Inner perturbations in noncommutative geometry

Walter D. van Suijlekom

May 25, 2014

Overview

- Spectral (noncommutative) geometry
- Gauge theory from spectral triples
- Gauge group, semi-group of inner perturbations
- Examples: Yang-Mills, SM, Beyond SM

References

A. Chamseddine, Alain Connes, WvS. Inner Fluctuations in

Noncommutative Geometry without the first order condition. J. Geom. Phys. 73 (2013) 222-234 [arXiv:1304.7583]
A. Chamseddine, Alain Connes, WvS. Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification. JHEP 11 (2013) 132. [arXiv:1304.8050]

WvS. The spectral model of particle physics, Nieuw Archief voor Wiskunde, June 2014.

WvS. Noncommutative Geometry and Particle Physics. Mathematical Physics Studies, Springer, July 2014.
and also: http://www.noncommutativegeometry.nl

Spectral geometry

"Can one hear the shape of a drum?" (Kac, 1966)
Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

$$
\Delta_{M} u=k^{2} u
$$

determine the geometry of M ?

The disc

Wave numbers on the disc

Wave numbers on the disc: high frequencies

The square

Wave numbers on the square

Isospectral domains

But, there are isospectral domains in \mathbb{R}^{2} :

(Gordon, Webb, Wolpert, 1992)
so the answer to Kac's question is no.

Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such as dimension n of M :

$$
\begin{aligned}
N(\Lambda) & =\# \text { wave numbers } \leq \Lambda \\
& \sim \frac{\Omega_{n} \operatorname{Vol}(M)}{n(2 \pi)^{n}} \Lambda^{n}
\end{aligned}
$$

For the disc and square this is confirmed by the parabolic shapes $(\sqrt{\Lambda})$:

Dirac operator

Recall that k^{2} is an eigenvalue of the Laplacian in the Helmholtz equation.

- The Dirac operator D_{M} is a 'square-root' of the Laplacian, so that its spectrum consists of the wave numbers k.
- Exists on any Riemannian spin manifold M.

Spectral action functional

- Reconsider Weyl's estimate, in a smooth version:

$$
\operatorname{Tr} f\left(\frac{D_{M}}{\Lambda}\right)=\sum_{\lambda} f\left(\frac{\lambda}{\Lambda}\right)
$$

for a smooth cutoff function $f: \mathbb{R} \rightarrow \mathbb{R}$.

- For example, with a Gaussian cutoff function

$$
f(x)=e^{-x^{2}}
$$

we can use heat asymptotics: $\operatorname{Tr} e^{-D_{M}^{2} / \Lambda^{2}} \sim \frac{\operatorname{Vol}(M) \Lambda^{n}}{(4 \pi)^{n / 2}}$

Hearing the shape of a drum

- As said, the geometry of M is not fully determined by spectrum of D_{M}.
- This can be improved by considering besides D_{M} also the algebra $C^{\infty}(M)$ of smooth functions on M, with pointwise product and addition
- In fact, the distance function on M is equal to

$$
d(x, y)=\sup _{f \in C^{\infty}(M)}\{|f(x)-f(y)|: \text { gradient } f \leq 1\}
$$

- The gradient of f is given by the commutator $\left[D_{M}, f\right]=D_{M} f-f D_{M}$.

Finite spaces

- Finite space F, discrete topology

$$
F=\quad 1^{\bullet} \quad 2_{2}^{\bullet} \quad \cdots \cdots \cdot \quad N^{\bullet}
$$

- Smooth functions on F are given by N-tuples in \mathbb{C}^{N}, and the corresponding algebra $C^{\infty}(F)$ corresponds to diagonal matrices

$$
\left(\begin{array}{cccc}
f(1) & 0 & \ldots & 0 \\
0 & f(2) & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & f(N)
\end{array}\right)
$$

- The finite Dirac operator is an arbitrary hermitian matrix D_{F}, giving rise to a distance function on F as

$$
d(p, q)=\sup _{f \in C^{\infty}(F)}\left\{|f(p)-f(q)|:\left\|\left[D_{F}, f\right]\right\| \leq 1\right\}
$$

Example: two-point space

$$
F={ }_{1} \bullet \quad{ }_{2} \bullet
$$

- Then the algebra of smooth functions

$$
C^{\infty}(F):=\left\{\left.\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \right\rvert\, \lambda_{1}, \lambda_{2} \in \mathbb{C}\right\}
$$

- A finite Dirac operator is given by

$$
D_{F}=\left(\begin{array}{ll}
0 & \bar{c} \\
c & 0
\end{array}\right) ; \quad(c \in \mathbb{C})
$$

- The distance formula then becomes

$$
d(p, q)= \begin{cases}|c|^{-1} & p \neq q \\ 0 & p=q\end{cases}
$$

Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a noncommutative structure at each point of F.

- Instead of diagonal matrices, we consider block diagonal matrices

$$
A=\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & a_{N}
\end{array}\right)
$$

where the $a_{1}, a_{2}, \ldots a_{N}$ are square matrices of size $n_{1}, n_{2}, \ldots, n_{N}$.

- Hence we will consider the matrix algebra

$$
\mathcal{A}_{F}:=M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{N}}(\mathbb{C})
$$

- A finite Dirac operator is still given by a hermitian matrix.

Example: noncommutative two-point space

The two-point space can be given a noncommutative structure by considering the algebra \mathcal{A}_{F} of 3×3 block diagonal matrices of the following form

$$
\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & a_{11} & a_{12} \\
0 & a_{21} & a_{22}
\end{array}\right)
$$

A finite Dirac operator for this example is given by a hermitian 3×3 matrix, for example

$$
D_{F}=\left(\begin{array}{lll}
0 & \bar{c} & 0 \\
c & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Spectral triples

Noncommutative Riemannian spin manifolds

$$
(\mathcal{A}, \mathcal{H}, D)
$$

- Extended to real spectral triple:
- J: $\mathcal{H} \rightarrow \mathcal{H}$ real structure (anti-unitary)
such that

$$
J^{2}= \pm 1 ; \quad J D= \pm D J
$$

- Action of $\mathcal{A}^{\text {op }}$ on $\mathcal{H}: a^{\mathrm{op}}=J a^{*} J^{-1}$ and

$$
\left[a^{\mathrm{op}}, b\right]=0 ; \quad a, b \in \mathcal{A}
$$

- D is said to satisfy first-order condition if

$$
\left[[D, a], b^{\circ \mathrm{O}}\right]=0
$$

Spectral invariants

$$
\operatorname{Tr} f(D / \Lambda)+\frac{1}{2}\langle J \widetilde{\psi}, D \widetilde{\psi}\rangle
$$

- Invariant under unitaries $u \in \mathcal{U}(\mathcal{A})$ acting as

$$
D \mapsto U D U^{*} ; \quad U=u J u J^{-1}
$$

- Gauge group: $\mathcal{G}(\mathcal{A}):=\left\{u J u J^{-1}: u \in \mathcal{U}(\mathcal{A})\right\}$.
- Compute rhs:

$$
D \mapsto D+u\left[D, u^{*}\right]+\hat{u}\left[D, \hat{u}^{*}\right]+\hat{u}\left[u\left[D, u^{*}\right], \hat{u}^{*}\right]
$$

with $\hat{u}=J u J^{-1}$ and blue term vanishes if D satisfies first-order condition

Semi-group of inner perturbations

$$
\operatorname{Pert}(\mathcal{A}):=\left\{\begin{array}{l|l}
\sum_{j} a_{j} \otimes b_{j}^{\mathrm{op}} \in \mathcal{A} \otimes \mathcal{A}^{\mathrm{op}} & \begin{array}{l}
\sum_{j} a_{j} b_{j}=1 \\
\sum_{j} a_{j} \otimes b_{j}^{\mathrm{op}}=\sum_{j} b_{j}^{*} \otimes a_{j}^{* \mathrm{op}}
\end{array}
\end{array}\right\}
$$

with semi-group law inherited from product in $\mathcal{A} \otimes \mathcal{A}^{\text {op }}$.

- $\mathcal{U}(\mathcal{A})$ maps to $\operatorname{Pert}(\mathcal{A})$ by sending $u \mapsto u \otimes u^{* o p}$.
- $\operatorname{Pert}(\mathcal{A})$ acts on D :

$$
D \mapsto \sum_{j} a_{j} D b_{j}=D+\sum_{j} a_{j}\left[D, b_{j}\right]
$$

- For real spectral triples we use the map $\operatorname{Pert}(\mathcal{A}) \rightarrow \operatorname{Pert}(\mathcal{A} \otimes \hat{\mathcal{A}})$ sending $A \mapsto A \otimes \hat{A}$ so that

$$
D \mapsto \sum_{i, j} a_{i} \hat{a}_{j} D b_{i} \hat{b}_{j}
$$

Perturbation semigroup for matrix algebras

Proposition

Let \mathcal{A}_{F} be the algebra of block diagonal matrices (fixed size). Then the perturbation semigroup of \mathcal{A}_{F} is

$$
\operatorname{Pert}\left(\mathcal{A}_{F}\right) \simeq\left\{\begin{array}{l|l}
\sum_{j} A_{j} \otimes B_{j} \in \mathcal{A}_{F} \otimes \mathcal{A}_{F} & \begin{array}{l}
\sum_{j} A_{j}\left(B_{j}\right)^{t}=\mathbb{I} \\
\sum_{j} A_{j} \otimes B_{j}=\sum_{j} \overline{B_{j}} \otimes \overline{A_{j}}
\end{array}
\end{array}\right\}
$$

The semigroup law in $\operatorname{Pert}\left(\mathcal{A}_{F}\right)$ is given by the matrix product in $\mathcal{A}_{F} \otimes \mathcal{A}_{F}$:

$$
(A \otimes B)\left(A^{\prime} \otimes B^{\prime}\right)=\left(A A^{\prime}\right) \otimes\left(B B^{\prime}\right)
$$

- The two conditions in the above definition,

$$
\sum_{j} A_{j}\left(B_{j}\right)^{t}=\mathbb{I} \quad \sum_{j} A_{j} \otimes B_{j}=\sum_{j} \overline{B_{j}} \otimes \overline{A_{j}}
$$

are called normalization and self-adjointness condition, respectively.

- Let us check that the normalization condition carries over to products,

$$
\left(\sum_{j} A_{j} \otimes B_{j}\right)\left(\sum_{k} A_{k}^{\prime} \otimes B_{k}^{\prime}\right)=\sum_{j, k}\left(A_{j} A_{k}^{\prime}\right) \otimes\left(B_{j} B_{k}^{\prime}\right)
$$

for which indeed

$$
\sum_{j, k} A_{j} A_{k}^{\prime}\left(B_{j} B_{k}^{\prime}\right)^{t}=\sum_{j, k} A_{j} A_{k}^{\prime}\left(B_{k}^{\prime}\right)^{t}\left(B_{j}\right)^{t}=\mathbb{I}
$$

Example: perturbation semigroup of two-point space

- Now $\mathcal{A}_{F}=\mathbb{C}^{2}$, the algebra of diagonal 2×2 matrices.
- In terms of the standard basis of such matrices

$$
e_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad e_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

we can write an arbitrary element of $\operatorname{Pert}\left(\mathbb{C}^{2}\right)$ as

$$
z_{1} e_{11} \otimes e_{11}+z_{2} e_{11} \otimes e_{22}+z_{3} e_{22} \otimes e_{11}+z_{4} e_{22} \otimes e_{22}
$$

- Matrix multiplying e_{11} and e_{22} yields for the normalization condition:

$$
z_{1}=1=z_{4} .
$$

- The self-adjointness condition reads

$$
z_{2}=\overline{z_{3}}
$$

leaving only one free complex parameter so that $\operatorname{Pert}\left(\mathbb{C}^{2}\right) \simeq \mathbb{C}$.

- More generally, $\operatorname{Pert}\left(\mathbb{C}^{N}\right) \simeq \mathbb{C}^{N(N-1) / 2}$ with componentwise product.

Example: perturbation semigroup of $M_{2}(\mathbb{C})$

- Let us consider a noncommutative example, $\mathcal{A}_{F}=M_{2}(\mathbb{C})$.
- We can identify $M_{2}(\mathbb{C}) \otimes M_{2}(\mathbb{C})$ with $M_{4}(\mathbb{C})$ so that elements in $\operatorname{Pert}\left(M_{2}(\mathbb{C})\right.$ are 4×4-matrices satisfying the normalization and self-adjointness condition. In a suitable basis:

$$
\operatorname{Pert}\left(M_{2}(\mathbb{C})\right)=\left\{\left.\left(\begin{array}{llll}
1 & v_{1} & v_{2} & i v_{3} \\
0 & x_{1} & x_{2} & i x_{3} \\
0 & x_{4} & x_{5} & i x_{6} \\
0 & i x_{7} & i x_{8} & x_{9}
\end{array}\right) \right\rvert\, \begin{array}{l}
v_{1}, v_{2}, v_{3} \in \mathbb{R} \\
x_{1}, \ldots x_{9} \in \mathbb{R}
\end{array}\right\}
$$

and one can show that

$$
\operatorname{Pert}\left(M_{2}(\mathbb{C})\right) \simeq \mathbb{R}^{3} \rtimes S
$$

- More generally (B.Sc. thesis Niels Neumann),

$$
\operatorname{Pert}\left(M_{N}(\mathbb{C})\right) \simeq W \rtimes S^{\prime}
$$

Example: noncommutative two-point space

- Consider noncommutative two-point space described by $\mathbb{C} \oplus M_{2}(\mathbb{C})$
- It turns out that

$$
\operatorname{Pert}\left(\mathbb{C} \oplus M_{2}(\mathbb{C})\right) \simeq M_{2}(\mathbb{C}) \times \operatorname{Pert}\left(M_{2}(\mathbb{C})\right)
$$

- Only $M_{2}(\mathbb{C}) \subset \operatorname{Pert}\left(\mathbb{C} \oplus M_{2}(\mathbb{C})\right)$ acts non-trivially on D_{F} :

$$
D_{F}=\left(\begin{array}{lll}
0 & \bar{c} & 0 \\
c & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \mapsto\left(\begin{array}{ccc}
0 & \bar{c} \overline{\phi_{1}} & \bar{c} \overline{\phi_{2}} \\
c \phi_{1} & 0 & 0 \\
c \phi_{2} & 0 & 0
\end{array}\right)
$$

- The group of unitary block diagonal matrices is now $U(1) \times U(2)$ and an element (λ, u) therein acts as

$$
\binom{\phi_{1}}{\phi_{2}} \mapsto \bar{\lambda} u\binom{\phi_{1}}{\phi_{2}} .
$$

Example: perturbation semigroup of a manifold

Recall, for any involutive algebra \mathcal{A}

$$
\operatorname{Pert}(\mathcal{A}):=\left\{\begin{array}{l|l}
\sum_{j} a_{j} \otimes b_{j}^{\mathrm{op}} \in \mathcal{A} \otimes \mathcal{A}^{\mathrm{op}} & \begin{array}{l}
\sum_{j} a_{j} b_{j}=1 \\
\sum_{j} a_{j} \otimes b_{j}^{\mathrm{op}}
\end{array}=\sum_{j} b_{j}^{*} \otimes a_{j}^{* \mathrm{op}}
\end{array}\right\}
$$

- We can consider functions in the tensor product $C^{\infty}(M) \otimes C^{\infty}(M)$ as functions of two variables, i.e. elements in $C^{\infty}(M \times M)$.
- The normalization and self-adjointness condition in $\operatorname{Pert}\left(C^{\infty}(M)\right)$ translate accordingly and yield

$$
\operatorname{Pert}\left(C^{\infty}(M)\right)=\left\{\begin{array}{l|l}
f \in C^{\infty}(M \times M) & \begin{array}{l}
f(x, x)=1 \\
f(x, y)=\overline{f(y, x)}
\end{array}
\end{array}\right\}
$$

- The action of $\operatorname{Pert}\left(C^{\infty}(M)\right)$ on the partial derivatives appearing in a Dirac operator D_{M} is given by

$$
\frac{\partial}{\partial x_{\mu}} \mapsto \frac{\partial}{\partial x_{\mu}}+\left.\frac{\partial}{\partial y_{\mu}} f(x, y)\right|_{y=x}=: \partial_{\mu}+A_{\mu}
$$

Physical applications: Yang-Mills theory

On a 4-dimensional background:

- $\mathcal{A}=C^{\infty}(M) \otimes M_{n}(\mathbb{C})$
- $\mathcal{H}=L^{2}(S) \otimes M_{n}(\mathbb{C})$
- $D=D_{M} \otimes 1$
- $J=C \otimes(.)^{*}$

Proposition (Chamseddine-Connes, 1996)

- $\operatorname{Tr} f(D)$: pure gravity (including higher-derivatives)
- The perturbations of D are given by hermitian $\gamma^{\mu} A_{\mu}$, describing an $\mathfrak{s u}(n)$-gauge field on M.
- Gauge group $\mathcal{G}(\mathcal{A}) \simeq C^{\infty}(M, S U(n))$
- The spectral action of perturbed Dirac operator is given by

$$
\operatorname{Tr} f\left(D^{\prime}\right) \sim(\cdots)+\frac{f(0)}{24 \pi^{2}} \int_{M} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}
$$

Example beyond first-order

$$
\begin{aligned}
& \mathcal{A}_{F}^{\prime}=\mathbb{C}_{R} \oplus \mathbb{C}_{L} \oplus M_{2}(\mathbb{C}) \\
& \mathcal{H}_{F}=\left(\mathbb{C}_{R} \oplus \mathbb{C}_{L}\right) \otimes\left(\mathbb{C}^{2}\right)^{\circ} \oplus \mathbb{C}^{2} \otimes\left(\mathbb{C}_{R}^{\circ} \oplus \mathbb{C}_{L}^{\circ}\right) \\
& J_{F}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \circ C \\
&(C: \text { complex conjugation }), \\
& D_{F}=\left(\begin{array}{cccc}
0 & \bar{c} \otimes 1_{2} & \bar{d} 0 & 0 \\
c \otimes 1_{2} & 0 & 0 & 0 \\
d 0 & 0 & 0 & 1_{2} \otimes c \\
0 & 0 & 0 & 1_{2} \otimes \bar{c} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

The algebra action of $\left(\lambda_{R}, \lambda_{L}, m\right) \in \mathcal{A}_{F}^{\prime}$ on \mathcal{H}_{F} is given explicitly by

$$
\pi\left(\lambda_{R}, \lambda_{L}, m\right)=\left(\begin{array}{cccc}
\lambda_{R} 1_{2} & & \\
& \lambda_{L} 1_{2} & \\
& & & \\
& & & m
\end{array}\right), \pi^{\circ}\left(\lambda_{R}, \lambda_{L}, m\right)=\left(\begin{array}{cccc}
m^{t} & & & \\
& m^{t} & & \\
& & \lambda_{R} 1_{2} & \\
& & \lambda_{L} 1_{2}
\end{array}\right) .
$$

Proposition

The largest subalgebra $\mathcal{A}_{F} \subset \mathcal{A}_{F}^{\prime} \equiv \mathbb{C}_{R} \oplus \mathbb{C}_{L} \oplus M_{2}(\mathbb{C})$ for which the first-order condition holds (for the above \mathcal{H}_{F}, D_{F} and J_{F}) is given by

$$
\mathcal{A}_{F}=\left\{\left(\lambda_{R}, \lambda_{L},\left(\begin{array}{cc}
\lambda_{R} & 0 \\
0 & \mu
\end{array}\right)\right):\left(\lambda_{R}, \lambda_{L}, \mu\right) \in \mathbb{C}_{R} \oplus \mathbb{C}_{L} \oplus \mathbb{C}\right\}
$$

Proposition

The perturbed Dirac operator D_{F}^{\prime} is parametrized by three complex scalar fields $\phi, \sigma_{1}, \sigma_{2}$:

$$
D_{F}^{\prime}=\left(\begin{array}{cccc}
0 & \bar{c} \bar{\phi} \otimes 1_{2} & \bar{d} \bar{v} \cdot \bar{v}^{t} & 0 \\
c \phi \otimes 1_{2} & 0 & 0 & \\
d v \cdot v^{t} & 0 & 0 & 1_{2} \otimes c \phi \\
0 & 0 & 1_{2} \otimes \bar{c} \bar{\phi} & 0
\end{array}\right)
$$

with $v=\binom{\sigma_{1}}{\sigma_{2}}$.

Spectral action functional

Spectral action functional gives rise to a scalar potential

$$
\begin{aligned}
V\left(\phi, \sigma_{1}, \sigma_{2}\right)= & -\frac{f_{2}}{\pi^{2}} \Lambda^{2}\left(4|c|^{2}|\phi|^{2}+|d|^{2}\left(\left|\sigma_{1}\right|^{2}+\left|\sigma_{2}\right|^{2}\right)^{2}\right) \\
& +\frac{f_{0}}{4 \pi^{2}}\left(4|c|^{4}|\phi|^{4}+4|c|^{2}|d|^{2}|\phi|^{2}\left(\left|\sigma_{1}\right|^{2}+\left|\sigma_{2}\right|^{2}\right)^{2}\right. \\
& \left.+|d|^{4}\left(\left|\sigma_{1}\right|^{2}+\left|\sigma_{2}\right|^{2}\right)^{4}\right)
\end{aligned}
$$

Spontaneous symmetry breaking to first-order

Proposition
The potential $V\left(\phi=0, \sigma_{1}, \sigma_{2}\right)$ has a local minimum at $\left(\sigma_{1}, \sigma_{2}\right)=(\sqrt{w}, 0)$ with $w=\sqrt{2 f_{2} \wedge^{2} /\left(f_{0}|d|^{2}\right)}$ and this point spontaneously breaks the symmetry group $\mathcal{U}\left(\mathcal{A}_{F}^{\prime}\right)$ to $\mathcal{U}\left(\mathcal{A}_{F}\right)$.

"Usual" SSB

After the fields $\left(\sigma_{1}, \sigma_{2}\right)$ have reached their vevs $(\sqrt{w}, 0)$, there is a remaining potential for the ϕ-field:

$$
V(\phi)=-\frac{2 f_{2}}{\pi^{2}} \Lambda^{2}|c|^{2}|\phi|^{2}+\frac{f_{0}}{\pi^{2}}|c|^{4}|\phi|^{4}
$$

Selecting one of the minima of $V(\phi)$ spontaneously breaks the symmetry further from $\mathcal{U}\left(\mathcal{A}_{F}\right)=U(1)_{R} \times U(1)_{L} \times U(1)$ to $U(1)_{L} \times U(1)$, and generates mass terms for the $L-R$ abelian gauge field.

Beyond the Standard Model

One starts with the algebra

$$
\mathcal{A}_{\mathrm{PS}}:=\mathbb{H}_{R} \oplus \mathbb{H}_{L} \oplus M_{4}(\mathbb{C})
$$

and an off-diagonal Dirac operator

$$
D_{F}:=\left(\begin{array}{ll}
S & T^{*} \\
T & \bar{S}
\end{array}\right)
$$

- The largest 'first-order' subalgebra of $\mathcal{A}_{\mathrm{PS}}$ is $\mathbb{C} \oplus \mathbb{H}_{L} \oplus M_{3}(\mathbb{C})$.
- Symmetry breaking from Pati-Salam $S U(2)_{R} \times S U(2)_{L} \times S U(4)$ to Standard Model $U(1) \times S U(2)_{L} \times S U(3)$.
- Perturbation semigroup of $\mathcal{A}_{\text {PS }}$ gives rise to many new scalar fields, including a real scalar singlet σ which is coupled to the Higgs sector:

$$
V(\sigma, h)=-\frac{4 g_{2}^{2}}{\pi^{2}} f_{2} \Lambda^{2}\left(h^{2}+\sigma^{2}\right)+\frac{1}{24} \lambda_{h} h^{4}+\frac{1}{2} h^{2} \sigma^{2}+\frac{1}{4} \lambda_{\sigma} \sigma^{4}
$$

which allows for $m_{h}=125.5 \mathrm{GeV}$ and $m_{\sigma} \sim 10^{12} \mathrm{GeV}$.

