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E.g. tangent and cotangent bundles of Lie groupoids...

» Representations of Lie groupoids/algebroids (up to homotopy)
Adjoint repres. of Lie groupG «~» TG =G Kx g

» Double structures e.g. in Poisson-Lie theory

Lie theory of double structures; K. Mackenzie '92, '02...
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» If the total algebroid of a double Lie algebroid is integrable,
then its source-simply-connected integration is an
LA-groupoid.
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r = E
1 \
G = M
Examples:
» Ordinary vector bundles...
» Tangent/cotangent of G = M:
TG = TM TG = A%
\ \ 1 1
G = M G = M

> Linear representations (G = M) ~ (E — M):

GXE = E

1 1
G = M
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» VB-groupoid over a point: [ == E (groupoid in vector spaces)

> The core bundle: C = ker(u},l < E)

VB-groupoid comes from linear representation iff C = {0}.

» VB-groupoids < (2-term) representations up to homotopy
(Crainic-Arias Abad, Mehta-Gracia Saz)

» Multiplicative structures
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A VB-algebroid is...
=
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Examples: tangent/cotangent, representations (up to homotopy)...

Role of Poisson geometry via duality:

VB-algebroids correspond to double linear Poisson structures:

(Qg,m) — E
{ {
Cc* - M

Question: Differentiation and integration of VB-structures.
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Consider monoid (R, -), manifold D
Action h: (R,-) ~ D, hy=Id, hy, = hyh,

When is this a vector bundle?

Regular action: for all x € D,

d

Y )\Zoh,\(x) =0 = x = ho(x)

Theorem: Regular actions < Vector bundles

Reformulation of VB concepts...
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Given action h: (R,-) ~ D, we have:

» Embedded submanifold ho(M) — D,
» Submersion hg : D — ho(M),
» Vertical vector bundle over M = hy(D):

VD := ker(dho)|py(D)

» Vertical lift map Vy, : D — V,,D,

d

Vi(x) = Y A:ohA(X)’

which is (R, -)-equivariant.

Theorem: Vertical lift is diffeomorphism iff the action is regular.
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The following holds:

» VB-groupoid is same as regular action (R, ) ~ (I = E) by
Lie groupoid morphisms,

» VB-algebroid is same as regular action (R,-) ~ (2 = E) by
Lie algebroid morphisms.

Integration of VB-structures via Lie's second theorem?

Must consider regularity...
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Lie theory for VB-groupoids/algebroids:

r Vh A
1 Lie
Wn)'
Ar ’ Av,r
Vh/ /
Vi Ar

Remarks:

¢ Integrability hypothesis and obstructions...

o Applications: Representations up to to homotopy (Arias Abad -
Schaetz), multiplicative foliations (Jotz - Ortiz, Hawkins)
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From “VB" to “LA"...

LA-groupoid:
r E
U Y
G M
Double Lie algebroid:
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4 4
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Lie theory?



Dual viewpoint: Lie algebroid/linear Poisson structure duality



Dual viewpoint: Lie algebroid/linear Poisson structure duality

T



Dual viewpoint: Lie algebroid/linear Poisson structure duality

A (A*, )
U !
M M



Dual viewpoint: Lie algebroid/linear Poisson structure duality

(A%, 7)

A
f ) (R.) (A7)
M M TN



Dual viewpoint: Lie algebroid/linear Poisson structure duality

A (A*, )

f ) (R, ) (A% )
M M TN

LA-groupoids:

r = E

4 4
G = M



Dual viewpoint: Lie algebroid/linear Poisson structure duality

A (A*, )

f ) (R.) (A7)
M M TN

LA-groupoids:

r = E (™) = C
! Y 3 \J
G = M G = M



Dual viewpoint: Lie algebroid/linear Poisson structure duality

A (A*, )

f ) (R.) (A7)
M M TN

LA-groupoids:

r = £ (™n) = C*
G = M G = M



Dual viewpoint: Lie algebroid/linear Poisson structure duality

A (A*, )
U !
M M

LA-groupoids:
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Q = E
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Dual viewpoint: Lie algebroid/linear Poisson structure duality

A (A*, )
U !
M M

LA-groupoids:

r= e (™ =
4 4 3
G = M G

Double Lie algebroids:

Q = E (Qy,m) =
\ \ 3
A= M A =

<0

SR

(R’ ) ? (A*7 71')

h
T

(R,) ~ (T = C*,7)

(R,:) ~ (23 = C*,7)
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By duality: Lie theory for LA-groupoids and double Lie algebroids
is equivalent to Lie theory for regular actions on Poisson groupoids
and Lie bialgebroids:

R, )~ (T=Ex) & R )~(Q=E ).

Result follows from previous theorem for VB-structures and
Poisson groupoid/Lie bialgebroid correspondence...

Still missing:

From LA- to double Lie groupoids...

From LA- to multiplicative Courant algebroids... (Li-Bland)



Thank you



