — spectral triple
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Basic Ideas

Almost-commutative Geometry

Replacing manifolds by algebras
extra dimension: F — A = Mj(K) ® Mx(K) @ . ..
Kaluza-Klein space: M x F — A = C*(M) ® A¢
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Basic Ideas

General Relativity & Standard Model: The spectral point of view

Euclidean space(-time)!

Space(-Time) acton S-T Symmetries
(S-T) Diffeomorphisms
4-dim Manifold M of M
H‘ equiv. ‘H equiv.
Spectral Triple acton Automorphisms
(C*(M),d,H) Aut(C>(M))

DYnaM M/e invariant

Gravity
Spectral Action =

E-H Act.+Cosm.Const.
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Basic Ideas

General Relativity & Standard Model: The spectral point of view

Almost-Commutative Standard Model (A.Chamseddine,

A.Connes):

Almost-Commutative
Spectral Triple
A= C>®(M)® Af

act on

Dynamics

Int.+Ext. Symmetries
Aut(A) D Diff(M)x
U(1) x SU(2) x SU(3)

leave invariant

Spectral Action =
E-H Act.+Cosm.Const.
+ Stand. Model Action
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Basic Ideas

General Relativity & Standard Model: The spectral point of view

The almost-commutative standard model automatically
produces:

e The combined Einstein-Hilbert and standard model action
e A cosmological constant
e The Higgs boson with the correct quartic Higgs potential

The generalised Dirac operator plays a multiple role:

D=3de1i+¢+12d

— T

Higgs & Gauge Particle Dynamics, Metric of M,
Bosons Ferm. Mass Matrix Internal Metric
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Geometry
Spectral Triples: the Input

An even, real spectral triple (A, #, D)

The ingredients (A. Connes):

@ A real, associative, unital pre-C*-algebra A

@ A Hilbert space H on which the algebra A is faithfully
represented via a representation p

@ A self-adjoint operator D with compact resolvent,
the Dirac operator

@ An anti-unitary operator J on 7, the real structure
or charge conjugation

@ A unitary operator v on H, the chirality
or volume element
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Geometry
The Classical Conditions

The axioms of noncommutative geometry (A. Connes):
Axiom 1: Classical Dimension n (we assume n even)
Axiom 2: Regularity

Axiom 3: Finiteness

Axiom 4: First Order of the Dirac Operator
Axiom 5: Reality

Axiom 6: Orientability

Axiom 7: Poincaré Duality
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Geometry
The Reconstruction Theorem

Connes’ Reconstruction Theorem (sloppy version):

Compact Riemannian spin manifolds are equivalent to real
spectral triples with .4 commutative.

One can therefore replace a compact 4-dim. Riemannian
space-time M by the spectral triple (C(M), H, @).
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Geometry

Finite Spectral Triples

Finite spectral triples:
o .Af = M1(K)EBM2(K)@
K=R,CorH
@ gauge group: Aut®(Mn(C)) = U™(M,(C)),
*} Hf ~ CN
N is the total number of particles
left-/right-handed particles/antiparticles counted separately
® D; € My(C), Dy is the fermionic mass matrix.

Axioms — Restrictions for Dy and #;
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Geometry
Almost-Commutative Geometry

Almost-commutative geometry:

An almost-commutative spectral triple (A, #, D) is a tensor
product of a spectral triple of a manifold M

(Ay = C®(M), Hy, Dy = @) with dimensions ny, > 0

and a finite spectral triple

(Af, Hy, Dy) with metric dimension ns = 0

(i.e. Af matrix algebra).

A:COO(M)@)A,‘, H=Huy ® Hs,
J=Jdu®J;, 7=,

D=3d®1;+ 5 ® Dy

Aut(C®(M) & Af) =Diff(M)x U™(A)
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Geometry
Almost-Commutative Geometry

The geometric setup imposes constraints:

@ mathematical axioms

— Restrictions on particle content
@ symmetries of finite space

— determines gauge group

@ representation of matrix algebra
— representation of gauge group
(only fundamental and adjoint representations)

@ Dirac operator — allowed mass terms / Higgs fields
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Physics
The Action

The generalised Dirac operator

The Dirac operator ¢ ® 17 + v5 ® Dy is fluctuated with inner
unitaries U/"°(A¢) and becomes

D=@1i+¢+150%

The Spectral Action (A. Connes, A. Chamseddine 1996)
(V,DV) + Sp(A) withv e H

@ (V, DV) = fermionic action
includes Yukawa couplings
& fermion—gauge boson interactions

@ Sp(A) = 1 eigenvalues of D up to cut-off A
= Einstein-Hilbert action + Cosm. Const.
+ full bosonic SM action + constraints at A

@ constraints => less free parameters than classical SM
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Physics
The Action

Asymptotic expansion of the Spectral Action

From the heat trace asymptotics for A — oo

() grn

n>0

(with Seeley-deWitt coefficients ao,(D?))
one gets an asymptotics for the spectral action

Sp(A) = Tt f (g’_j) ~ N £y 80(D?) + A2 f ap(D?) + A° fy as(D?)

as \ — oco.
Here f, >, fy are moments of the cut-off function f.
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Physics
The Action

Spectral action for Connes-Chamseddine Dirac operator

For the Connes-Chamseddine Dirac operator
(or fluctuated Dirac operator)

D=@+¢+v00¢

we find the Seeley-deWitt coefficients

a(D?) = d’g; 2 /Rdvol——/ tr(d?)dvol

ay(D?) = 1dmn) gy dmG) / W2 dvol

+50z , tr([VHr, 0]) + tr(d*)dvol

+ 56 / w(QF)dvol + g5 / R tr($2)dvol
M M



Noncommutative Geometry and the Spectral Action in the LHC-Era
Physics
The Action

Spectral action for Connes-Chamseddine Dirac operator

For the Connes-Chamseddine Dirac operator
(or fluctuated Dirac operator)

D=@+¢+v00¢

we find the Seeley-deWitt coefficients

ap(D?) = — Mol /Rdvol——/tr(¢2)dvo/

ay(D?) = dmn) gy dmG) / W2 dvol

+50z y tr([VHr, 0]) + tr(d*)dvol

+ 562 / w(QF)dvol + g / R tr($2)dvol
JM M
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Physics
The Standard Model

0 A =CoHe M;(C)(aC)

@ U"(Af) = SU(2) x U(3)

® H; = Hgy Hilbert space of minimal standard model
fermion multiplets

@ Dy: Fermionic mass matrix with CKM matrix and PMNS
matrix
Dy — & Higgs field(s) by inner fluctuations

@ Majorana masses and SeeSaw mechanism for
right-handed neutrinos (J. Barrett & A. Connes '06)
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Physics
The Standard Model

Constraints on the SM parameters at the cut-off :

y2
592 = Noyg2= Nsyg2=3+% 2 =5Yo

@ g1, 92, 93: U(1)y, SUw(2), SU.(3) gauge couplings
@ \: quartic Higgs coupling

@ Y5: trace of the Yukawa matrix squared

@ H:trace of the Yukawa matrix to the fourth power

@ Ngy: number of standard model generations
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Physics
The Standard Model

Consequences from the SM constraints:

Input:
@ Big Desert
@ gi1(mz) =0.3575, go(mz) = 0.6514, gs(mz) =1.221
@ renormalisation group equations
@ (Myp =171.2+2.1 GeV)
Output:
@ g5(N)=gi(N)atA=1.1x 10" GeV
@ mMyp < 190 GeV (Thumstadter, Tolksdorf 05)
@ no 4" SM generation
Excluded by Tevatron & LHC since:
® mgys # 168.3 +2.5 GeV

@ 2 091(N)? # gao(N)?
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Physics
The Standard Model

Vacuum instability and inflation

@ Higgs vacuum is meta-stable: A < 0 at ;i ~ 10'°GeV
@ vacuum decay probability (Hawking-Moss instantons)
Pdec. = (1 - e_x) =1 X = (Ne) e)(p(7rzﬁeA :‘{ )
Ne ~ 60, Hipr ~ 10'*GeV (BICEP, 2014)

@ need new “stabilising” physics below ~ 10'1°GeV

Metastable
— Unstable

—— Central Values

——- 4rinM,
- 4rinMy

- 4rinag

(GeV)

A. Spencer-Smith, arXiv:1405.1975v1 [hep-ph]
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Physics
Classifying Almost-Commutative Spectral Triples

How unique is the Standard Model?

The aim: Classifying the internal spaces

A= Mi(K) e Mx(K) & ...
@ with respect to the number of summands in the algebra
@ with respect to physical criteria

Little Reminder
For the Standard Model we have

| A\

Ar=CaoHe M3(C)(eC)
or alternatively

Af = C & My(C) ® Ms(C) @ C

A\
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Physics
The Requirements

Physicist’s “shopping list” (B. lochum, T. Schiic

The physical models emerging from the spectral action are
required to

@ be irreducible i.e. to have the smallest possible internal
Hilbert space (minimal approach)

@ allow a non-degenerate Fermionic mass spectrum
@ be free of harmful anomalies

@ have unbroken colour groups

@ possess no uncharged massless Fermions
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Physics
The Results

Classification Results
(B.lochum, J.-H. Jureit, T.Schicker, C.S. 2003-2008):

# sum. in As KO 0 KO 6

1 no model no model

2 no model no model

3 SM? no model
4 SM?, SM?,
el.-str.! el.-str.!

6 SM? + el.-str.T,
2 x el.-str.

! Electro-Strong Model: “electron+proton”, no Higgs,

A =CadC o C o My(C),

Ggauge = U(1) x SU(n)/SO(n)/Sp(n)
2 first family, colour group = SU(n)/SO(n)/Sp(n)
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Beyond the Standard Model

Beyond SM: the general strategy (bottom-up approach)

@ find finite geometry that has SM as sub-model (tricky)
=> particle content, gauge group & representation

@ make sure everything is anomaly free
@ compute the spectral action => constraints on parameters

@ determine the cut-off scale A with suitable sub-set
of the constraints

@ use renorm. group equations to obtain low energy values
of (hopefully) interesting parameters
(Higgs couplings, Yukawa couplings)

@ check with experiment! (and here we usually fail)
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Beyond the Standard Model
New Scalars

SM + U(1)x scaler field + U(1)x fermion singlet (C.S. 2009):

@ Internal space: C & Mp(C) & M3(C)a Ca Ca C

@ Gauge group: U(1)y x SU(2)w x SU(3)c x U(1)x

@ New fermions: U(1)x-vector singlets (X-particles)
neutral w.r.t SM gauge group , My ~ A

@ New scalar: U(1)x singlet o, neutral w.rt SM gauge group

(7

A A A
Lscalar = _M$|H|2 + ?1 |H|4 - M§|0|2 + Fz |U|4 + TS ‘H‘Z‘U‘z

@ U(1)y x SU2)w x SU(3)e x U(1)x — U(1)er. x SU(3)c

° ['ferrn-i-gauge = )_(LMXXR+QV,X5HUXL+ h.c. +1 /ng;VFX,;U/
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Beyond the Standard Model
New Scalars

The constraints at A:

@ only top-quark & v

@ valid at g» = g3
=A=1.1x10" GeV “

2= (3g7+g2) ¢
2 24 3g;‘+g5

2 _ X 0
95 = 54

2 _ A3 3g2+92 w0
9 =2 g

2 1 2 2 vvvzuvovvvvmvuvvvaDvovvvvmvuvvvvmm
95 =7 @gr +97)

free parameters: |(c)|, g4 Mass EVs of scalar fields for
msys ~ 120 — 130 GeV v =V2|(0)],

Problem: /5/391 # go = g5 V2|(H)| = 246 GeV, g4(mz) = 0.3

©

T B B Y B 0 A A A A

© © 6 6 ¢
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Beyond the Standard Model
New Scalars

SM + U(1)x scalar field + new fermions (C.S. '13):
@ SM as a sub-model: comme il faut!

@ Internal space: C & Mx(C) & Ms(C) & C &8, C;
@ gauge group: U(1)y x SU(2)w x SU(3): x U(1)x

@ new fermions in each SM-generation:
X'®X2®X?:(0,1,1,+1)@(0,1,1,4+1) ®(0,1,1,0)
X eX?0X?:(0,1,1,+1)®(0,1,1,0)® (0,1,1,+1)
V¥, VY (0,2,1,0)

Ve, Ve (-1/6,1,3,0)

@ newscalar: o: (0,1,1,+1)
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Beyond the Standard Model
New Scalars

The Lagrangian (scalar potential & new terms):

A A A
® Loaiar = —15IHI — 1i3lof? + G |HI* + € lo|* + 2 [H[?|o|?

+gxs XZo X3 + VEmeVE+ Vmy VY + h.c.

=
® Lgauge = g—ng Fx

@ Symmetry breaking:
U(1)y x SU(2)w x SU(3)e x U(1)x — U(1)er. x SU(3)¢ X Zo
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Beyond the Standard Model
New Scalars

The constraints at A:
@ (N = \/791 \/§g4 N)

tr(g*
@ \i(A) =367 H g2(N)?, Ma(N) =36 TG P

I./X1)

g2(N)?

=36 102 go(1)?
tr(92 x1 J(N) + tr(g5: ) (A) + tr(g5)(A) = 6 go(A)?

Some simplifications:

@ Yo ~ 3Gi0p + 9u.

° tr(g)z(1 )(A) = tr(g)z(z)(A) ~ 0

® r(92 41 )(N) = g x(N)? = 6 ga(N)?
@ (my)j = A, (me) = 10'% GeV

] )\3(

)
OYQ()

A\
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Beyond the Standard Model

New Scalars

Results for 1-loop renormalisation groups:

@ Constraints
=>A~2x10'8 GeV ]

Miop ~ 172.9+ 1.5 GeV ]
~125+1.1 GeV

500

ma'1 ,SMS

o

o

® m,, ~ 445 + 139 GeV
® myz, ~ 254+ 87 GeV
o
o
o

m/ GeV

3004

g4(mz) ~ 0.36 ]
mx, x, =< 50 GeV 0]

~

free parameter: |(o)|

200 400 800 1000

00
V2|()| GeV

Mass EVs of scalar fields
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Beyond the Standard Model
New Scalars

Running of the gauge couplings with normalisation facto

V7/6ai(t)

LI e s e e e s e e e s e e e
1 3

20 25 30
tllog(GeV)]
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Beyond the Standard Model
New Scalars

Further promising alternatives:

@ Grand symmetric models + Spectral Action
Devastato, Lizzi, Martinetti

@ Pati-Salam type models + Spectral Action
Chamseddine, Connes, van Suijlekom

@ Non-associative “Spectral Triples”
Boyle, Farnsworth, Wulkenhaar

@ Pauli-Dirac-Yukawa operators on Clifford module bundles
+ Wodzicki residue as bosonic action
Ackermann, Thumstadter, Tolksdorf et al.

Note: Following Tolksdorf et al. the Chamseddine-Connes Dirac
operator can be considered to be a generalised Dirac operator
in the sense of Quillen / Berline, Getzler and Vergne.
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Conclusions

Questions & to-do-list

@ |s the SM + scalar model compatible with LHC and
BICEP/Planck data?

@ Does the SM + scalar model contain viable dark matter
candidates?

@ Explore parameter space (g, xi, g)z(z, 9)2(3, My, Myw, Myc)
@ Extend renormalisation group analysis to n-loop, n > 2

@ Is the geometry a “sub-geometry” of a Connes-
Chamseddine-type geometry?

@ Classify Models beyond the Standard Model
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