Lie theory of vector bundles, Poisson geometry, and double structures

Henrique Bursztyn, IMPA
(joint with A. Cabrera and M. del Hoyo)

Bayrischzell Workshop 2015
\{Manifolds\} \hookrightarrow \{Lie groupoids $\}, \quad G \rightrightarrows M$
\{Manifolds\} \hookrightarrow \{Lie groupoids $\}, \quad G \rightrightarrows M$

\{Manifolds\} \hookrightarrow \{Lie groupoids\}, $G \rightrightarrows M$
$\underset{\text { \{Lie algebroids }\},}{\uparrow} \quad A \Rightarrow M$

Geometry in this context, e.g. vector bundles (and more...).

$$
\begin{aligned}
\{\text { Manifolds }\} \hookrightarrow & \text { \{Lie groupoids }\}, \quad G \rightrightarrows M \\
\downarrow & \\
& \{\text { Lie algebroids }\},
\end{aligned} \quad A \Rightarrow M
$$

Geometry in this context, e.g. vector bundles (and more...).
Outline:

1. Motivation, main results
2. VB-groupoids
3. VB-algebroids
4. Reformulations
5. Proof of main result
6. Application to double structures

1. Motivation

- Vector bundles over singular spaces (categorified)

1. Motivation

- Vector bundles over singular spaces (categorified)

$$
\begin{gathered}
(\Gamma \rightrightarrows E) \\
(G \stackrel{\downarrow}{\rightrightarrows} M)
\end{gathered}
$$

1. Motivation

- Vector bundles over singular spaces (categorified)

$$
\begin{gathered}
(\Gamma \rightrightarrows E) \\
\downarrow \\
(G \stackrel{\rightrightarrows}{\rightrightarrows})
\end{gathered}
$$

E.g. tangent and cotangent bundles of Lie groupoids...

1. Motivation

- Vector bundles over singular spaces (categorified)

$$
\begin{gathered}
(\Gamma \rightrightarrows E) \\
\downarrow \\
(G \stackrel{\rightrightarrows}{\rightrightarrows} M)
\end{gathered}
$$

E.g. tangent and cotangent bundles of Lie groupoids...

- Representations of Lie groupoids/algebroids (up to homotopy)

1. Motivation

- Vector bundles over singular spaces (categorified)

$$
\begin{gathered}
(\Gamma \rightrightarrows E) \\
\downarrow \\
(G \stackrel{\rightrightarrows}{\rightrightarrows} M)
\end{gathered}
$$

E.g. tangent and cotangent bundles of Lie groupoids...

- Representations of Lie groupoids/algebroids (up to homotopy)

$$
\text { Adjoint repres. of Lie group } G \leadsto T G=G \ltimes \mathfrak{g}
$$

1. Motivation

- Vector bundles over singular spaces (categorified)

$$
\begin{gathered}
(\Gamma \rightrightarrows E) \\
\downarrow \\
(G \stackrel{\rightrightarrows}{\rightrightarrows} M)
\end{gathered}
$$

E.g. tangent and cotangent bundles of Lie groupoids...

- Representations of Lie groupoids/algebroids (up to homotopy)

$$
\text { Adjoint repres. of Lie group } G \leadsto T G=G \ltimes \mathfrak{g}
$$

- Double structures e.g. in Poisson-Lie theory

1. Motivation

- Vector bundles over singular spaces (categorified)

$$
\begin{gathered}
(\Gamma \rightrightarrows E) \\
\downarrow \\
(G \stackrel{\rightrightarrows}{\rightrightarrows})
\end{gathered}
$$

E.g. tangent and cotangent bundles of Lie groupoids...

- Representations of Lie groupoids/algebroids (up to homotopy)

$$
\text { Adjoint repres. of Lie group } G \leadsto T G=G \ltimes \mathfrak{g}
$$

- Double structures e.g. in Poisson-Lie theory

Lie theory of double structures; K. Mackenzie '92, '02...

Theorem

- If the total algebroid of a $V B$-algebroid is integrable, then its source-simply-connected integration is a VB-groupoid.

Theorem

- If the total algebroid of a VB-algebroid is integrable, then its source-simply-connected integration is a VB-groupoid.
- If the total algebroid of a double Lie algebroid is integrable, then its source-simply-connected integration is an LA-groupoid.

2. VB-groupoids

A VB groupoid is...

2. VB-groupoids

A VB groupoid is...

2. VB-groupoids

A VB groupoid is...

Examples:

- Ordinary vector bundles...

2. VB-groupoids

A VB groupoid is...

Examples:

- Ordinary vector bundles...
- Tangent/cotangent of $G \rightrightarrows M$:

$$
\begin{array}{cccccc}
T G & \rightrightarrows & T M & T^{*} G & \rightrightarrows & A_{G}^{*} \\
\downarrow & & \downarrow & \downarrow & & \downarrow \\
G & \rightrightarrows & M & G & \rightrightarrows & M
\end{array}
$$

2. VB-groupoids

A VB groupoid is...

Examples:

- Ordinary vector bundles...
- Tangent/cotangent of $G \rightrightarrows M$:

$$
\begin{array}{cccccc}
T G & \rightrightarrows & T M & T^{*} G & \rightrightarrows & A_{G}^{*} \\
\downarrow & & \downarrow & \downarrow & & \downarrow \\
G & \rightrightarrows & M & G & \rightrightarrows & M
\end{array}
$$

- Linear representations $(G \rightrightarrows M) \curvearrowright(E \rightarrow M)$:

2. VB-groupoids

A VB groupoid is...

Examples:

- Ordinary vector bundles...
- Tangent/cotangent of $G \rightrightarrows M$:

$$
\begin{array}{cccccc}
T G & \rightrightarrows & T M & T^{*} G & \rightrightarrows & A_{G}^{*} \\
\downarrow & & \downarrow & \downarrow & & \downarrow \\
G & \rightrightarrows & M & G & \rightrightarrows & M
\end{array}
$$

- Linear representations $(G \rightrightarrows M) \curvearrowright(E \rightarrow M)$:

Remarks:

- VB-groupoid over a point: $\Gamma \rightrightarrows E$ (groupoid in vector spaces)

Remarks:

- VB-groupoid over a point: $\Gamma \rightrightarrows E$ (groupoid in vector spaces)
- The core bundle: $C=\operatorname{ker}\left(u_{M}^{*} \Gamma \xrightarrow{t} E\right)$

Remarks:

- VB-groupoid over a point: $\Gamma \rightrightarrows E$ (groupoid in vector spaces)
- The core bundle: $C=\operatorname{ker}\left(u_{M}^{*} \Gamma \xrightarrow{t} E\right)$

VB-groupoid comes from linear representation iff $C=\{0\}$.

Remarks:

- VB-groupoid over a point: $\Gamma \rightrightarrows E$ (groupoid in vector spaces)
- The core bundle: $C=\operatorname{ker}\left(u_{M}^{*} \Gamma \xrightarrow{t} E\right)$

VB-groupoid comes from linear representation iff $C=\{0\}$.

- VB-groupoids \Leftrightarrow (2-term) representations up to homotopy (Crainic-Arias Abad, Mehta-Gracia Saz)

Remarks:

- VB-groupoid over a point: $\ulcorner\rightrightarrows E$ (groupoid in vector spaces)
- The core bundle: $C=\operatorname{ker}\left(u_{M}^{*} \Gamma \xrightarrow{t} E\right)$

VB-groupoid comes from linear representation iff $C=\{0\}$.

- VB-groupoids \Leftrightarrow (2-term) representations up to homotopy (Crainic-Arias Abad, Mehta-Gracia Saz)
- Multiplicative structures

3. VB-algebroids

A VB-algebroid is...

$$
\begin{array}{lll}
\Omega & \Rightarrow & E \\
\downarrow & & \downarrow \\
A & \Rightarrow & M
\end{array}
$$

3. VB-algebroids

A VB-algebroid is...

$$
\begin{aligned}
& \Omega \Rightarrow E \\
& \downarrow \\
& A
\end{aligned} \Rightarrow \downarrow \begin{aligned}
& \\
& \downarrow
\end{aligned}
$$

Examples: tangent/cotangent, representations (up to homotopy)...

3. VB-algebroids

A VB-algebroid is...

Examples: tangent/cotangent, representations (up to homotopy)...
Role of Poisson geometry via duality:
VB-algebroids correspond to double linear Poisson structures:

3. VB-algebroids

A VB-algebroid is...

Examples: tangent/cotangent, representations (up to homotopy)...
Role of Poisson geometry via duality:
VB-algebroids correspond to double linear Poisson structures:

Question: Differentiation and integration of VB-structures.

4. Reformulations

Revisiting vector bundles (Grabowski-Rotkiewicz '04)...

4. Reformulations

Revisiting vector bundles (Grabowski-Rotkiewicz '04)...
Consider monoid ($\mathbb{R}, \cdot \cdot$, manifold D

4. Reformulations

Revisiting vector bundles (Grabowski-Rotkiewicz '04)...
Consider monoid ($\mathbb{R}, \cdot \cdot$, manifold D
Action $h:(\mathbb{R}, \cdot) \curvearrowright D, \quad h_{1}=I d, \quad h_{\lambda \mu}=h_{\lambda} h_{\mu}$

4. Reformulations

Revisiting vector bundles (Grabowski-Rotkiewicz '04)...
Consider monoid ($\mathbb{R}, \cdot \cdot$, manifold D
Action $h:(\mathbb{R}, \cdot) \curvearrowright D, \quad h_{1}=I d, \quad h_{\lambda \mu}=h_{\lambda} h_{\mu}$
When is this a vector bundle?

4. Reformulations

Revisiting vector bundles (Grabowski-Rotkiewicz '04)...
Consider monoid ($\mathbb{R}, \cdot \cdot$, manifold D
Action $h:(\mathbb{R}, \cdot) \curvearrowright D, \quad h_{1}=l d, \quad h_{\lambda \mu}=h_{\lambda} h_{\mu}$
When is this a vector bundle?
Regular action: for all $x \in D$,

$$
\left.\frac{d}{d \lambda}\right|_{\lambda=0} h_{\lambda}(x)=0 \Longrightarrow x=h_{0}(x)
$$

4. Reformulations

Revisiting vector bundles (Grabowski-Rotkiewicz '04)...
Consider monoid ($\mathbb{R}, \cdot \cdot$, manifold D
Action $h:(\mathbb{R}, \cdot) \curvearrowright D, \quad h_{1}=l d, \quad h_{\lambda \mu}=h_{\lambda} h_{\mu}$
When is this a vector bundle?
Regular action: for all $x \in D$,

$$
\left.\frac{d}{d \lambda}\right|_{\lambda=0} h_{\lambda}(x)=0 \Longrightarrow x=h_{0}(x)
$$

Theorem: Regular actions \Leftrightarrow Vector bundles

4. Reformulations

Revisiting vector bundles (Grabowski-Rotkiewicz '04)...
Consider monoid ($\mathbb{R}, \cdot \cdot$, manifold D
Action $h:(\mathbb{R}, \cdot) \curvearrowright D, \quad h_{1}=l d, \quad h_{\lambda \mu}=h_{\lambda} h_{\mu}$
When is this a vector bundle?
Regular action: for all $x \in D$,

$$
\left.\frac{d}{d \lambda}\right|_{\lambda=0} h_{\lambda}(x)=0 \Longrightarrow x=h_{0}(x)
$$

Theorem: Regular actions \Leftrightarrow Vector bundles
Reformulation of VB concepts...

What is the explanation?

What is the explanation?

Given action $h:(\mathbb{R}, \cdot) \curvearrowright D$, we have:

What is the explanation?

Given action $h:(\mathbb{R}, \cdot) \curvearrowright D$, we have:

- Embedded submanifold $h_{0}(M) \hookrightarrow D$,
- Submersion $h_{0}: D \rightarrow h_{0}(M)$,

What is the explanation?

Given action $h:(\mathbb{R}, \cdot) \curvearrowright D$, we have:

- Embedded submanifold $h_{0}(M) \hookrightarrow D$,
- Submersion $h_{0}: D \rightarrow h_{0}(M)$,
- Vertical vector bundle over $M=h_{0}(D)$:

$$
V_{h} D:=\left.\operatorname{ker}\left(d h_{0}\right)\right|_{h_{0}(D)}
$$

What is the explanation?

Given action $h:(\mathbb{R}, \cdot) \curvearrowright D$, we have:

- Embedded submanifold $h_{0}(M) \hookrightarrow D$,
- Submersion $h_{0}: D \rightarrow h_{0}(M)$,
- Vertical vector bundle over $M=h_{0}(D)$:

$$
V_{h} D:=\left.\operatorname{ker}\left(d h_{0}\right)\right|_{h_{0}(D)}
$$

- Vertical lift map $\mathcal{V}_{h}: D \rightarrow V_{h} D$,

$$
\mathcal{V}_{h}(x)=\left.\frac{d}{d \lambda}\right|_{\lambda=0} h_{\lambda}(x),
$$

which is (\mathbb{R}, \cdot)-equivariant.

What is the explanation?

Given action $h:(\mathbb{R}, \cdot) \curvearrowright D$, we have:

- Embedded submanifold $h_{0}(M) \hookrightarrow D$,
- Submersion $h_{0}: D \rightarrow h_{0}(M)$,
- Vertical vector bundle over $M=h_{0}(D)$:

$$
V_{h} D:=\left.\operatorname{ker}\left(d h_{0}\right)\right|_{h_{0}(D)}
$$

- Vertical lift map $\mathcal{V}_{h}: D \rightarrow V_{h} D$,

$$
\mathcal{V}_{h}(x)=\left.\frac{d}{d \lambda}\right|_{\lambda=0} h_{\lambda}(x),
$$

which is (\mathbb{R}, \cdot)-equivariant.
Theorem: Vertical lift is diffeomorphism iff the action is regular.

Revisiting VB-groupoids and VB-algebroids:

The following holds:

Revisiting VB-groupoids and VB-algebroids:

The following holds:

- VB-groupoid is same as regular action $(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E)$ by Lie groupoid morphisms,
- VB-algebroid is same as regular action $(\mathbb{R}, \cdot) \curvearrowright(\Omega \Rightarrow E)$ by Lie algebroid morphisms.

Revisiting VB-groupoids and VB-algebroids:

The following holds:

- VB-groupoid is same as regular action $(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E)$ by Lie groupoid morphisms,
- VB-algebroid is same as regular action $(\mathbb{R}, \cdot) \curvearrowright(\Omega \Rightarrow E)$ by Lie algebroid morphisms.

Integration of VB-structures via Lie's second theorem?

Revisiting VB-groupoids and VB-algebroids:

The following holds:

- VB-groupoid is same as regular action $(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E)$ by Lie groupoid morphisms,
- VB-algebroid is same as regular action $(\mathbb{R}, \cdot) \curvearrowright(\Omega \Rightarrow E)$ by Lie algebroid morphisms.

Integration of VB-structures via Lie's second theorem?
Must consider regularity...

More complete viewpoint...

More complete viewpoint...

Theorem
Consider action $h:(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E)$ by groupoid morphisms.
Then

- $V_{h} \Gamma \rightrightarrows V_{h} E$ is VB-groupoid over $h_{0}(\Gamma) \rightrightarrows h_{0}(E)$,
- $\mathcal{V}_{h}: \Gamma \rightarrow V_{h} \Gamma$ is groupoid morphism.

More complete viewpoint...

Theorem

Consider action $h:(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E)$ by groupoid morphisms.
Then

- $V_{h} \Gamma \rightrightarrows V_{h} E$ is VB-groupoid over $h_{0}(\Gamma) \rightrightarrows h_{0}(E)$,
- $\mathcal{V}_{h}: \Gamma \rightarrow V_{h} \Gamma$ is groupoid morphism.
$\Rightarrow \mathcal{V}_{h}$ is equivariant groupoid isomorphism iff action is regular

More complete viewpoint...

Theorem

Consider action $h:(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E)$ by groupoid morphisms.
Then

- $V_{h} \Gamma \rightrightarrows V_{h} E$ is VB-groupoid over $h_{0}(\Gamma) \rightrightarrows h_{0}(E)$,
- $\mathcal{V}_{h}: \Gamma \rightarrow V_{h} \Gamma$ is groupoid morphism.
$\Rightarrow \mathcal{V}_{h}$ is equivariant groupoid isomorphism iff action is regular

Theorem

Consider action $h:(\mathbb{R}, \cdot) \curvearrowright(\Omega \Rightarrow E)$ by algebroid morphisms. Then

- $V_{h} \Omega \rightrightarrows V_{h} E$ is VB-algebroid over $h_{0}(\Omega) \Rightarrow h_{0}(E)$,
- $\mathcal{V}_{h}: \Omega \rightarrow V_{h} \Omega$ is algebroid morphism.

More complete viewpoint...

Theorem

Consider action $h:(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E)$ by groupoid morphisms.
Then

- $V_{h} \Gamma \rightrightarrows V_{h} E$ is VB-groupoid over $h_{0}(\Gamma) \rightrightarrows h_{0}(E)$,
- $\mathcal{V}_{h}: \Gamma \rightarrow V_{h} \Gamma$ is groupoid morphism.
$\Rightarrow \mathcal{V}_{h}$ is equivariant groupoid isomorphism iff action is regular

Theorem

Consider action $h:(\mathbb{R}, \cdot) \curvearrowright(\Omega \Rightarrow E)$ by algebroid morphisms. Then

- $V_{h} \Omega \rightrightarrows V_{h} E$ is VB-algebroid over $h_{0}(\Omega) \Rightarrow h_{0}(E)$,
- $\mathcal{V}_{h}: \Omega \rightarrow V_{h} \Omega$ is algebroid morphism.
$\Rightarrow \mathcal{V}_{h}$ is equivariant algebroid isomorphism iff action is regular

4. Proof of the main result (VB-structures)

Lie theory for VB-groupoids/algebroids:

4. Proof of the main result (VB-structures)

Lie theory for VB-groupoids/algebroids:

$$
\Gamma \xrightarrow{\mathcal{V}_{h}} V_{h} \Gamma
$$

4. Proof of the main result (VB-structures)

Lie theory for VB-groupoids/algebroids:

$$
\Gamma \xrightarrow{\downarrow \text { Lie }} \underset{V_{h}}{ } V_{h} \Gamma
$$

4. Proof of the main result (VB-structures)

Lie theory for VB-groupoids/algebroids:

$$
\Gamma \xrightarrow{\mathcal{V}_{h}} V_{h} \Gamma
$$

4. Proof of the main result (VB-structures)

Lie theory for VB-groupoids/algebroids:

$$
\Gamma \xrightarrow{\mathcal{V}_{h}} V_{h} \Gamma
$$

Remarks:
\diamond Integrability hypothesis and obstructions...

4. Proof of the main result (VB-structures)

Lie theory for VB-groupoids/algebroids:

Remarks:
\diamond Integrability hypothesis and obstructions...
\diamond Applications: Representations up to to homotopy (Arias Abad Schaetz), multiplicative foliations (Jotz - Ortiz, Hawkins)

5. Application to double structures (part 2 of main result)

From "VB" to "LA"...

5. Application to double structures (part 2 of main result)

From "VB" to "LA"...
LA-groupoid:

5. Application to double structures (part 2 of main result)

From "VB" to "LA"...
LA-groupoid:

Double Lie algebroid:

$$
\begin{array}{lll}
\Omega & \Rightarrow & E \\
\Downarrow & & \Downarrow \\
A & \Rightarrow & M
\end{array}
$$

5. Application to double structures (part 2 of main result)

From "VB" to "LA"...
LA-groupoid:

Double Lie algebroid:

Lie theory?

Dual viewpoint: Lie algebroid/linear Poisson structure duality

Dual viewpoint: Lie algebroid/linear Poisson structure duality

```
A
\Downarrow
M
```


Dual viewpoint: Lie algebroid/linear Poisson structure duality

Dual viewpoint: Lie algebroid/linear Poisson structure duality

Dual viewpoint: Lie algebroid/linear Poisson structure duality

LA-groupoids:

$$
\begin{array}{ccc}
\Gamma & \rightrightarrows & E \\
\Downarrow & & \Downarrow \\
G & \rightrightarrows & M
\end{array}
$$

Dual viewpoint: Lie algebroid/linear Poisson structure duality

LA-groupoids:

$$
\begin{array}{cccccc}
\Gamma & \rightrightarrows & E & \left(\Gamma^{*}, \pi\right) & \rightrightarrows & C^{*} \\
\Downarrow & & \Downarrow & \downarrow & & \downarrow \\
G & \rightrightarrows & M & G & \rightrightarrows & M
\end{array}
$$

Dual viewpoint: Lie algebroid/linear Poisson structure duality

$$
(\mathbb{R}, \cdot) \underset{\substack{h \\ \pi \mapsto \lambda \pi}}{\stackrel{h}{\curvearrowright}\left(A^{*}, \pi\right)}
$$

LA-groupoids:

$$
\begin{array}{ccccccc}
\Gamma & \rightrightarrows & E & \left(\Gamma^{*}, \pi\right) & \rightrightarrows & C^{*} & \\
\Downarrow & & \Downarrow & \downarrow & & \downarrow & (\mathbb{R}, \cdot) \curvearrowright\left(\Gamma \rightrightarrows C^{*}, \pi\right) \\
G & \rightrightarrows & M & G & \rightrightarrows & M &
\end{array}
$$

Dual viewpoint: Lie algebroid/linear Poisson structure duality

LA-groupoids:

$$
\begin{array}{ccccccc}
\Gamma & \rightrightarrows & E & \left(\Gamma^{*}, \pi\right) & \rightrightarrows & C^{*} & \\
\Downarrow & & \Downarrow & \downarrow & & \downarrow & (\mathbb{R}, \cdot) \curvearrowright\left(\Gamma \rightrightarrows C^{*}, \pi\right) \\
G & \rightrightarrows & M & G & \rightrightarrows & M &
\end{array}
$$

Double Lie algebroids:

Dual viewpoint: Lie algebroid/linear Poisson structure duality

$$
(\mathbb{R}, \cdot) \stackrel{h}{\substack{h \rightarrow \\ \pi}}\left(A^{*}, \pi\right)
$$

LA-groupoids:

$(\mathbb{R}, \cdot) \curvearrowright\left(\Gamma \rightrightarrows C^{*}, \pi\right)$

Double Lie algebroids:

Dual viewpoint: Lie algebroid/linear Poisson structure duality

LA-groupoids:

$(\mathbb{R}, \cdot) \curvearrowright\left(\Gamma \rightrightarrows C^{*}, \pi\right)$

Double Lie algebroids:

$$
\begin{array}{cccccc}
\Omega \Rightarrow & E & \left(\Omega_{A}^{*}, \pi\right) & \Rightarrow & C^{*} & \\
\Downarrow & \Downarrow & \downarrow & & \downarrow & (\mathbb{R}, \cdot) \curvearrowright\left(\Omega_{A}^{*} \Rightarrow C^{*}, \pi\right) \\
A \Rightarrow & M & A & \Rightarrow & M &
\end{array}
$$

By duality: Lie theory for LA-groupoids and double Lie algebroids is equivalent to Lie theory for regular actions on Poisson groupoids and Lie bialgebroids:

$$
(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E, \pi) \quad \stackrel{\text { Lie }}{\substack{m}} \quad(\mathbb{R}, \cdot) \curvearrowright\left(\Omega \Rightarrow E, \pi^{\prime}\right)
$$

By duality: Lie theory for LA-groupoids and double Lie algebroids is equivalent to Lie theory for regular actions on Poisson groupoids and Lie bialgebroids:

$$
(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E, \pi) \quad \text { Lie } \quad(\mathbb{R}, \cdot) \curvearrowright\left(\Omega \Rightarrow E, \pi^{\prime}\right) .
$$

Result follows from previous theorem for VB-structures and Poisson groupoid/Lie bialgebroid correspondence...

By duality: Lie theory for LA-groupoids and double Lie algebroids is equivalent to Lie theory for regular actions on Poisson groupoids and Lie bialgebroids:

$$
(\mathbb{R}, \cdot) \curvearrowright(\Gamma \rightrightarrows E, \pi) \quad \stackrel{\text { Lie }}{\leadsto} \quad(\mathbb{R}, \cdot) \curvearrowright\left(\Omega \Rightarrow E, \pi^{\prime}\right) .
$$

Result follows from previous theorem for VB-structures and Poisson groupoid/Lie bialgebroid correspondence...

Still missing:
From LA- to double Lie groupoids..
From LA- to multiplicative Courant algebroids... (Li-Bland)

Thank you

