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Let us start with the trivial problem of determining geodesics in
RN , considering the length L of paths from A to B as a functional
of parametrized curves ~x(t) connecting A = ~x(α) and B = ~x(β):

L =

∫ β

α

√
~̇x 2 dt, (1)

whose stationary points satisfy

~̈x −
~̇x

~̇x 2

(
~̇x · ~̈x

)
= ~0. (2)

Choosing the parameter t to be the arc length, i.e. ~̇x 2 = 1, the
reparametrization-invariant equation (2) reads

~̈x = 0, (3)

corresponding to the Lagrangian

L0 :=
1

2
~̇x 2 (4)

whose integral, in contrast with (1), is not
reparametrization-invariant.



Suppose now that the motion takes place on an M dimensional
hypersurface Σ, i.e. described parametrically by

~x
(
u1(t), . . . , uM(t)

)
. (5)

As then ~̇x = u̇a∂a~x , hence ~̇x 2 = u̇a∂a~x · ∂b~x u̇b =: u̇agabu̇b, the
expression for the length becomes

L =

∫ β

α

√
u̇agabu̇b dt = L [ua, u̇a] , (6)

where gab

(
u1, . . . , uM

)
could also be thought as intrinsically

given, rather than being induced from RN as ∂a~x · ∂b~x .
Varying (6) gives

üc+γcabu̇
au̇b = −u̇c

√
u̇agabu̇b∂t

1√
u̇agabu̇b

= −1

2
u̇c∂t ln

(
u̇agabu̇

b
)

(7)
with

γcab :=
1

2
g cd (∂agdb + ∂bgad − ∂dgab) . (8)



Again the (reparametrization-invariant) equations simplify
significantly by choosing ~̇x 2 = u̇agabu̇b (cp. (6)) to be constant,
i.e. the parameter t to be, up to constant rescaling, the arc length
of the curve (making the r.h.s. of (7) vanish).
With this understanding, the coupled ODE:s

üc + γcabu̇
au̇b = 0, a, b, c = 1, . . . ,M, (9)

are usually referred to as ’geodesic equations’ for a Riemannian
manifold M parametrized locally by parameters ua(a = 1, . . . ,M).
In case

M = ΣM(ϕ) :=
{
~x ∈ RM+1

∣∣∣ϕ (~x) = 0
}
, (10)

one could alternatively take

L =
1

2
~̇x 2 − λϕ (~x) , (11)

with Lagrangian equations of motion

~̈x = −λ~∇ϕ, ϕ
(
~x(t)

)
= 0, (12)

where λ can be obtained by noting that (differentiating
ϕ
(
~x(t)

)
= 0 twice w.r.t. t)



~̇x · ~∇ϕ
(
~x(t)

)
= 0, ~̈x · ~∇ϕ+ ẋ i ẋ j∂2ijϕ = 0, (13)

the first ensuring ~̇x · ~̈x = 0, the second implying

λ = −
~̈x · ~∇ϕ
(∇ϕ)2

= +
ẋ i ẋ j∂2ijϕ

(∇ϕ)2
, (14)

so that

~̈x = −
ẋ i ẋ j∂2ijϕ

(∇ϕ)2
~∇ϕ (15)

describes free motion on ΣM (note that ~∇ϕ is normal to ΣM so
that there is no tangential acceleration, hence no tangential force).
Before discussing how to solve (9), resp. (15), for the case of an
Ellipsoid, let us (Exercise I) note that for rotationally symmetric
two-dimensional surfaces,



~x(u, v) =

f (u) cos v
f (u) sin v

h(u)

 , (16)

(9) can easily be solved by quadrature, as (9)a=2 (calculating gab
and γcab from (16)),

v̈ + 2
f ′

f
u̇v̇ = 0 (17)

integrates to

v̇ =
const.

f 2
(
u(t)

) =:
l

f 2
, (18)

allowing one to eliminate v from (9)a=1, resp. (simpler!)

u̇agabu̇
b =

(
f ′2 + h′2

)
u̇2 + f 2v̇2

!
= const. =: 2E > 0. (19)

Inserting (18) into (19) yields u(t) by quadrature:

±
∫

du

√
f ′2 + h′2

2E − l2

f 2

= t − t0. (20)



As Exercise II, note that (9) can be formulated in Hamiltonian
form by considering

H =
1

2
πag

abπb = H
[
u1, . . . , uM , π1, . . . , πM

]
(21)

with canonical Poisson-structure, i.e.

u̇a =
δH

δπa
= gabπb

π̇c = − δH
δuc

= −1

2
πa∂cg

abπb =
1

2
πag

a′a∂cga′b′g
b′bπb =

1

2
u̇a (∂cgab) u̇b.

(22)
One way of stating Jacobi’s seminal result is that for an
Ellipsoid, (21) separates in elliptic coordinates – which Jacobi
originally [1838] defined (for M = 2) as angles ϕ and ψ in

x1 =

√
α1

α3 − α1
sinϕ

√
α2 cos2 ψ + α3 sin2 ψ − α1

x2 =
√
α2 cosϕ sinψ

x3 =

√
α3

α3 − α1
cosψ

√
α3 − α1 cos2 ϕ− α2 sin2 ϕ

(23)



and then, for general M, as (apart from u0 = 0) the zeros of

f (u) :=
N∑
i=1

x2i
αi − u

− 1 =: −

∏M
A=0

(
uA − u

)
∏M+1

i=1 (αi − u)
; (24)

that f fully factorizes into real factors, with

α1 < u1 < α2 < . . . < uM < αM+1=N (25)

is easily seen by noting that

f ′(u) = +
N∑
i=1

x2i
(αi − u)2

> 0. (26)

The (elliptic coordinates) ua (a = 1, . . . ,M) coordinatize the
M-dimensional Ellipsoid

EM :=

~x ∈ RM+1

∣∣∣∣∣∣
M+1=N∑

i=1

x2i
αi

= 1

 . (27)



By a simple residue-argument

x2i =

∏
A

(
αi − uA

)
∏

j 6=i

(
αi − αj

) , (28)

hence

4 d~x 2 =
∑
i

x2i

(
2 dxi
xi

)2

=
∑
i

x2i

−∑
A

duA

αi − uA

2

=
∑
i ,A,B

duA duB(
αi − uA

) (
αi − uB

) ∏C (αi − uC )∏
j 6=i

(
αi − αj

) =: 4gAB duA duB .

(29)
Jacobi then used (four times!) that for any distinct numbers
z1, . . . , zJ>1

J∑
j=1

zsj∏
k( 6=j) zj − zk

=


0 for s = 0, . . . , J − 2,

1 for s = J − 1,∑
αj for s = J;

(30)



firstly (easy!) showing that the uA are orthogonal coordinates, i.e.

gA 6=B = 0 (the factors αi − uA and
(
αi − uB

)
can then be

cancelled in (29), leaving in the numerator a polynomial of degree

N − 2); secondly (writing, for A = B, each factor
(
αi − uC 6=A

)
as(

αi − uA
)

+
(
uA − uC

)
and then having to always pick the

second term, in order to avoid getting zero according to (30)zi=αi
)

to show that

gAA =
1

4

∑
i

∏
C 6=A

(
uA − uC

)
(
αi − uA

)∏′
j

(
αi − αj

) ; (31)

thirdly (with J = N + 1, zi = αi , zN+1 = uA) to conclude that

4gAA = −

∏
C 6=A

(
uA − uC

)
∏

i

(
uA − αi

) (A=a 6=0)
= −ua

∏′
c(6=a) (ua − uc)∏

i (ua − αi )
. (32)



Hence

H = −2
M∑
a=1

πa
q (ua)∏

c 6=a (ua − uc)
πa

with

q(u) :=
N∏
i=1

(u − αi )

u
(33)

describes geodesics on EM ; the simplest non-trivial case being
N = 3, resp.

H = 2
π21q

(
u1
)

u2 − u1
− 2

π22q
(
u2
)

u2 − u1
(34)

(note that q
(
u1
)
> 0, while q

(
u2
)
< 0).

The celebrated Hamilton-Jacobi method then solves the problem
by first replacing the πa by ∂S

∂ua (transforming H = E into a PDE)

and making the separation Ansatz S =
∑N−1

a=1 Sa (ua), which
indeed will produce solutions S depending on N − 1 free constants
β1, . . . , βN−3, βN−2 = β, βN−1 = E , provided the Sa satisfy



2S ′a (ua) q (ua) = E
(
β + β1u

a + . . .+ βN−3 (ua)N−3 + (−)N (ua)N−2
)

=: TN−2 (ua;β1, . . . , βN−3, βN−2 = β, βN−1 = E ) ;
(35)

resp.

± dSa = dua

√
TN−2 (ua)

2q (ua)

(N=3)
=

√
E

2

√
(β − ua) ua

(ua − α1) (ua − α2) (ua − α3)
dua,

(36)
hence

S =

√
E

2

N−1∑
a=1

±
∫ ua

√
1
ETN−2(u)

q(u)
du; (37)

∂S
∂β = const. (in accordance with action-angle coordinates) and
(N = 3)

u1 = α1 cos2 ϕ+ α2 sin2 ϕ, u2 = α3 sin2 ψ + α2 cos2 ψ (38)

give Jacobi’s celebrated solution [1] (note that his β is α2 − β
here).



A simple and slightly more direct derivation (including relatively
explicit formulae for the xi as ratios of elliptic θ-functions) was
presented by Weierstrass [3] (introducing conserved quantities that
were discovered again 100 years later [5]). He noted that, as a
consequence of the equations of motion (cp. (15))

ẍi = −

∑
k

ẋ 2
k

αk∑
l

x 2
l

αl

xi
αi

(39)

1 +
∑
i

x2i
u − αi

∑
k

ẋ2k
u − αk

−
∑

l

xl ẋl
u − αl

2

=
∑
i

Hi

u − αi
=

S(u)

Q(u)

(40)
will be time-independent, hence defining N − 1 constants of the
motion via

S(u) = cu
N−2∏
α=1

(u − δα),

Q(u) =
N∏
i=1

(u − αi ).

(41)



In accordance with (cp. (24))

P(u) :=

1 +
∑
i

x2i
u − αi

∏
i

(u − αi ) =: u
N−1∏
a=1

(u − ua) ,

(42)

Ṗ
∣∣∣
u=ua

= −uau̇a
∏
c

′
(ua − uc) , (43)

while (40), being of the form

P

Q

∑
k

ẋ2k
u − αk

− 1

4

Ṗ2

Q2
=

S

Q
,

implying
Ṗ (ua) = ±2

√
−QS (ua) =: ±2

√
R, (44)

one deduces that

∓ ua dua

2
√
−QS

=
dt∏′

c (ua − uc)
, (45)

hence (multiplying with (ua)s−1, and using (30))



N−1∑
a=1

∓
∫ ua(t) us√

R(u)
du =

{
0 for s = 1, 2, . . . ,N − 2,

2(t − t0) for s = N − 1,

(46)
with R(u) = −cu

∏N
i=1 (u − αi )

∏N−2
α=1 (u − δα) being a

time-independent polynomial of degree 2N − 1.
Note that for N = 3 (c > 0, u1 − δ1 < 0) the integrability also
follows from the (once observed [14] ’trivial’) time-independence of

I =
N∑
i=1

x2i
α2
i

N∑
k=1

ẋ2k
αk
. (47)

Among Hamiltonian treatments using the constrained embedding
coordinates x i (t) rather than the intrinsic ua(t), let me first
mention the one using Dirac’s theory of constraints: consider



ϕ :=
1

2

∑
i

x2i
αi
− 1

 =: ϕ1, π :=
∑
i

xipi
αi

=: ϕ2,

{ϕ, π} =
∑
i

x2i
α2
i

=: J,

(48)

leading to the Dirac-bracket

{f , g}D := {f , g} − {f , ϕa}χab {ϕb, g}

= {f , g}+ {f , ϕ} 1

J
{π, g} − {f , π} 1

J
{ϕ, g} ,

(49)

as the inverse of the constraint-matrix(
χab := {ϕa, ϕb}

)
=

(
0 J
−J 0

)
is

1

J

(
0 −1
1 0

)
.

Exercise III (cp. [12]):{
xi , xj

}
D

= 0,
{
xi , pj

}
D

= δij −
1

J

xixj
αiαj

,
{
pi , pj

}
D

= −
Lij

αiαjJ
,

Lij := xipj − xjpi .
(50)



Instead of using (50) to (tediously) show the
Dirac-Poisson-commutativity (.i.e. on the constrained phase-space)
of the

Fi = p2i +
∑
j

′ L2ij
αi − αj

(51)

it is much simpler to first show (Exercise IV){
Fi ,Fj

}
= 0 (52)

and then note that due to {Fi , ϕ} ≈ 0{
Fi ,Fj

}
D

= 0 (53)

trivially follows.
Let me finish this excursion with a Hamiltonian description
communicated to me by Martin Bordemann [5]: Let π be the
projection-operator onto the normal of E, resp.



Qij = δij −

xixj
αiαj∑
l

x2l
α2
l

(54)

the projection onto the tangent-space of the ellipsoid. To verify
that

H =
1

2

〈
~p,Q~p

〉
=

1

2

〈
~p, ~p
〉
− 1

2

〈
~p,A~x

〉2〈
~x ,A2~x

〉 , Aij := δij
1

αi
, (55)

describes geodesic motion on E one can either prove that

~̇x = Q~p, ~̇p = −1

2

〈
~p, ~∇Q~p

〉
(56)

implies Q~̈x = ~0 (for this one can prove that for the general case of
several constraints [5] ϕ1 (~x) = 0, . . . , ϕk (~x) = 0 defining a
submanifold, hαβ = ~∇ϕα~∇ϕβ pos. def.,

πij := hαβ∂iϕα∂jϕβ, (57)

that Qmi

(
∂iQkj

)
Qjn is symmetric in (m↔ n)); or (Exercise V)



explicitly calculate ~̈x from

~̇x = ~p −
〈
~p,A~x

〉〈
~x ,A2~x

〉A~x = ~p − γA~x ,

~̇p =

〈
~p,A~x

〉〈
~x ,A2~x

〉A~p − 〈
~p,A~x

〉2〈
~x ,A2~x

〉2A2~x = γA~p − γ2A2~x .

(58)

With many terms canceling, one arrives at

~̈x =

− 〈~p,A~p〉〈
~x ,A2~x

〉 + 2

〈
~p,A~x

〉〈
~x ,A2~p

〉〈
~x ,A2~x

〉2 −
〈
~p,A~x

〉2〈
~x ,A2~x

〉〈~x ,A3~x
〉A~x = −γ̇A~x .

(59)
Inserting ~̇x = ~p − γA~x (cp. (58)) into

〈
~̇x ,A~̇x

〉
, (39) becomes (59).

To then show the integrability of (55), a canonical transformation

~̃x =
√
A~x , p =

√
A~̃p

is made in [5], with



H(~x , ~p) = H̃
(
~̃x , ~̃p

)
=

1

2

〈
~̃p,A~̃p

〉〈
~̃x ,A~̃x

〉
−
〈
~̃p,A~̃x

〉2〈
~̃x ,A~̃x

〉
=

1

2

Ȟ(~̃x , ~̃p)− 2E
〈
~̃x ,A~̃x

〉〈
~̃x ,A~̃x

〉 + E = Ĥ
(
~̃x , ~̃p

)
+ E ,

(60)

so that H(~x , ~p) = E = H̃(~̃x , ~̃p) corresponds to Ĥ = 0, and then
note [5] that generally



H(~x , ~p) =
G (~x , ~p)

Q(~x , ~p)
on G = 0 = H

for positive Q generates the same dynamics as G .
Finally,

G (~x , ~p) =
〈
~p,A~x

〉〈
~x ,A~x

〉
−
〈
~p,A~x

〉2 − 2E
〈
~x ,A~x

〉
= −

∑
i

Gi

αi
,

(61)
with Poisson-commuting

Gi := 2Ex2i +
∑
j

′ L2ij
αi − αj

(62)

is Liouville-integrable.



C.G.J. Jacobi, Note von der geodätischen Linie auf einem
Ellipsoid und den verschiedenen Anwendungen einer
merkwuerdigen analytischen Substitution, JRAM 19, 309–313
(1839), See also his letter to the French Academy, written on
December 28, 1838, as well as his “Vorlesungen über
Dynamik”, given at Königsberg University 1842/43.

F. Joachimsthal, Observationes de lineis brevissimis et curvis
curvaturae in superficiebus secundi gradus, JRAM 26, 155–171
(1843)
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