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Spectral geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?



The disc



Wave numbers on the disc
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Wave numbers on the disc: high frequencies
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The square



Wave numbers on the square
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Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac’s question is no.



Weyl’s estimate

Nevertheless, certain information can be extracted from spectrum, such as
dimension n of M:

N(Λ) = #wave numbers ≤ Λ

∼ ΩnVol(M)

n(2π)n
Λn

For the disc and square this is confirmed by the parabolic shapes (
√

Λ):
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Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz equation.

The Dirac operator DM is a ‘square-root’ of the Laplacian, so that its
spectrum consists of the wave numbers k .

Exists on any Riemannian spin manifold M.



Spectral action functional

Reconsider Weyl’s estimate, in a smooth version:

Tr f

(
DM

Λ

)
=
∑
λ

f

(
λ

Λ

)
for a smooth cutoff function f : R→ R.

For example, with a Gaussian cutoff function

f (x) = e−x
2

we can use heat asymptotics: Tr e−D
2
M/Λ2 ∼ Vol(M)Λn

(4π)n/2



Hearing the shape of a drum

As said, the geometry of M is not fully determined by spectrum of DM .

This can be improved by considering besides DM also the algebra
C∞(M) of smooth functions on M, with pointwise product and addition

In fact, the distance function on M is equal to

d(x , y) = sup
f ∈C∞(M)

{|f (x)− f (y)| : gradient f ≤ 1}

b b

x y

f

b b

x y

The gradient of f is given by the commutator [DM , f ] = DM f − fDM .



Finite spaces

Finite space F , discrete topology

F = 1 • 2 • · · · · · · N•

Smooth functions on F are given by N-tuples in CN , and the
corresponding algebra C∞(F ) corresponds to diagonal matrices

f (1) 0 · · · 0
0 f (2) · · · 0
...

. . .
...

0 0 . . . f (N)


The finite Dirac operator is an arbitrary hermitian matrix DF , giving rise
to a distance function on F as

d(p, q) = sup
f ∈C∞(F )

{|f (p)− f (q)| : ‖[DF , f ]‖ ≤ 1}



Example: two-point space

F = 1 • 2•

Then the algebra of smooth functions

C∞(F ) :=

{(
λ1 0
0 λ2

) ∣∣∣∣λ1, λ2 ∈ C
}

A finite Dirac operator is given by

DF =

(
0 c
c 0

)
; (c ∈ C)

The distance formula then becomes

d(p, q) =

{
|c |−1 p 6= q
0 p = q



Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a
noncommutative structure at each point of F .

Instead of diagonal matrices, we consider block diagonal matrices

A =


a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 0 . . . aN

 ,

where the a1, a2, . . . aN are square matrices of size n1, n2, . . . , nN .

Hence we will consider the matrix algebra

AF := Mn1(C)⊕Mn2(C)⊕ · · · ⊕MnN (C)

A finite Dirac operator is still given by a hermitian matrix.



Example: noncommutative two-point space

The two-point space can be given a noncommutative structure by considering
the algebra AF of 3× 3 block diagonal matrices of the following formλ 0 0

0 a11 a12

0 a21 a22


A finite Dirac operator for this example is given by a hermitian 3× 3 matrix,
for example

DF =

0 c 0
c 0 0
0 0 0





Spectral triples
Noncommutative Riemannian spin manifolds

(A,H,D)

Extended to real spectral triple:

J : H → H real structure (anti-unitary)

such that
J2 = ±1; JD = ±DJ

Action of Aop on H: aop = Ja∗J−1 and

[aop, b] = 0; a, b ∈ A

D is said to satisfy first-order condition if

[[D, a], bop] = 0



Spectral invariants

Tr f (D/Λ) +
1

2
〈Jψ̃,Dψ̃〉

Invariant under unitaries u ∈ U(A) acting as

D 7→ UDU∗; U = uJuJ−1

Gauge group: G(A) := {uJuJ−1 : u ∈ U(A)}.
Compute rhs:

D 7→ D + u[D, u∗] + û[D, û∗] + û[u[D, u∗], û∗]

with û = JuJ−1 and blue term vanishes if D satisfies first-order
condition



Semi-group of inner perturbations

Pert(A) :=

∑
j

aj ⊗ bop
j ∈ A⊗A

op

∣∣∣∣ ∑j ajbj = 1∑
j aj ⊗ bop

j =
∑

j b∗j ⊗ a∗opj


with semi-group law inherited from product in A⊗Aop.

U(A) maps to Pert(A) by sending u 7→ u ⊗ u∗op.

Pert(A) acts on D:

D 7→
∑
j

ajDbj = D +
∑
j

aj [D, bj ]

For real spectral triples we use the map Pert(A)→ Pert(A⊗ Â)
sending A 7→ A⊗ Â so that

D 7→
∑
i ,j

ai âjDbi b̂j



Perturbation semigroup for matrix algebras

Proposition

Let AF be the algebra of block diagonal matrices (fixed size). Then the
perturbation semigroup of AF is

Pert(AF ) '

∑
j

Aj ⊗ Bj ∈ AF ⊗AF

∣∣∣∣ ∑j Aj(Bj)
t = I∑

j Aj ⊗ Bj =
∑

j Bj ⊗ Aj


The semigroup law in Pert(AF ) is given by the matrix product in AF ⊗AF :

(A⊗ B)(A′ ⊗ B ′) = (AA′)⊗ (BB ′).



The two conditions in the above definition,∑
j

Aj(Bj)
t = I

∑
j

Aj ⊗ Bj =
∑
j

Bj ⊗ Aj

are called normalization and self-adjointness condition, respectively.

Let us check that the normalization condition carries over to products,∑
j

Aj ⊗ Bj

(∑
k

A′k ⊗ B ′k

)
=
∑
j ,k

(AjA
′
k)⊗ (BjB

′
k)

for which indeed∑
j ,k

AjA
′
k(BjB

′
k)t =

∑
j ,k

AjA
′
k(B ′k)t(Bj)

t = I



Example: perturbation semigroup of two-point space

Now AF = C2, the algebra of diagonal 2× 2 matrices.

In terms of the standard basis of such matrices

e11 =

(
1 0
0 0

)
, e22 =

(
0 0
0 1

)
we can write an arbitrary element of Pert(C2) as

z1e11 ⊗ e11 + z2e11 ⊗ e22 + z3e22 ⊗ e11 + z4e22 ⊗ e22

Matrix multiplying e11 and e22 yields for the normalization condition:

z1 = 1 = z4.

The self-adjointness condition reads

z2 = z3

leaving only one free complex parameter so that Pert(C2) ' C.

More generally, Pert(CN) ' CN(N−1)/2 with componentwise product.



Example: perturbation semigroup of M2(C)

Let us consider a noncommutative example, AF = M2(C).

We can identify M2(C)⊗M2(C) with M4(C) so that elements in
Pert(M2(C) are 4× 4-matrices satisfying the normalization and
self-adjointness condition. In a suitable basis:

Pert(M2(C)) =




1 v1 v2 iv3

0 x1 x2 ix3

0 x4 x5 ix6

0 ix7 ix8 x9

∣∣∣∣ v1, v2, v3 ∈ R
x1, . . . x9 ∈ R


and one can show that

Pert(M2(C)) ' R3 o S .

More generally (B.Sc. thesis Niels Neumann),

Pert(MN(C)) 'W o S ′.



Example: noncommutative two-point space

Consider noncommutative two-point space described by C⊕M2(C)

It turns out that

Pert(C⊕M2(C)) ' M2(C)× Pert(M2(C))

Only M2(C) ⊂ Pert(C⊕M2(C)) acts non-trivially on DF :

DF =

0 c 0
c 0 0
0 0 0

 7→
 0 cφ1 cφ2

cφ1 0 0
cφ2 0 0


The group of unitary block diagonal matrices is now U(1)× U(2) and
an element (λ, u) therein acts as(

φ1

φ2

)
7→ λu

(
φ1

φ2

)
.



Example: perturbation semigroup of a manifold
Recall, for any involutive algebra A

Pert(A) :=

∑
j

aj ⊗ bop
j ∈ A⊗A

op

∣∣∣∣ ∑j ajbj = 1∑
j aj ⊗ bop

j =
∑

j b∗j ⊗ a∗opj


We can consider functions in the tensor product C∞(M)⊗ C∞(M) as
functions of two variables, i.e. elements in C∞(M ×M).

The normalization and self-adjointness condition in Pert(C∞(M))
translate accordingly and yield

Pert(C∞(M)) =

{
f ∈ C∞(M ×M)

∣∣∣∣ f (x , x) = 1

f (x , y) = f (y , x)

}
The action of Pert(C∞(M)) on the partial derivatives appearing in a
Dirac operator DM is given by

∂

∂xµ
7→ ∂

∂xµ
+

∂

∂yµ
f (x , y)

∣∣∣∣
y=x

=: ∂µ + Aµ



Physical applications: Yang–Mills theory
On a 4-dimensional background:

A = C∞(M)⊗Mn(C)

H = L2(S)⊗Mn(C)

D = DM ⊗ 1

J = C ⊗ (.)∗

Proposition (Chamseddine-Connes, 1996)

Tr f (D): pure gravity (including higher-derivatives)

The perturbations of D are given by hermitian γµAµ, describing an
su(n)-gauge field on M.

Gauge group G(A) ' C∞(M, SU(n))

The spectral action of perturbed Dirac operator is given by

Tr f (D ′) ∼ (· · · ) +
f (0)

24π2

∫
M
Tr FµνFµν



Example beyond first-order

A′F = CR ⊕ CL ⊕M2(C)

HF = (CR ⊕ CL)⊗ (C2)◦ ⊕ C2 ⊗ (C◦R ⊕ C◦L)

JF =

(
0 1
1 0

)
◦ C (C : complex conjugation),

DF =


0 c ⊗ 12

d 0
0 0

0

c ⊗ 12 0 0
d 0
0 0 0 0 12 ⊗ c
0 0 12 ⊗ c 0


The algebra action of (λR , λL,m) ∈ A′F on HF is given explicitly by

π(λR , λL,m) =

(
λR12

λL12
m

m

)
, π◦(λR , λL,m) =

(
mt

mt

λR12
λL12

)
.



Proposition

The largest subalgebra AF ⊂ A′F ≡ CR ⊕ CL ⊕M2(C) for which the
first-order condition holds (for the above HF ,DF and JF ) is given by

AF =

{(
λR , λL,

(
λR 0
0 µ

))
: (λR , λL, µ) ∈ CR ⊕ CL ⊕ C

}

Proposition

The perturbed Dirac operator D ′F is parametrized by three complex scalar
fields φ, σ1, σ2:

D ′F =

 0 cφ⊗12 dv ·v t 0
cφ⊗12 0 0
dv ·v t 0 0 12⊗cφ

0 0 12⊗cφ 0


with v =

(
σ1

σ2

)
.



Spectral action functional
Spectral action functional gives rise to a scalar potential

V (φ, σ1, σ2) = − f2

π2
Λ2
(
4|c |2|φ|2 + |d |2(|σ1|2 + |σ2|2)2

)
+

f0

4π2

(
4|c |4|φ|4 + 4|c |2|d |2|φ|2(|σ1|2 + |σ2|2)2

+ |d |4(|σ1|2 + |σ2|2)4

)



Spontaneous symmetry breaking to first-order

Proposition

The potential V (φ = 0, σ1, σ2) has a local minimum at (σ1, σ2) = (
√

w , 0)
with w =

√
2f2Λ2/(f0|d |2) and this point spontaneously breaks the

symmetry group U(A′F ) to U(AF ).



“Usual” SSB
After the fields (σ1, σ2) have reached their vevs (

√
w , 0), there is a

remaining potential for the φ-field:

V (φ) = −2f2

π2
Λ2|c|2|φ|2 +

f0

π2
|c |4|φ|4.

Selecting one of the minima of V (φ) spontaneously breaks the symmetry
further from U(AF ) = U(1)R × U(1)L × U(1) to U(1)L × U(1), and
generates mass terms for the L− R abelian gauge field.



Beyond the Standard Model
One starts with the algebra

APS := HR ⊕HL ⊕M4(C)

and an off-diagonal Dirac operator

DF :=

(
S T ∗

T S

)

The largest ’first-order’ subalgebra of APS is C⊕HL ⊕M3(C).

Symmetry breaking from Pati–Salam SU(2)R × SU(2)L × SU(4) to
Standard Model U(1)× SU(2)L × SU(3).

Perturbation semigroup of APS gives rise to many new scalar fields,
including a real scalar singlet σ which is coupled to the Higgs sector:

V (σ, h) = −4g 2
2

π2
f2Λ2(h2 + σ2) +

1

24
λhh4 +

1

2
h2σ2 +

1

4
λσσ

4

which allows for mh = 125.5GeV and mσ ∼ 1012GeV.


