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Motivation: Closed string theory
Canonical momenta and winding

I Sigma model X : Σ→ M = T d

S =

∫
Σ

hαβ∂αX i∂βX jGij dµΣ +

∫
Σ

X ∗B ,

where h ∈ Γ(⊗2T ∗Σ), G ∈ Γ(⊗2TM), B ∈ Γ(∧2T ∗M).

I Classical solutions to e.o.m. (take closed string Σ = R× S1)

X i
R = x i

0R+αi
0(τ − σ) + i

∑
n 6=0

1

n
αi
ne−in(τ−σ) , X i

L = . . . ,

αi
0 =

1√
2

G ij
(

pj − (Gjk + Bjk)wk
)
,

I pk : Canonical momentum zero modes
I w k : Winding zero modes, w k := 1

2π

∫ 2π

0
∂σX

kdσ.
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Motivation: Closed string theory
Two sets of differential operators
Siegel, Tseytlin, Hull, Zwiebach, Kugo, Hohm, Blumenhagen, Lüst, Hassler

I Two sets of momenta in αi
0 → differential operators:

pk ' 1
i ∂k , wk ' 1

i ∂̃
k .

I “Level matching condition” in string theory:

∂kφ ∂̃
kψ + ∂̃kφ∂kψ = 0 ,

for all elements φ, ψ of the algebra of observables.

Two different interpretations of observables φ ∈ C∞(M):
I ddRφ = ∂kφ dx

k + ∂̃kφ dx̃k : Double configuration space,
algebra of observables on it: “Double field theory”.

I Take Lie bialgebroid (A,A∗) and dAφ = ∂kφ e
k ,

dA∗φ = ∂̃kφ e∗k . Make this precise and determine its relation
to physics
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Motivation: Generalized geometry
A word about notation Hitchin, Gualtieri

I O(d , d)-transformations: A ∈ Mat(d , d),

AηAt = η , ηMN =

(
0 id
id 0

)
I Generalized vectors:

V = X + ξ, W = Y + ζ ∈ Γ(TM ⊕ T ∗M) .

I Component notation (fundamental rep of O(d , d))

V M = (V m(x),Vm(x)) and ∂M = (∂̃m, ∂m)

I Bilinear pairing:

〈V ,W 〉 = ιY ξ + ιX ζ i.e. V MWM = V kWk + VkW k .
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Motivation: C for Courant?
The C-bracket in double field theory Hull, Zwiebach, arXiv: 0908.1792

Double configuration space approach →: action principle + gauge
symmetry. Commutator of gauge trafos: C-bracket(

[V ,W ]C
)M

= V K∂KW M −W K∂KV M

− 1

2

(
V K∂MWK −W K∂MVK

)
.

(1)

Observation for V = X + ξ,W = Y + ζ ∈ Γ(TM ⊕ T∗M):

I ∂̃k = 0: C-bracket reduces to Courant bracket.

[V ,W ]C = [X ,Y ]L + LX ζ − LY ξ + 1
2
ddR(ιY ξ − ιX ζ) .
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First order α′-deformation
Siegel, Hohm, Zwiebach

Result from string theory/double field theory:
Deformation of the pairing 〈, 〉 and the C-bracket [ , ]C :

〈V ,W 〉α′ = 〈V ,W 〉 − α′ ∂PV Q∂QW P , (2)

[V ,W ]Kα′ = [V ,W ]KC − α′
(
∂K∂QV P∂PW Q − V ↔W

)
. (3)

Remember the notation:

〈V ,W 〉α′ = V kWk + VkW
k − α′

(
∂mV

n∂nW
m + ∂mVn∂̃

nWm

+ ∂̃mV n∂nWm + ∂̃mVn∂̃
nWm

)
.
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Two questions

I Is it possible to understand the objects
〈, 〉,∂̃k and [, ]C using Poisson brackets on
the cotangent bundle of an appropriate
space?

I Can we reproduce the α′-deformations of
the last slide by using the lowest orders of a
Moyal-Weyl deformation?
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Lie algebroids and parity change
Mackenzie, Xu, Weinstein, Liu, Roytenberg, Voronov

Definition
A vector bundle A→ M is called Lie algebroid if there exists a
homological vector field dA on the supermanifold ΠA, i.e.
[dA, dA] = 0.

Standard examples:

I A = TM, basis of sections ei , [ei , ej ]A = f k
ij ek

label coordinates on ΠA by (x i , ξi ), then

dA = aij(x)ξj∂i −
1

2
f k
ij (x)ξiξj

∂

∂ξk
.

I A∗ = T ∗M, basis e i , [e i , e j ]A∗ = Q ij
k ek ,

label coordinates on ΠA∗ by (x i , θi ), then

dA∗ = aij(x)θi∂j −
1

2
Q ij

k (x)θiθj
∂

∂θk
.

The pair (A,A∗) is an example of a Lie bialgebroid.
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Legendre transform and Drinfel’d double
Roytenberg, arXiv:math/9910078

On cotangent bundles: T ∗ΠA, T ∗ΠA∗,

dA → hdA ∈ C∞(T ∗ΠA) , dA∗ → hdA∗ ∈ C∞(T ∗ΠA∗) ,

Relation between the two bundles: Legendre transform:

L : T ∗ΠA→ T ∗ΠA∗ , L(x i , ξj , x∗i , ξ
∗
j ) = (x i , ξ∗j , x

∗
i , ξ

j) .

Define: µ := hdA + L∗ hdA∗ .

T ∗ΠA: Can. graded Poisson br: {x j , x∗i } = δji , {ξj , ξ∗i } = δji .

Theorem
A pair of Lie algebroids (A,A∗) is a Lie bialgebroid iff {µ, µ} = 0.

Thus the following definition is justified:

Definition
The Drinfel’d double of a Lie bialgebroid (A,A∗) is given by T ∗ΠA
together with the homological vector field {µ, ·}.
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Application to double field theory
Deser, Stasheff, arXiv:1406.3601

Two sets of momenta:

hdA = ξi
(

aji x
∗
j −

1

2
f k
ij ξ

jξ∗k

)
=: ξipi ,

L∗ hdA∗ = ξ∗i

(
aijx∗j + Q ij

k ξ
kξ∗j

)
=: ξ∗i p̃i .

Thus, we get two derivative operators for f ∈ C∞(M), seen as
f ∈ C∞(T ∗ΠA):

∂i f := {pi , f } , ∂̃ i f := {p̃i , f } , (4)

More general: Lift of a generalized vector field:

V m∂m + Vmdxm → V m(x)ξ∗m + Vm(x)ξm ∈ C∞(T ∗ΠA) .

Now, what is the C-bracket and the strong constraint?
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Result 1
Deser, Stasheff, arXiv:1406.3601

Theorem
Let V mem + Vmem and W mem + Wmem be generalized vectors
with corresponding lifts to T ∗ΠA given by V = V mξ∗m + Vmξ

m

and W = W mξ∗m + Wmξ
m. In addition let the operation ◦ be

defined by:

V ◦W =
{
{ξipi + ξ∗i p̃i ,V },W

}
,

Then the C-bracket of V and W is given by

[V ,W ]C =
1

2

(
V ◦W −W ◦ V

)
. (5)

Thus, the C-bracket can be seen as a Courant bracket, written in a
form appropriate to DFT.
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Result 2
Deser, Stasheff, arXiv:1406.3601

Theorem
Let φ(x , x̃), ψ(x , x̃) be two double scalar fields and D = {µ, ·} the
homological vector field on T ∗ΠA. Then we have

0 = {D2φ, ψ} = ∂iφ∂̃
iψ + ∂̃ iφ∂iψ . (6)

Thus, the strong constraint is a consequence of the condition on
T ∗ΠA being the Drinfel’d double of a Lie bialgebroid. Finally, it is
trivial to see that 〈V ,W 〉 = {V ,W }.
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Formal star products
Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer, Gerstenhaber

Definition
Let (M, π) be a Poisson manifold and f , g ∈ C∞(M). A formal
star product ? is a C∞(M)-bilinear map

? : C∞(M)[[t]]× C∞(M)[[t]]→ C∞(M)[[t]]

f ? g =
∞∑
k=0

tkmk(f , g) ,

with bidifferential operators mk such that ? has the following
properties:

I ? is associative.

I m0(f , g) = fg .

I m1(f , g)−m1(g , f ) = {f , g}.
I 1 ? f = f = f ? 1.
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Moyal-Weyl star product

Example

(M, π) Poisson manifold,
with constant Poisson tensor π = 1

2 π
ij∂i ∧ ∂j , then

f ? g = fg + t
2 π

ij∂i f ∂jg

+ t2

8 π
ijπmn∂i∂mf ∂j∂ng

+O(t3)

and we get the Poisson bracket:

m1(f , g)−m1(g , f ) = πij∂i f ∂jg = {f , g} .
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Star commutators

Remarks

I Star commutator gives deformation of the Poisson bracket:

{f , g}∗ :=
∞∑
k=0

tk
(

mk(f , g)−mk(g , f )
)

=
∞∑
k=0

(∑
I ,J

mIJ
k

(
∂I f ∂Jg − ∂Ig∂J f

))
.

I T ∗ΠA is a graded manifold → take Koszul signs:

{f , g}? =
∞∑
k=1

tk
(∑

IJ

mIJ
k

(
∂I f ∂Jg

− (−1)|f ||g |+|x
J |(|f |−1)+|x I |(|g |−1)∂Ig∂J f

))
,

where |x I | = |x i1 |+ . . . |x ik |.
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Idea to reproduce α′-deformations
Deser, arXiv: 1412.5966

Recall: 〈V ,W 〉 = {V ,W }
Thm.1: 2[V ,W ]C =

{
{µ,V },W

}
−
{
{µ,W },V

}
.

→ take star-commutators
with Moyal-Weyl star product on T ∗ΠA with Poisson tensor

PT∗ΠA = ∂x∗i ∧ ∂x i + ∂ξ∗i ∧ ∂ξi + ∂x i ∧ ∂ξ∗i + πij∂x i ∧ ∂ξj .

Remark: This means that ∂̃ i = πij∂x j . We restrict to this case in
the following results.
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Result 3
Deser, arXiv: 1412.5966

Theorem
Let V = V iξ∗i + Viξ

i and W = W iξ∗i + Wiξ
i be the lifts of two

generalized vectors to T ∗ΠA and set the deformation parameter
t = α′. Then we have

1

α′
{V ,W }? = 〈V ,W 〉α′ +O((α′)2) .

Furthermore, we have

1

2(α′)2

({
{µ,V }∗,W

}∗ − {{µ,W }∗,V}∗) = [V ,W ]α′ +O((α′)2) ,

i.e. the deformations encountered in string theory can be
understood in terms of appropriate star commutators.
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Outlook

Interpreting scalars and generalized vector fields as functions on
the Drinfel’d double of a Lie bialgebroid enabled us to explain
deformations of a special case of the C-bracket of double field
theory (where ∂̃k = πkm∂m).

Lots of work ahead:

I General C-bracket and its deformation?

I The next order in α′? - not known in physics up to now.

I Properties of the graded star prduct?

I Comparison to recent math results using the Rothstein
algebra (e.g. Keller, Waldmann).

I Flux-compactification? Star-products with R-flux (e.g.
Aschieri, Szabo et. al).
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