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Spectral (noncommutative) geometry

Gauge theory from spectral triples

Gauge group, semi-group of inner perturbations
Examples: Yang—Mills, SM, Beyond SM
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Spectral geometry

“Can one hear the shape of a drum?” (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of
wave numbers k in the Helmholtz equation

AMu = k2u

determine the geometry of M?



The disc




Wave numbers on the disc
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Wave numbers on the disc: high frequencies




The square




Wave numbers on the square




Isospectral domains

But, there are isospectral domains in R2:

(Gordon, Webb, Wolpert, 1992)

so the answer to Kac's question is no.



Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such as
dimension n of M:

N(A) = #wave numbers < A
Q,Vol(M)

/\n
n(2m)"

For the disc and square this is confirmed by the parabolic shapes (v/A):
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Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz equation.

@ The Dirac operator Dy, is a ‘square-root’ of the Laplacian, so that its
spectrum consists of the wave numbers k.

@ Exists on any Riemannian spin manifold M.



Spectral action functional

@ Reconsider Weyl's estimate, in a smooth version:
Dy A

()= (3)

for a smooth cutoff function f : R — R.

@ For example, with a Gaussian cutoff function
f(x)=e~

D/2\4/A2 -~ Vol(M)A"

we can use heat asymptotics: Tr e~ @)



Hearing the shape of a drum

@ As said, the geometry of M is not fully determined by spectrum of Dy.

@ This can be improved by considering besides D), also the algebra
C*>°(M) of smooth functions on M, with pointwise product and addition

@ In fact, the distance function on M is equal to

d(x,y) = sup {|f(x)—"f(y)|: gradient f <1}
fecoo (M)
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@ The gradient of f is given by the commutator [Dp, f] = Dyf — fDpy.



Finite spaces

@ Finite space F, discrete topology
F = 1@ 3 I Ne

@ Smooth functions on F are given by N-tuples in CV, and the
corresponding algebra C°°(F) corresponds to diagonal matrices

fF(1) 0 0
0 £(2) 0
0 0 f(:N)

@ The finite Dirac operator is an arbitrary hermitian matrix Dg, giving rise
to a distance function on F as

d(p,q) = feigf(F {If(p) — f(a)l : IOk, f]l| <1}



Example: two-point space

F: 1@ 20

@ Then the algebra of smooth functions

o . A 0
~e={(s »)
@ A finite Dirac operator is given by
0 ¢
Dr = (C 0> ; (C S (C)

@ The distance formula then becomes

-1
doa={y P71

)\1, Ao € (C}



Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a
noncommutative structure at each point of F.

@ Instead of diagonal matrices, we consider block diagonal matrices

a 0 0

0 a - 0
A= . )

0 0 ... an

where the aj, a», ... ay are square matrices of size nq, ny, .
@ Hence we will consider the matrix algebra

o, NN

AF := M (C) @ Moy (C) @ - - - © My (C)

@ A finite Dirac operator is still given by a hermitian matrix.



Example: noncommutative two-point space

The two-point space can be given a noncommutative structure by considering
the algebra Afr of 3 x 3 block diagonal matrices of the following form

A0 0
0 ann a2
0 a1 ax

A finite Dirac operator for this example is given by a hermitian 3 x 3 matrix,
for example

0
Dr = 0
0

o n o
o O 0l



Spectral triples

Noncommutative Riemannian spin manifolds

(A, #H,D)

o Extended to real spectral triple:
o J:H — H real structure (anti-unitary)

such that
2 =41 JD =+DJ

@ Action of A° on H: a°® = Ja*J~! and
[a°P, b] = 0; a,be A
o D is said to satisfy first-order condition if

[[D,a],bP] =0



Spectral invariants

Tr f(D/A) + %u{/?, DY)

@ Invariant under unitaries u € U(.A) acting as
D UDU*;  U=uJu)!

e Gauge group: G(A) := {udut™t: ucU(A)}.

o Compute rhs:
D — D+ u[D, u*] + 0[D, 0*] + o[u[D, u™], i

with & = JuJ~! and blue term vanishes if D satisfies first-order
condition



Semi-group of inner perturbations

>.jaibj=1

op op
Pert( Zaj®b ceA A ZJ J®bop_zjb*®a*op

J
with semi-group law inherited from product in A ® A°P.

o U(A) maps to Pert(.A) by sending u — u® u*°P
@ Pert(A) acts on D:

D+ Y aiDbj=D+ > aD, bj]
J Jj
o For real spectral triples we use the map Pert(A) — Pert(A ® A)
sending A — A® A so that

D~ Z a;éij;Ej

i



Perturbation semigroup for matrix algebras

Proposition

Let Ar be the algebra of block diagonal matrices (fixed size). Then the
perturbation semigroup of Af is

> A(B) =1
Pert{Ar) =~ ZAJ ©Bj € Ar @ Ar > A®B =3B ®A
J

The semigroup law in Pert(AF) is given by the matrix product in A ® Af:

(A® B)(A' @ B') = (AA") ® (BB').




@ The two conditions in the above definition,
D AB) =1 Y A®B=) BoA
J J J

are called normalization and self-adjointness condition, respectively.

@ Let us check that the normalization condition carries over to products,
S aes (z Ao s@) S () (85)
J k Jk
for which indeed

ZAA(BBk ZAA/ By){(Bj)t =1



e o

Example: perturbation semigroup of two-point space

Now Af = C?, the algebra of diagonal 2 x 2 matrices.
In terms of the standard basis of such matrices

o — (10 (00
11—007622—01

we can write an arbitrary element of Pert(C?) as
z1€11 ® €11 + 22611 @ €2 + Z3€22 @ €11 + Z4€22 & €2
Matrix multiplying e11 and e yields for the normalization condition:
z1=1=2z.
The self-adjointness condition reads
p=2z3

leaving only one free complex parameter so that Pert(C?) ~ C.
More generally, Pert(CV) ~ CMN(N=1)/2 with componentwise product.



Example: perturbation semigroup of M,(C)

@ Let us consider a noncommutative example, Ar = M>(C).

e We can identify Ma(C) ® Mz(C) with Ms(C) so that elements in
Pert(M(C) are 4 x 4-matrices satisfying the normalization and
self-adjointness condition. In a suitable basis:

Vi
X1
X4
iX7

Pert(Mz(C)) =

O O o

and one can show that

V2
X2
X5
ixg

iV3
ix3 vi,vo,v3 € R
iXg X1,...X9 €ER
X9

Pert(Ma(C)) ~ R3 x S.

@ More generally (B.Sc. thesis Niels Neumann),

Pert(Mpy(C)) ~ W x S'.



Example: noncommutative two-point space

Consider noncommutative two-point space described by C & M,(C)
It turns out that

Pert(C & My(C)) =~ M,(C) x Pert(My(C))

Only M»(C) C Pert(C & My(C)) acts non-trivially on Df:

The group of unitary block diagonal matrices is now U(1) x U(2) and
an element (\, u) therein acts as

(on) % ()



Example: perturbation semigroup of a manifold
Recall, for any involutive algebra A

>.jaibi=1

Pert(A a ®b0peA®A°p o ¥ o %O
(4) ZJ ij®bp >ojbr®a®

J

@ We can consider functions in the tensor product C*°(M) ® C*°(M) as
functions of two variables, i.e. elements in C*°(M x M).

@ The normalization and self-adjointness condition in Pert(C*>°(M))
translate accordingly and yield

flx,x)=1 }
Pert(C*(M)) =< fe C*(Mx M ’ ——
ey ={re e TN
@ The action of Pert(C>(M)) on the partial derivatives appearing in a
Dirac operator Dy, is given by

B B B
+ 2—f(x,y)

i =: A
0x,, Gxu oy, O+ A

y=x




Physical applications: Yang—Mills theory
On a 4-dimensional background:
o A= C>®(M)® M,(C)
o H =1%(S)® M,(C)
e D=Dy®»l
o J=C® ()

Proposition (Chamseddine-Connes, 1996)
e Tr f(D): pure gravity (including higher-derivatives)
@ The perturbations of D are given by hermitian v*A,,, describing an
su(n)-gauge field on M.
e Gauge group G(A) ~ C>*(M, SU(n))
@ The spectral action of perturbed Dirac operator is given by

I DY~ (.- + —= It F. FHY




Example beyond first-order

Ar =Cr@ CL@® My(C)
He=(CR®CL) ®(C}° aC? (CroCY)

JF= ((1) é) oC (C : complex conjugation),

0 ©®ly g9 0
D_ |c®1l2 0 0
d d0 0 0 Lc
0 0 LLee O

The algebra action of (Ag, Ar, m) € Ar on Hf is given explicitly by

Arlo mt
o
(AR, AL, m) = < ALls . ) , (AR, AL, m) = m Apls )
m )\L12



Proposition

The largest subalgebra Ap C A = Cr & Cp & My(C) for which the
first-order condition holds (for the above Hf, De and Jg) is given by

A
Af = {</\R7)\L7 ( OR Z)) C(AR, AL ) € CR@CL@C}

Proposition

The perturbed Dirac operator D is parametrized by three complex scalar
fields ¢, J1,02.
0 TRl dvvt 0

D/ _ cPp®1o 0 0
F— dv-vit 0 0 1,®co
0 0 L O

with v = (Jl)
02




Spectral action functional
Spectral action functional gives rise to a scalar potential

f
V(,01,02) = —;/\2 (4lcPlgf? + |dIP(jo1? + [o21*)?)

fo
+ g (41et101* + A1cPIdPIoR (2 + o2’

1l 2 + |azw2)4>




Spontaneous symmetry breaking to first-order
Proposition

The potential V(¢ = 0,01,02) has a local minimum at (01, 02) = (v/w,0)
with w = /2HN\2/(fo|d|?) and this point spontaneously breaks the
symmetry group U(Af) to U(AF).




“Usual” SSB

After the fields (o1, 02) have reached their vevs (1/w,0), there is a
remaining potential for the ¢-field:

2f> fo
V() = =5 N|cl*lof* + Slel*lol"

s

Selecting one of the minima of V/(¢) spontaneously breaks the symmetry
further from U(Afr) = U(1)g x U(1) x U(1) to U(1). x U(1), and
generates mass terms for the L — R abelian gauge field.



Beyond the Standard Model
One starts with the algebra

Aps .= Hr @ H; & M4((C)

and an off-diagonal Dirac operator

ST
Dr = <T 5)

@ The largest 'first-order’ subalgebra of Aps is C & H; & M3(C).

e Symmetry breaking from Pati-Salam SU(2)r x SU(2), x SU(4) to
Standard Model U(1) x SU(2), x SU(3).

@ Perturbation semigroup of Apg gives rise to many new scalar fields,
including a real scalar singlet o which is coupled to the Higgs sector:
1
2
which allows for my = 125.5GeV and m, ~ 102GeV.

483 02 . o 1 4 20, 1 4
V(a,h):—?ﬁ/\ (h"+o )+ﬂ)\hh + -h‘o +Z)\Ug



