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The terminology of « quantization » is used to allude to the
expression at a quantum level of facts related to a classical system

~» different mathematical tools :

classical quantum
states :  symplectic manifold Hilbert space
observables :  smooth fonctions linear operators
(~ commutative) (~ noncommutative)

Many methods exist to approach this problem ...

Here : deformation quantization

~~ « quantization be understood as a deformation of the
structure of the algebra of classical observables, rather
than as a radical change in the nature of the observables »

(Bayen - Flato - Fronsdal - Lichnerowicz - Sternheimer, 1978)



Formal and non-formal deformation quantization

on the symplectic manifold (M, w) :

? Ki(—,—,—) ? explicit 3-point kernel such that the formula

(Fong)(x) = /M Ki(coa2) £ (1) 6 (2) dy
x v

(Liouville)
e defines an associative product on an « interesting »
space of functions (3 f, g);

e admits an asymptotic expansion :
fxpg~ fg+hC1(f,g)+o(h2).

~> star-product



Example on the phase space (R? = {q,p}, w =dg A dp) :
e the formula
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defines an associative (noncommutative) product on S (R?);

e formal asymptotic expansion of f; *%/v frin h:
A fh = hh+ v{h, b}
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where 2iv =, w = w?? =0and wl? = —w? =1.



Formal and non-formal deformation quantization

on the symplectic manifold (M, w) :

? Kn(—,—,—) 7 explicit 3-point kernel such that the formula

(Fng) (x) = /M Ki(y.2) () £(2) dy oz
x v

(Liouville)
e defines an associative product on an « interesting »
space of functions (3 f, g);

e admits an asymptotic expansion :
fxng ~ fg+hC1(f,g)+o(h2).
~~ star-product

For S € Symp (M, w) :
S-invariance «~ s*(f x;, g) = s*f x;, s*g foreach s€ S



Let D be a homogeneous complex bounded domain in C".

Motivation & general problem

Can we determine explicitly all Aut (D)-invariant deformation

quantizations on D ?
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Structural point
(Pyatetskii-Shapiro theory)

e 3§ c Aut (D) solvable Lie group acting simply transitively on ID);
e S= (... (Sn X Sy—1) X ... X Sp) X S; where :

(1) Sjis the lwasawa group of G; = SU (1, n;),

(2

) Sj acts simply transitively on the complex unit ball in C".



Explicit resolution

The resolution can be associated with the determination of a
g—equivariant convolution operator that intertwines S-invariant

deformation theory (P. Bieliavsky, V. Gayral, ...) with the
Aut (D)-invariant one.

Aut (other space ~ g) — § < Aut(D)
1 \:
(§-invariant DQ theory) — — [N (Aut (D)-invariant DQ theory ?)

1
S-equivariant convolution operator

~ description of the kernel of this operator
through a PDEs hierarchy



These PDE's were explicitly written
(1) for the Poincaré disk : Bieliavsky, Detournay, Spindel (2009),
(2) for the unit ball in D, C C", n > 1 : Bieliavsky, K. (2013),
but ...



. it was not so easy ...
Here is one of the equation for n > 1: O p¢ 0 = i§ e 229 where
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The PDE's were explicitly written and solved
(1) for the Poincaré disk : Bieliavsky, Detournay, Spindel (2009)
(2) for the unit ballin D, CC", n>1:

Theorem [Bieliavsky - K., 2013]

For each SU (1, n)-invariant deformation theory on D, there exists
g € D' (R)[[v]] (with a possible reparameterization of v),

such that the convolution operator with kernel
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is an intertwiner with the S-invariant deformation theory.



Complementary questions

Analysis of these solutions ? Typical solutions? (e.g. Berezin,
Fedosov, ... 7)

Determination of an underlying C*-algebra for each parameter
of deformation ? Continuity of this field of C*-algebras?

Generalization for an arbitrary homogeneous complex bounded
domain in C"?
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Thanks for listening !




