Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

> ¹ Leibniz Universität Hannover ² University of Pennsylvania

> > 30.05.2015 Bayrischzell 2015

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlook

Contents

Motivation: Closed string theory
Two questions
Parity change and Lie algebroids
Legendre transform and Drinfel'd double
Application to double field theory
Result 1
Result 2
Formal star products
Star commutators
Result 3
Outlook

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation: Closed string theory

Canonical momenta and winding

• Sigma model
$$X : \Sigma \rightarrow M = T^d$$

$$S = \int_{\Sigma} h^{lphaeta} \partial_{lpha} X^i \partial_{eta} X^j G_{ij} \, d\mu_{\Sigma} + \int_{\Sigma} X^* B \; ,$$

where $h \in \Gamma(\otimes^2 T^*\Sigma)$, $G \in \Gamma(\otimes^2 TM)$, $B \in \Gamma(\wedge^2 T^*M)$.

Classical solutions to e.o.m. (take *closed* string Σ = ℝ × S¹)

$$X_{R}^{i} = x_{0R}^{i} + \alpha_{0}^{i}(\tau - \sigma) + i \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{i} e^{-in(\tau - \sigma)} , \quad X_{L}^{i} = \dots ,$$

$$\alpha_0^i = \frac{1}{\sqrt{2}} G^{ij} \left(p_j - (G_{jk} + B_{jk}) w^k \right),$$

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result

Result 2

ormal star products

Star commutators

Result 3

Outlook

• p_k : Canonical momentum zero modes • w^k : Winding zero modes, $w^k := \frac{1}{2\pi} \int_0^{2\pi} \partial_\sigma X^k d\sigma$.

Motivation: Closed string theory

Two sets of differential operators Siegel, Tseytlin, Hull, Zwiebach, Kugo, Hohm, Blumenhagen, Lüst, Hassler

• Two sets of momenta in $\alpha_0^i \rightarrow \text{differential operators:}$

$$p_k \simeq \frac{1}{i} \partial_k , \quad w^k \simeq \frac{1}{i} \tilde{\partial}^k$$

"Level matching condition" in string theory:

$$\partial_k \phi \, \tilde{\partial}^k \psi + \tilde{\partial}^k \phi \, \partial_k \psi = \mathbf{0} \; ,$$

for all elements ϕ,ψ of the algebra of observables.

Two different interpretations of observables $\phi \in C^{\infty}(M)$:

- ► $d_{dR}\phi = \partial_k \phi \, dx^k + \tilde{\partial}^k \phi \, d\tilde{x}_k$: Double configuration space, algebra of observables on it: "Double field theory".
- ► Take Lie bialgebroid (A, A^*) and $d_A \phi = \partial_k \phi e^k$, $d_{A^*} \phi = \partial_k^* \phi e_k^*$. Make this precise and determine its relation to physics

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Motivation: Generalized geometry

A word about notation

Hitchin, Gualtieri

• O(d, d)-transformations: $A \in Mat(d, d)$,

$$A\eta A^t = \eta$$
, $\eta_{MN} = \begin{pmatrix} 0 & \mathrm{id} \\ \mathrm{id} & 0 \end{pmatrix}$

Generalized vectors:

$$V = X + \xi, W = Y + \zeta \in \Gamma(TM \oplus T^*M).$$

Component notation (fundamental rep of O(d, d))

$$V^M = (V^m(x), V_m(x)) \text{ and } \partial^M = (\tilde{\partial}^m, \partial_m)$$

Bilinear pairing:

$$\langle V, W \rangle = \iota_Y \xi + \iota_X \zeta$$
 i.e. $V^M W_M = V^k W_k + V_k W^k$.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlook

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation: C for Courant?

The C-bracket in double field theory

Hull, Zwiebach, arXiv: 0908.1792

Double configuration space approach $\rightarrow:$ action principle + gauge symmetry. Commutator of gauge trafos: C-bracket

$$\left([V, W]_{C} \right)^{M} = V^{K} \partial_{K} W^{M} - W^{K} \partial_{K} V^{M} - \frac{1}{2} \left(V^{K} \partial^{M} W_{K} - W^{K} \partial^{M} V_{K} \right).$$

$$(1)$$

Observation for $V = X + \xi$, $W = Y + \zeta \in \Gamma(TM \oplus T^*M)$:

• $\tilde{\partial}^k = 0$: C-bracket reduces to Courant bracket.

 $[V,W]_C = [X,Y]_L + L_X\zeta - L_Y\xi + \frac{1}{2}d_{dR}(\iota_Y\xi - \iota_X\zeta).$

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlool

First order α' -deformation Siegel, Hohm, Zwiebach

Result from string theory/double field theory: Deformation of the pairing \langle, \rangle and the C-bracket [,]_C:

$$\langle V, W \rangle_{\alpha'} = \langle V, W \rangle - \alpha' \partial_P V^Q \partial_Q W^P ,$$
 (2)

$$[V,W]_{\alpha'}^{\kappa} = [V,W]_{C}^{\kappa} - \alpha' \left(\partial^{\kappa} \partial_{Q} V^{P} \partial_{P} W^{Q} - V \leftrightarrow W \right).$$
(3)

Remember the notation:

$$\begin{split} \langle V, W \rangle_{\alpha'} &= V^k W_k + V_k W^k - \alpha' \left(\partial_m V^n \partial_n W^m + \partial_m V_n \tilde{\partial}^n W^m \right. \\ &+ \tilde{\partial}^m V^n \partial_n W_m + \tilde{\partial}^m V_n \tilde{\partial}^n W_m \Big) \,. \end{split}$$

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlook

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Two questions

- Is it possible to understand the objects ⟨, ⟩, Õ^k and [,]_C using Poisson brackets on the cotangent bundle of an appropriate space?
- ► Can we reproduce the α'-deformations of the last slide by using the lowest orders of a Moyal-Weyl deformation?

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie Ilgebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result

Result 2

ormal star products

Star commutators

Result 3

Outlool

Lie algebroids and parity change

Mackenzie, Xu, Weinstein, Liu, Roytenberg, Voronov

Definition

A vector bundle $A \rightarrow M$ is called Lie algebroid if there exists a homological vector field d_A on the supermanifold ΠA , i.e. $[d_A, d_A] = 0$.

Standard examples:

• $\underline{A = TM}$, basis of sections e_i , $[e_i, e_j]_A = f_{ij}^k e_k$ label coordinates on ΠA by (x^i, ξ^i) , then

$$d_A = a^i_j(x)\xi^j\partial_i - rac{1}{2}f^k_{ij}(x)\xi^i\xi^jrac{\partial}{\partial\xi^k} \; .$$

•
$$\underline{A^* = T^*M}$$
, basis e^i , $[e^i, e^j]_{A^*} = Q_k^{ij}e^k$,
label coordinates on ΠA^* by (x^i, θ_i) , then

$$d_{A^*} = a^{ij}(x) heta_i\partial_j - rac{1}{2}Q_k^{\,\,ij}(x) heta_i heta_jrac{\partial}{\partial heta_k}\,,$$

The pair (A, A^*) is an example of a *Lie bialgebroid*.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Legendre transform and Drinfel'd double

Roytenberg, arXiv:math/9910078

On cotangent bundles: $T^*\Pi A$, $T^*\Pi A^*$,

$$d_A
ightarrow h_{d_A} \in C^\infty(T^* \Pi A), \quad d_{A^*}
ightarrow h_{d_{A^*}} \in C^\infty(T^* \Pi A^*),$$

Relation between the two bundles: Legendre transform:

$$\begin{split} L: \, T^* \Pi A \to \, T^* \Pi A^* \, , \, \, L(x^i, \xi^j, x^*_i, \xi^*_j) &= (x^i, \xi^*_j, x^*_i, \xi^j) \, . \\ \text{Define:} \quad \mu := \, h_{d_A} + L^* \, h_{d_{A^*}} \, . \end{split}$$

 $T^*\Pi A$: Can. graded Poisson br: $\{x^j, x_i^*\} = \delta_i^j, \{\xi^j, \xi_i^*\} = \delta_i^j$.

Theorem

A pair of Lie algebroids (A, A^{*}) is a Lie bialgebroid iff $\{\mu, \mu\} = 0$. Thus the following definition is justified:

Definition

The Drinfel'd double of a Lie bialgebroid (A, A^*) is given by $T^*\Pi A$ together with the homological vector field $\{\mu, \cdot\}$.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

```
Application to double field theory
```

Result

Result 2

ormal star products

Star commutators

Result 3

Outlool

Application to double field theory

Deser, Stasheff, arXiv:1406.3601

Two sets of momenta:

$$h_{d_{A}} = \xi^{i} \left(a_{i}^{j} x_{j}^{*} - \frac{1}{2} f_{ij}^{k} \xi^{j} \xi_{k}^{*} \right) =: \xi^{i} p_{i} ,$$

$$L^{*} h_{d_{A^{*}}} = \xi^{*}_{i} \left(a^{ij} x_{j}^{*} + Q_{k}^{ij} \xi^{k} \xi_{j}^{*} \right) =: \xi^{*}_{i} \tilde{p}^{i} .$$

Thus, we get two derivative operators for $f \in C^{\infty}(M)$, seen as $f \in C^{\infty}(T^* \Pi A)$:

$$\partial_i f := \{ \mathbf{p}_i, f \}, \quad \tilde{\partial}^i f := \{ \tilde{\mathbf{p}}^i, f \}, \tag{4}$$

More general: Lift of a generalized vector field:

$$V^m \partial_m + V_m dx^m \rightarrow V^m(x) \xi_m^* + V_m(x) \xi^m \in \mathcal{C}^\infty(T^* \Pi A)$$
.

Now, what is the C-bracket and the strong constraint?

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result

Result 2

ormal star products

Star commutators

Result 3

Outlool

Result 1

Deser, Stasheff, arXiv:1406.3601

Theorem

Let $V^m e_m + V_m e^m$ and $W^m e_m + W_m e^m$ be generalized vectors with corresponding lifts to $T^* \prod A$ given by $V = V^m \xi_m^* + V_m \xi^m$ and $W = W^m \xi_m^* + W_m \xi^m$. In addition let the operation \circ be defined by:

$$V \circ W = \left\{ \{\xi^i p_i + \xi^*_i \tilde{p}^i, V\}, W \right\}$$

Then the C-bracket of V and W is given by

$$[V,W]_{C} = \frac{1}{2} \Big(V \circ W - W \circ V \Big) .$$
 (5)

Thus, the C-bracket can be seen as a Courant bracket, written in a form appropriate to DFT.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products Star commutators

Result 3

Outlool

Result 2

Deser, Stasheff, arXiv:1406.3601

Theorem

Let $\phi(x, \tilde{x}), \psi(x, \tilde{x})$ be two double scalar fields and $D = \{\mu, \cdot\}$ the homological vector field on $T^* \Pi A$. Then we have

$$0 = \{ D^2 \phi, \psi \} = \partial_i \phi \tilde{\partial}^i \psi + \tilde{\partial}^i \phi \partial_i \psi .$$
 (6)

Thus, the strong constraint is a consequence of the condition on $T^*\Pi A$ being the Drinfel'd double of a Lie bialgebroid. Finally, it is trivial to see that $\langle V, W \rangle = \{V, W\}$.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Formal star products

Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer, Gerstenhaber

Definition

Let (M, π) be a Poisson manifold and $f, g \in C^{\infty}(M)$. A formal star product \star is a $C^{\infty}(M)$ -bilinear map

$$\star: \mathcal{C}^{\infty}(M)[[t]] imes \mathcal{C}^{\infty}(M)[[t]] o \mathcal{C}^{\infty}(M)[[t]]$$

 $f \star g = \sum_{k=0}^{\infty} t^k m_k(f,g) ,$

with bidifferential operators m_k such that \star has the following properties:

- * is associative.
- $m_0(f,g) = fg$.
- $m_1(f,g) m_1(g,f) = \{f,g\}.$
- $\blacktriangleright 1 \star f = f = f \star 1.$

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlook

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Moyal-Weyl star product

Example

 (M, π) Poisson manifold, with *constant* Poisson tensor $\pi = \frac{1}{2} \pi^{ij} \partial_i \wedge \partial_j$, then

$$f \star g = fg + \frac{t}{2} \pi^{ij} \partial_i f \partial_j g$$
$$+ \frac{t^2}{8} \pi^{ij} \pi^{mn} \partial_i \partial_m f \partial_j \partial_n g$$
$$+ \mathcal{O}(t^3)$$

and we get the Poisson bracket:

$$m_1(f,g)-m_1(g,f)=\pi^{ij}\partial_i f\partial_j g=\{f,g\}.$$

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Notivation: Closed tring theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlook

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Star commutators

Remarks

Star commutator gives deformation of the Poisson bracket:

$$\{f,g\}^* := \sum_{k=0}^{\infty} t^k \Big(m_k(f,g) - m_k(g,f) \Big)$$
$$= \sum_{k=0}^{\infty} \Big(\sum_{I,J} m_k^{IJ} \Big(\partial_I f \partial_J g - \partial_I g \partial_J f \Big) \Big).$$

• $T^*\Pi A$ is a graded manifold \rightarrow take Koszul signs:

$$\{f,g\}^{\star} = \sum_{k=1}^{\infty} t^k \left(\sum_{IJ} m_k^{IJ} (\partial_I f \partial_J g - (-1)^{|f||g|+|x^J|(|f|-1)+|x^I|(|g|-1)} \partial_I g \partial_J f) \right),$$

where $|x^{i}| = |x^{i_1}| + \dots |x^{i_k}|$.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlook

Idea to reproduce $\alpha'\text{-deformations}$

Deser, arXiv: 1412.5966

Recall:
$$\langle V, W \rangle = \{V, W\}$$

Thm.1: $2[V, W]_{\mathcal{C}} = \{\{\mu, V\}, W\} - \{\{\mu, W\}, V\}.$

 \rightarrow take star-commutators with Moyal-Weyl star product on $T^*\Pi A$ with Poisson tensor

$$P_{T^*\Pi A} = \partial_{x_i^*} \wedge \partial_{x^i} + \partial_{\xi_i^*} \wedge \partial_{\xi^i} + \partial_{x^i} \wedge \partial_{\xi_i^*} + \pi^{ij} \partial_{x^i} \wedge \partial_{\xi^j} .$$

Remark: This means that $\tilde{\partial}^i = \pi^{ij} \partial_{x^j}$. We restrict to this case in the following results.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3

Outlool

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Result 3

Deser, arXiv: 1412.5966

Theorem

Let $V = V^i \xi_i^* + V_i \xi^i$ and $W = W^i \xi_i^* + W_i \xi^i$ be the lifts of two generalized vectors to $T^* \Pi A$ and set the deformation parameter $t = \alpha'$. Then we have

$$\frac{1}{\alpha'} \{ V, W \}^{\star} = \langle V, W \rangle_{\alpha'} + \mathcal{O}((\alpha')^2) .$$

Furthermore, we have

$$\frac{1}{2(\alpha')^2} \Big(\big\{ \{\mu, V\}^*, W \big\}^* - \big\{ \{\mu, W\}^*, V \big\}^* \Big) = [V, W]_{\alpha'} + \mathcal{O}((\alpha')^2) ,$$

i.e. the deformations encountered in string theory can be understood in terms of appropriate star commutators.

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Motivation: Closed string theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Result 3

Outlook

Interpreting scalars and generalized vector fields as functions on the Drinfel'd double of a Lie bialgebroid enabled us to explain deformations of a special case of the C-bracket of double field theory (where $\tilde{\partial}^k = \pi^{km} \partial_m$).

Lots of work ahead:

- General C-bracket and its deformation?
- The next order in α' ? not known in physics up to now.
- Properties of the graded star prduct?
- Comparison to recent math results using the Rothstein algebra (e.g. Keller, Waldmann).
- ► Flux-compactification? Star-products with *R*-flux (e.g. Aschieri, Szabo et. al).

Star products on graded manifolds and deformations of Courant algebroids from string theory

Andreas Deser

Notivation: Closed tring theory

Two questions

Parity change and Lie algebroids

Legendre transform and Drinfel'd double

Application to double field theory

Result 1

Result 2

Formal star products

Star commutators

Result 3