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κ-Minkowski space

κ-Minkowski space is a Lie-algebraic deformation of the usual
Minkowski space, where κ ∝ 1

a0
is the deformation parameter,

usually interpreted as the Planck mass or the new scale of
quantum gravity

[x̂i , x̂j ] = 0, [x̂0, x̂i ] = ia0x̂i .

Or more generally, we can introduce a deformation vector aµ such
that

[x̂µ, x̂ν ] = iCµν
λx̂λ = i(aµx̂ν − aν x̂µ).

Tajron Jurić Toward the classification of differential calculi on κ-Minkowski space and related field theories



Introduction
Classification of differential calculi on κ-Minkowski

NC differential calculi over κ-Minkowski space
NC field theory

Differential calculus of classical dimension

I We want to construct the most general algebra of differential
one-forms ξ̂µ ≡ d̂x̂µ ∈ Ω̂1 compatible with κ-Minkowski
spacetime.

I We will impose that the differential algebra is closed in
differential forms, i.e. the differential calculus is of classical
dimension

[ξ̂µ, x̂ν ] = iKµν
αξ̂α, Kµν

α ∈ R, (1)

I We claim that for all the solutions for Kµν
α, we can find

suitable Hopf algebras, so that the bicovariance condition is
fulfilled.
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Exterior derivative

We also introduce the exterior derivative d̂ ≡ [η̂, ·] in a natural way

d̂x̂µ = [η̂, x̂µ] = ξ̂µ, η̂2 = 0, η̂ ∈ ˆSH. (2)

When we apply d̂ = [η̂, ·] on (4) we get

[ξ̂µ, x̂ν ]− [ξ̂ν , x̂µ] = iCµν
λξ̂λ −→ Kµν

α − Kνµ
α = Cµν

α. (3)

We call eq. (3) the consistency condition.
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super-Jacobi identities

The only super-Jacobi identity that gives a constraint on Kµν
α is[

x̂µ, [x̂ν , ξ̂ρ]
]

+
[
x̂ν , [ξ̂ρ, x̂µ]

]
+
[
ξ̂ρ, [x̂µ, x̂ν ]

]
= 0 and it leads to

Kλµ
αKαν

ρ − Kλν
αKαµ

ρ = Cµν
βKλβ

ρ. (4)

Eq. (4) is valid for general Lie algebraic deformations of spacetime.
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Ansatz for Kµν
α

Classify differential algebras ⇔ solve (4) and (3) for Kλµ
α

For Kµν
α ∈ R we demand

I that in the limit aµ → 0 the problem reduces to commutative case
i.e. limaµ→0 Kµν

α = 0

I Kµν
α has the dimension of length.

Therefore, it follows that the most general ansatz (for n > 2) is given
only in terms of ηµν and aµ via

Kµνα = A0aµaνaα + A1ηµνaα + A2ηµαaν + A3ηναaµ, (5)

where A1, A2, A3 ∈ R are dimensionless parameters and A0 is of dimension (lenght)−2, hence A0 = c
a2 , c ∈ R

for a2 6= 0 and A0 = 0 for a2 = 0.
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System of equations for parameters A0,A1,A2,A3

After we impose (3) we get

A3 = 1 + A2. (6)

Equation (4) gives

A3(a2A0 + A3 − 1) = 0, (7)

A1(a2A0 + A1 + 1) = 0, (8)

A1A3a2 = 0. (9)
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Four families of solution for A0,A1,A2,A3

1. A1 = 0, A2 = −1, A3 = 0, a2A0 = c

2. A1 = 0, A2 = −c , A3 = 1− c , a2A0 = c

3. A1 = −1− c , A2 = −1, A3 = 0, a2A0 = c

4. A1 = −1, A2 = 0, A3 = 1, a2 = A0 = 0

where c ∈ R is a free parameter.
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Differential algebras C1, C2, C3 and C4

C1 : [ξ̂µ, x̂ν ] =

{
i

c

a2
aµaν(aξ̂)− iaν ξ̂µ, if a2 6= 0

−iaν ξ̂µ, if a2 = 0

C2 : [ξ̂µ, x̂ν ] =

{
i

c

a2
aµaν(aξ̂)− icaν ξ̂µ + i(1− c)aµξ̂ν , if a2 6= 0

iaµξ̂ν , if a2 = 0

C3 : [ξ̂µ, x̂ν ] =

{
i

c

a2
aµaν(aξ̂)− i(1 + c)ηµν(aξ̂)− iaν ξ̂µ, if a2 6= 0

−iηµν(aξ̂)− iaν ξ̂µ, if a2 = 0

C4 : [ξ̂µ, x̂ν ] = −iηµν(aξ̂) + iaµξ̂ν , a2 = 0

(10)

where we used aξ̂ ≡ aαξ̂
α and C stands for covariant.
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I It is important to note that the first three solutions C1,2,3 are valid
for all a2 ∈ R.

I There are two cases: when a2 = 0 then A0 = c = 0, and when
a2 6= 0 then A0 = c/a2.

I The fourth solution C4 is only valid in the light-like case a2 = 0.

Explicitly for the tensor Kµνα we have

C1 : Kµνα =


c

a2
aµaνaα − ηµαaν , if a2 6= 0

−ηµαaν , if a2 = 0.

C2 : Kµνα =


c

a2
aµaνaα − cηµαaν + (1− c)ηναaµ, if a2 6= 0

ηναaµ, if a2 = 0.

C3 : Kµνα =


c

a2
aµaνaα − (1 + c)ηµνaα − ηµαaν , if a2 6= 0

−ηµνaα − ηµαaν , if a2 = 0,

C4 : Kµνα = −ηµνaα + ηναaµ, only for a2 = 0.

(11)

Tajron Jurić Toward the classification of differential calculi on κ-Minkowski space and related field theories



Introduction
Classification of differential calculi on κ-Minkowski

NC differential calculi over κ-Minkowski space
NC field theory

Some special cases

If c = 0 and A0 = 0 in (11) ⇒ three special cases1 S1, S2 and S3

S1 : [ξ̂µ, x̂ν ] = −iaν ξ̂µ, a2 ∈ R

S2 : [ξ̂µ, x̂ν ] = iaµξ̂ν , a2 ∈ R

S3 : [ξ̂µ, x̂ν ] = −iηµν(aξ̂)− iaν ξ̂µ, a2 ∈ R

(12)

I S1 ⇒ right covariant realization

I S2 ⇒ left covariant realization

I S3 ⇒ Magueijo-Smolin realization

I C4 ⇒ natural realization

1Where S stands for special .
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If we take a2 6= 0 we get three families of algebras which we denote
by2 D1, D2 and D3:

D1 : [ξ̂µ, x̂ν ] = i
c

a2
aµaν(aξ̂)− iaν ξ̂µ (13)

D2 : [ξ̂µ, x̂ν ] = i
c

a2
aµaν(aξ̂)− icaν ξ̂µ + i(1− c)aµξ̂ν (14)

D3 : [ξ̂µ, x̂ν ] = i
c

a2
aµaν(aξ̂)− i(1 + c)ηµν(aξ̂)− iaν ξ̂µ (15)

For aµ = (a0,~0) algebras D1 and D2 can be found in
S. Meljanac, S. Kresic-Juric ,R. Strajn, Int. J. Mod. Phys. A27 (2012) 1250057.

2Where D stands for differential algebra and was already used in
S. Meljanac, S. Kresic-Juric ,R. Strajn, Int. J. Mod. Phys. A27 (2012) 1250057.
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Some remarks

I Solutions C1, C2, C3 are new and all of them are valid for time-like,
light-like and space-like deformation parameter aµ.

I For time-like deformation aµ = (a0, 0, 0, ...), differential algebras D1,
D2 were constructed in
S. Meljanac, S. Kresic-Juric ,R. Strajn, Int. J. Mod. Phys. A27 (2012) 1250057,

I D3 obtained from C3 is a new solution.

I For c = 1 ⇒ Dc=1
1 = Dc=1

2 . This case was in detail investigated in
T J S. Meljanac, R. Štrajn, Eur. Phys. J. C (2013) 73: 2472, arXiv:1211.6612 [hep-th]

I In R. Oeckl, J. Math. Phys. 40, 3588-3604, 1999 (see Corollary 5.1.) the cases Dc=0
1

and Dc=0
2 were obtained from a different construction.

I For light-like deformation a2 = 0, we have also found three new
solutions.
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Usual differential calculus in the algebraic language

I Algebra of functions ⇒ unital Abelian algebra A generated by xµ

I Algebra of forms ⇒ Ωp ⊂ SA, p ∈ {0, 1, ..., n}, generated by
p-forms ω = ωα1...αpξ

α1 ...ξαp , where ωα1...αp ∈ A and Ω0 ≡ A.

I Exterior derivative d : Ωp → Ωp+1 satisfies the Leibniz rule

d(fg) = (df )g + f (dg), (16)

where f , g ∈ A
I Simply realized by d ≡ [η, ·] and η ≡ ξα∂α. Of course, since

[xµ, ξν ] = 0 we have that one forms are given by

df = ξα(∂α . f ) = (∂α . f )ξα, (17)

where ∂α . f = ∂f
∂xα .

I Usually one forgets about . and simply writes df = ∂f
∂xα dxα.
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NC case

I A ⇒ Â is an unital algebra generated by x̂µ
I Ωp ⊂ SA ⇒ Ω̂p ⊂ ŜA is an algebra generated by NC p-forms
ω̂ = ω̂α1...αp ξ̂

α1 ...ξ̂αp , where ω̂α1...αp ∈ Â and Ω̂0 ≡ Â.

I d ⇒ d̂ is a map d̂ : Ω̂p → Ω̂p+1 that satisfies the Leibniz rule

d̂(f̂ ĝ) = (d̂f̂ )ĝ + f̂ (d̂ĝ), (18)

where f̂ , ĝ ∈ Â.

I Eq. (18) is fulfilled by choosing d̂ ≡ [η̂, ·] and η̂ ≡ ξ̂α∂α.
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The commutation relations between differential forms ξ̂µ and an
arbitrary element of Â can be written as

ξ̂µf̂ = (Λµα I f̂ )ξ̂α, f̂ ξ̂µ = ξ̂α(Λ−1
µα I f̂ ), (19)

where Λµν is expressed in terms of derivatives ∂µ and
Λ−1
µν ≡ (Λ−1)µν denotes the inverse matrix, i.e. Λ−1

µαΛαν = ηµν .

Since d̂f̂ = [η̂, f̂ ] ∈ Ω̂1 ⊂ ŜA it follows

d̂f̂ = [η̂, f̂ ] I 1 = η̂f̂ I 1 = η̂ I f̂ = ξ̂α(∂α I f̂ ). (20)

.
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That is we have

d̂f̂ = ξ̂α(∂α I f̂ ) = (∂βΛβα I f̂ )ξ̂α. (21)

Furthermore, eq. (21) and Leibniz rule (18) imply

d̂(f̂ ĝ)
(18)
≡ (d̂f̂ )ĝ + f̂ (d̂ĝ)

(21)
≡ ξ̂α∂α I (f̂ ĝ)

(21)
= ξ̂α(∂α I f̂ )ĝ + f̂ ξ̂α(∂α I ĝ)

(19)
= ξ̂α[(∂α I f̂ )ĝ + (Λ−1

βα I f̂ )(∂β I ĝ)]

(22)

and by comparing the first and last line in (22) we get the Leibniz rule for
∂α

∂α I (f̂ ĝ) = (∂α I f̂ )ĝ + (Λ−1
βα I f̂ )(∂β I ĝ). (23)
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The Leibniz rule and coproduct are related via
∂α I (f̂ ĝ) = m[∆∂α I (f̂ ⊗ ĝ)], where m(a⊗ b) = ab, so that the
coproduct for ∂µ is given by

∆∂µ = ∂µ ⊗ 1 + Λ−1
αµ ⊗ ∂α, (24)

and since ∂µ generates a Hopf algebra of translations it follows
that its antipode and counit are

S(∂µ) = −∂αΛαµ, ε(∂µ) = 0. (25)
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The associativity of the product between forms and elements of Â gives

ξ̂µ(f̂ ĝ) = (ξ̂µ f̂ )ĝ

(19)
=⇒ [Λµα I (f̂ ĝ)]ξ̂α = (Λµα I f̂ )ξ̂αĝ

(19)⇐=

(19)
= (Λµα I f̂ )(Λαβ I ĝ)ξ̂β .

(26)

We can read out the Leibniz rule for Λµα as

Λµα I (f̂ ĝ) = (Λµβ I f̂ )(Λβα I ĝ), (27)

and extract the following coproduct

∆Λµν = Λµα ⊗ Λαν . (28)

Additionally we have

S(Λµν) = Λ−1
µν , ε(Λµν) = ηµν . (29)
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Construction of higher forms ⇒ all products of higher forms are
again differential forms regardless of the way they are multiplied.
Example: consider two different forms: ω̂ ∈ Ω̂q and θ̂ ∈ Ω̂p.
Written in basis we have

ω̂ = ω̂µ1...µq ξ̂
µ1 ...ξ̂µq = ξ̂µ1 ...ξ̂µq ˆ̃ωµ1...µq ,

θ̂ = θ̂µ1...µp ξ̂
µ1 ...ξ̂µp = ξ̂µ1 ...ξ̂µp ˆ̃θµ1...µp ,

(30)

where ω̂µ1...µq , ˆ̃ωµ1...µq , θ̂µ1...µp and ˆ̃θµ1...µp ∈ Â. There is a relation

between ω̂µ1...µq and ˆ̃ωµ1...µq via (19) (same for θ̂µ1...µp and ˆ̃θµ1...µp

).
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Of course if we multiply ω̂ with θ̂ it is easy to see that ω̂θ̂ 6= θ̂ω̂,
but we have

ω̂θ̂ = α̂µ1...µq+p ξ̂
µ1 ...ξ̂µq+p = ξ̂µ1 ...ξ̂µq+p ˆ̃αµ1...µq+p ∈ Ω̂q+p

θ̂ω̂ = β̂µ1...µq+p ξ̂
µ1 ...ξ̂µq+p = ξ̂µ1 ...ξ̂µq+p ˆ̃βµ1...µq+p ∈ Ω̂q+p

(31)

where α̂µ1...µq+p , ˆ̃αµ1...µq+p , β̂µ1...µq+p and ˆ̃βµ1...µq+p ∈ Â and they

are interrelated with ω̂µ1...µq and θ̂µ1...µp by using (19). We can
define all the higher forms in a consistent way (as illustrated
above).
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In order to use this differential calculus and do practical
calculations it is important to know all the commutation rules for
(and between) the elements of Â and Ω̂p.

I The commutation rule between ξ̂µ and an arbitrary element of
Â is determined by Λµν .

I The commutation rule between x̂µ and an arbitrary element of
Â is determined by Oµν .
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x̂µf̂ = (Oµα I f̂ )x̂α, f̂ x̂µ = x̂α([O−1]µα I f̂ ). (32)

Oµν =
(

eC
)
µν
, Cµν = iCµαν(∂W )α, (33)

and similarly Λµν is given by

Λµν =
(

eK
)
µν
, Kµν = iKµαν(∂W )α, (34)

where ∂W is the derivative corresponding to the Weyl ordering:

[∂Wµ , x̂ν ] = ηµν
ia∂W

eia∂W − 1
+

iaν∂
W
µ

ia∂W

(
1− ia∂W

eia∂W − 1

)
, (35)

where we used a∂W ≡ aα∂Wα .
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Symmetries of differential algebras and bicovarinace

I Covariance of differential calculus under a certain symmetry algebra
G ⊂ ˆSH generated by gi ∈ G is defined in the following way

gi I (x̂µξ̂ν) = m
(

∆gi (I ⊗ I)(x̂µ ⊗ ξ̂ν)
)
,

gi I (ξ̂ν x̂µ) = m
(

∆gi (I ⊗ I)(ξ̂ν ⊗ x̂µ)
)
.

(36)

I Combined with
[ξ̂µ, x̂ν ] = iKµν

αξ̂α, (37)

we can show that all the requirements for bicovariance are satisfied
⇔ The differential calculi that we developed so far are bicovariant.

I C1,2,3,4 are covariant under certain κ-deformation of the igl(n)-Hopf
algebra, but in the special case of S1 we have Poincaré -Weyl, and
in the case of C4 κ- Poincaré covariance.
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I The study of field theory over κ-Minkowski space may provide
some physical manifestations of quantum aspects of gravity.

I There is fairly large literature on κ-deformed field theory [a
lot of ref.!], but all of these theories are special in a sense
that they can be related to a specific realization or they are
using the differential calculus with one extra form.

I Our goal is to give a framework for constructing field theory
with differential calculus of classical dimension.

I In order to do this we need to introduce higher-degree forms,
the Hodge-∗ operation and an integral to define an action for
the fields.

Tajron Jurić Toward the classification of differential calculi on κ-Minkowski space and related field theories



Introduction
Classification of differential calculi on κ-Minkowski

NC differential calculi over κ-Minkowski space
NC field theory

I The higher degree forms in NC case are defined via

ω̂ = ω̂α1...αp ξ̂
α1 ...ξ̂αp ∈ Ω̂p. (38)

I The Hodge-∗̂ operation is defined as a mapping ∗̂ : Ω̂p → Ω̂n−p by

α̂ (β̂)∗̂ = (α̂)∗̂ β̂ ≡ α̂µ1...µk
β̂µ1...µk v̂ol, (39)

where α̂, β̂ ∈ Ω̂k and v̂ol = ξ0...ξn−1 is the volume form.

I For n = 4 we have

(1)∗̂ = v̂ol = ξ̂0ξ̂1ξ̂2ξ̂3 =
1

4!
εµνρσ ξ̂

µξ̂ν ξ̂ρξ̂σ,

(ξ̂µ)∗̂ =
1

3!
εµ α1α2α3

ξ̂α1 ξ̂α2 ξ̂α3 , (ξ̂µξ̂ν)∗̂ =
1

2!
εµνα1α2

ξ̂α1 ξ̂α2 ,

(ξ̂µξ̂ν ξ̂ρ)∗̂ = εµνραξ̂
α, (ξ̂µξ̂ν ξ̂ρξ̂σ)∗̂ = εµνρσ.

(40)
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I The integral is defined as a linear map∫
: Ω̂n → C. (41)

I Integral is closed in the sense that∫
d̂ω̂ = 0, ∀ω̂ ∈ Ω̂n. (42)

At this level, the integral defined here is just a formal notation. However,
in the C4-case the integral is invariant under the action of κ-Poincaré
algebra, so that the integral introduced here is the standard Lebesque
integral applied to the functions which give a realization of the
κ-Poincaré algebra through the ?-product.
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Now, we are ready to write an action Ŝ for a real NC scalar field
φ̂ ∈ Â. We have

Ŝ =

∫
d̂φ̂ (d̂φ̂)∗̂ + m2φ̂ (φ̂)∗̂. (43)

Since d̂φ̂ = (∂βΛβα I φ̂)ξ̂α and using (39) we have

Ŝ =

∫ (
(∂βΛβα I φ̂)(∂ρΛρα I φ̂) + m2φ̂φ̂

)
v̂ol. (44)
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To find the equation of motion we impose δŜ = 0, that is

δŜ =

∫
d̂δφ̂ (d̂φ̂)∗̂ + d̂φ̂ (d̂δφ̂)∗̂ + m2δφ̂ (φ̂)∗̂ + m2φ̂ (δφ̂)∗̂

=

∫
δφ̂

[
−d̂(d̂φ̂)∗̂ + m2(φ̂)∗̂

]
+
[
−d̂(d̂φ̂)∗̂ + m2(φ̂)∗̂

]
δφ̂

(45)

which leads to [
d̂(d̂φ̂)∗̂

]∗̂
= m2φ̂ (46)

where we used∫
d̂[δφ̂ (d̂φ̂)∗] = 0 =

∫
d̂δφ̂ (d̂φ̂)∗̂ +

∫
δφ̂ [d̂(d̂φ̂)∗̂],∫

d̂[d̂φ̂ (δφ̂)∗̂] = 0 =

∫
d̂(d̂φ̂)∗̂ δφ̂+

∫
d̂φ̂ (d̂δφ̂)∗̂,

((φ̂)∗̂)∗̂ = φ̂.

(47)
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Eq. (46) represents the NC generalization of the Klein-Gordon
equation. Let us investigate the l.h.s. of eq.(46). We have

[
d̂(d̂φ̂)∗̂

]∗̂
=

[
d̂
(

(∂βΛβα I φ̂)ξ̂α
)∗̂]∗̂

=

[
d̂

(
(∂βΛβα I φ̂)

1

3!
εα ρ1ρ2ρ3

ξ̂ρ1 ξ̂ρ2 ξ̂ρ3

)]∗̂
...

= ∂γΛγδ∂βΛβδ I φ̂.

(48)

So, for the equation of motion we have

∂α∂βΛασΛβσ I φ̂−m2φ̂ = 0. (49)
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Dispersion relations

I

S1 : (∂R)2Z−2 I φ̂−m2φ̂ = 0, (50)

S2 : (∂L)2Z 2 I φ̂−m2φ̂ = 0. (51)

I ⇒ the main new NC feature is the modification of dispersion
relations

S1 : E 2 − ~p2 = (mZ )2, Z = 1− ap

S2 : E 2 − ~p2 =
(m

Z

)2

, Z =
1

1 + ap

(52)

I

C4 : D2 I φ̂−m2φ̂ = 0. (53)

I For C4 we get D2 = � (a2 = 0), that is the Casimir operator of the
Poincaré algebra. This was expected, since C4 is compatible with
the Poincaré algebra, and only the coalgebraic sector is deformed.
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Future prospects

I Formulate κ-deformed electrodynamics via

Ŝ = −1

4

∫
F̂ (F̂)∗̂, (54)

where F̂ = d̂Â. The equations of motion are given by δŜ = 0,
that is

d̂(d̂Â)∗̂ = 0, ⇔ d̂(F̂)∗̂ = 0. (55)

The NC version of Bianchi identity also holds
d̂F̂ = d̂(d̂Â) = η̂2 I Â = 0.
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Future prospects

I So far we have analyzed the NC version of the free classical field
theory ⇒ modification of dispersion relations.

I Interacting classical field theory ⇒ adding ” φ̂n ”

I NC quantum field theory ⇒ R-matrix will modify the quantization
procedure ⇒ modification of the algebra of creation and
annihilation operators

φ(x)⊗ φ(y)− Rφ(y)⊗ φ(x) = 0 (56)

I R-matrix is defined by the twist operator R = F̃F−1.
-R-matrix ⇒ particle statistics
-twist operator ⇒ star-product ⇒ action in terms of commutative
fields
⇒ Feynman rules ⇒ NC correction to the propagator and vertex.

I What to expect? ⇒ modification of the usual spin-statistics
relations of free bosons at Planck scale.
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Thank you for your attention!
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