Bayrischzell-2015:
Quantization, geometry and mathematical physics
Bayrischzell, May 29- June 1, 2015

Sigma-model solitons

on
 noncommutative spaces

Giovanni Landi
Trieste

Sigma-model solitons on noncommutative spaces
L. Dabrowski, G.L. Franz Luef
arXiv:1501.02331
and earlier work with L. Dabrowski and T. Krajewski

Abstract
Sigma-model solitons over the Moyal plane and noncommutative tori, as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in the source algebra

Solutions, having non-trivial topological content, are constructed via suitable Morita duality bimodules,

Inputs from time-frequency analysis and Gabor analysis

Non-linear σ-models: field theories of maps X between the source space (Σ, g), and the target space (M, G). The action functional

$$
S[X]=\frac{1}{2 \pi} \int_{\Sigma} \sqrt{g} g^{\mu \nu} G_{i j}(X) \partial_{\mu} X^{i} \partial_{\nu} X^{j}
$$

The stationary points: are harmonic maps from Σ to M; describe minimal surfaces embedded in M.
Σ two dimensional: the action S is conformally invariant, that is invariant by any rescaling of the metric $g \rightarrow e^{\sigma} g$.

Thus the action only depends on the conformal class of the metric and may be rewritten using a complex structure on Σ

$$
S[X]=\frac{i}{\pi} \int_{\Sigma} G_{i j}(X) \partial X^{i} \wedge \bar{\partial} X^{j}
$$

Here ∂ and $\bar{\partial}$, a complex structure and $\mathrm{d}=\partial+\bar{\partial}$.

In two dimensions

complex and conformal

are the same thing.

In two dimensions, the conformal class of a general constant metric is parametrized by a complex number $\tau \in \mathbb{C}$, $\Im \tau>0$.

Up to a conformal factor, the metric is

$$
g=\left(g_{\mu \nu}\right)=\left(\begin{array}{cc}
1 & \Re \tau \\
\Re \tau & |\tau|^{2}
\end{array}\right) .
$$

An algebraic generalization: by dualization and reformulation in terms of the *-algebras $\mathcal{A}=C^{\infty}(\Sigma, \mathbb{C})$ and $\mathcal{B}=C^{\infty}(M, \mathbb{C})$.

Embeddings X of Σ into M correspond to $*$-algebra morphisms π_{X} from \mathcal{B} to \mathcal{A}, with correspondence $f \mapsto \pi_{X}(f)=f \circ X$.

All this makes sense for general algebras \mathcal{A} and \mathcal{B}.
The configuration space is all $*$-algebra morphisms from \mathcal{B} to \mathcal{A}
The definition of the action functional involves generalizations of the conformal and Riemannian geometries.

Connes: the conformal is understood within the framework of positive Hochschild cohomology. The tri-linear map $\phi: \mathcal{A}^{\otimes 3} \rightarrow \mathbb{R}$,

$$
\phi\left(f_{0}, f_{1}, f_{2}\right)=\frac{\mathrm{i}}{\pi} \int_{\Sigma} f_{0} \partial f_{1} \wedge \bar{\partial} f_{2}
$$

is an extremal of positive Hochschild cocycles belonging to the Hochschild cohomology class of the cyclic cocycle ψ defined by

$$
\psi\left(f_{0}, f_{1}, f_{2}\right)=\frac{\mathrm{i}}{2 \pi} \int_{\Sigma} f_{0} \mathrm{~d} f_{1} \wedge \mathrm{~d} f_{2} .
$$

On the one hand ψ, the fundamental class, allows to integrate 2 -forms in dimension 2, so it is a metric independent object

On the other hand, ϕ defines a suitable positive scalar product

$$
\left\langle a_{0} d a_{1}, b_{0} d b_{1}\right\rangle=\phi\left(b_{0}^{*} a_{0}, a_{1}, b_{1}^{*}\right)
$$

on 1-forms and depends on the conformal class of the metric.

Expressions like ϕ and ψ make sense for a general algebra \mathcal{A}.
Compose the cocycle ϕ with a morphism $\pi: \mathcal{B} \rightarrow \mathcal{A}$ to obtain a positive cocycle on \mathcal{B}

$$
\phi_{\pi}=\phi \circ(\pi \otimes \pi \otimes \pi)
$$

Evaluate the cocycle ϕ_{π} on a suitably element of $\mathcal{B}^{\otimes 3}$ which provides the noncommutative analogue of the metric on the target;

Easiest choice for this metric: a positive element $G=\sum_{i} b_{0}^{i} \delta b_{1}^{i} \delta b_{2}^{i}$ of the space of universal 2-forms $\Omega^{2}(\mathcal{B})$. Thus, the quantity

$$
\begin{equation*}
S[\pi]=\phi_{\pi}(G) \tag{1}
\end{equation*}
$$

is well defined and positive: a noncommutative analogue of the action functional of the non linear σ-model.

Here π is the dynamical variable (the embedding) whereas ϕ (the conformal structure on the source) and G (the metric on the target) are background structures that have been fixed.

The critical points of the σ-model for the action functional (1) are generalizations of harmonic maps: "minimally embedded surfaces" in the (noncommutative) space associated with \mathcal{B}.

The role of the other cocycle ψ is to give a topological 'charge'.
More on this late on.

Two points as a target space

For a target space made of two points $M=\{1,2\}$,
any continuous map from a connected surface Σ to a discrete space is constant, a commutative theory would be trivial.

This is not the case if the source space is 'noncommutative' and there are, in general, not trivial such maps, 'dually', as *-algebra morphisms from the algebra of functions over $M=\{1,2\}$, that is \mathbb{C}^{2}, to the algebra \mathcal{A} of the noncommutative source space.

As a vector space \mathbb{C}^{2} is generated by the projection function e defined by $e(1)=1$ and $e(2)=0$;
\Rightarrow any $*$-algebra morphism $\pi: \mathbb{C}^{2} \rightarrow \mathcal{A}$ is the same as a projection $p=\pi(e) \in \mathcal{A}$.

The configuration space of a two point target space sigma-model is the collection of all projections $P(\mathcal{A})$ in the algebra \mathcal{A}.
Choosing the metric $G=\delta e \delta e$ on the space $M=\{1,2\}$, and a Hochschild cocycle ϕ for the conformal structure, the action functional is simply

$$
S[p]=\phi(1, p, p),
$$

From general consideration of positivity in Hochschild cohomology this action is bounded by a topological term.

Noncommutative torus and Moyal plane as source space \mathcal{A} :
the action functional is

$$
S[p]=\frac{1}{4 \pi} \operatorname{tr}(\partial p \bar{\partial} p) .
$$

with the natural complex structure on \mathcal{A} given by

$$
\partial=\partial_{1}-\mathbf{i} \partial_{2}, \quad \bar{\partial}=\partial_{1}+\mathbf{i} \partial_{2},
$$

and derivations ∂_{1} and ∂_{2} infinitesimal generators of a \mathbb{T}^{2}-action
and tr an invariant trace.
All of above can be extended to more general metrics.
In two dimensions, Up to a conformal factor the general constant metric is parametrized by a complex number $\tau \in \mathbb{C}, \Im \tau>0$.

The corresponding 'complex torus' $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}+\tau \mathbb{Z}$ would act infinitesimally on \mathcal{A} with two complex derivations

$$
\partial=\partial_{1}+\bar{\tau} \partial_{2}, \quad \bar{\partial}=\partial_{1}+\tau \partial_{2}
$$

As usual, the critical points of the action functional are obtained by equating to zero its first variation, that is the linear term in an infinitesimal variation

$$
\delta S[p]=S[p+\delta p]-S[p], \quad \text { for } \quad \delta p \in T_{p}(P(\mathcal{A}))
$$

One gets

$$
p \Delta(p)(1-p)=0 \quad \text { and } \quad(1-p) \Delta(p) p=0
$$

or, equivalently the non-linear equations of the second order

$$
\begin{equation*}
p \Delta(p)-\Delta(p) p=0 \tag{2}
\end{equation*}
$$

with the Laplacian of the metric $\Delta=\frac{1}{2}(\partial \bar{\partial}+\bar{\partial} \partial)$

The cyclic 2-cocycle giving the fundamental class is

$$
\psi\left(a_{0}, a_{1}, a_{2}\right)=\frac{1}{2 \pi \mathrm{i}} \operatorname{tr}\left(a_{0}\left(\partial_{1} a_{1} \partial_{2} a_{2}-\partial_{2} a_{1} \partial_{1} a_{2}\right)\right)
$$

For any projection $p \in P(\mathcal{A})$, the quantity

$$
c_{1}(p):=\psi(p, p, p)
$$

is an integer: the index of a Fredholm operator.
For any $p \in P(\mathcal{A})$ it holds that

$$
S[p] \geq\left|c_{1}(p)\right| .
$$

The equality for projection p satisfying self-duality or anti-self duality eqns

$$
\begin{equation*}
p\left(\partial_{1} \pm \mathrm{i} \partial_{2}\right)(p)=0 \tag{3}
\end{equation*}
$$

These equation imply the EOM (2).

Projection from Morita equivalence (Rieffel)
A Morita equivalence between (pre C^{*}-algebras) \mathcal{A} and \mathcal{B} :
a $\mathcal{A}-\mathcal{B}$-bimodule \mathcal{E} with a left-linear \mathcal{A}-valued hp $\langle\cdot \cdot, \cdot\rangle$ and a right-linear \mathcal{B}-valued hp $\langle\cdot, \cdot\rangle_{\text {. }}$. There is an associativity condition:

$$
\cdot\langle\xi, \eta\rangle \zeta=\xi\langle\eta, \zeta\rangle_{\bullet}
$$

It follows an identification $\mathcal{B} \simeq \mathcal{K}_{\mathcal{A}}(\mathcal{E})$ (compact endomorphisms).
In particular, there exist elements $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$ in \mathcal{E} such that

$$
\sum_{j}\left\langle\eta_{j}, \eta_{j}\right\rangle_{\bullet}=1_{\mathcal{B}} .
$$

Then, the associativity condition gives that the matrix $p=\left(p_{j k}\right)$

$$
p_{j k}=\cdot\left\langle\eta_{j}, \eta_{k}\right\rangle
$$

is a projection in the matrix algebra $M_{n}(\mathcal{A})$.

Both algebras \mathcal{A} and \mathcal{B} are in the joint smooth domain of two commuting derivations ∂_{1} and ∂_{2}; and have faithful invariant tracial states, which are compatible in the sense that:

$$
\operatorname{tr} \cdot\langle\xi, \eta\rangle=\operatorname{tr}\langle\eta, \xi\rangle_{\bullet}
$$

Derivations are lifted to \mathcal{E} as (left and right) covariant derivatives:

$$
\begin{gathered}
\nabla_{j}: \mathcal{E} \rightarrow \mathcal{E}, \quad j=1,2, \\
\nabla_{j}(a \xi)=\left(\partial_{j} a\right) \xi+a\left(\nabla_{j} \xi\right) \quad \text { and } \quad \nabla_{j}(\xi b)=\left(\nabla_{j} \xi\right) b+\xi\left(\partial_{j} b\right)
\end{gathered}
$$

compatible with both the \mathcal{A}-valued hermitian structure $\bullet \cdot \cdot, \cdot\rangle$ and the \mathcal{B}-valued hermitian structure $\langle\cdot, \cdot\rangle_{\mathbf{0}}$:

$$
\partial_{j}(\cdot\langle\xi, \eta\rangle)=\cdot\left\langle\nabla_{j} \xi, \eta\right\rangle+\bullet\left\langle\xi, \nabla_{j} \eta\right\rangle
$$

and

$$
\partial_{j}\left(\langle\xi, \eta\rangle_{\bullet}\right)=\left\langle\nabla_{j} \xi, \eta\right\rangle_{\bullet}+\left\langle\xi, \nabla_{j} \eta\right\rangle_{\bullet} .
$$

Lifting self-duality equations; solitons (for simplicity 'rank' one)
The holomorphic/anti-holomorphic, connection on \mathcal{E},

$$
\nabla=\nabla_{1}-i \nabla_{2}, \quad \bar{\nabla}=\nabla_{1}+i \nabla_{2}
$$

lift to \mathcal{E} the complex derivations $\partial=\partial_{1}-\mathrm{i} \partial_{2}$ or $\bar{\partial}=\partial_{1}+\mathrm{i} \partial_{2}$.
Seek solutions of the s-d eqs (3) of the form

$$
p_{\psi}:=\langle\psi, \psi\rangle \in \mathcal{A} \quad \text { with } \quad \psi \in \mathcal{E} \quad \text { such that } \quad\langle\psi, \psi\rangle_{\bullet}=1_{\mathcal{B}} .
$$

The projection p_{ψ} is a solution of the s-d eqs:

$$
p_{\psi} \partial\left(p_{\psi}\right)=0,
$$

if and only if the vector ψ is a generalized eigenvector of $\bar{\nabla}$
i.e. there exists $\lambda \in \mathcal{B}$ such that

$$
\bar{\nabla} \psi=\psi \lambda
$$

How to compute the topological charge:
The curvature of the covariant derivatives is defined as

$$
F_{12}:=\nabla_{1} \nabla_{2}-\nabla_{2} \nabla_{1}
$$

Let $\psi \in \mathcal{E}$ be such that $\langle\psi, \psi\rangle_{\bullet}=1_{\mathcal{B}}$ and $p_{\psi}:=\bullet\langle\psi, \psi\rangle \in \mathcal{A}$ the corresponding projection. Then, its topological charge is:

$$
c_{1}\left(p_{\psi}\right)=-\frac{1}{2 \pi \mathrm{i}} \operatorname{tr}\left\langle\psi, F_{12} \psi\right\rangle_{\bullet}
$$

Constant curvature: $F_{12}=-2 \pi i q$ id $_{\mathcal{E}}$
the projection $p_{\psi}={ }_{\bullet}\langle\psi, \psi\rangle$ has then topological charge

$$
c_{1}(p)=q \operatorname{tr}\left(1_{B}\right) \in \mathbb{Z}
$$

note that neither q nor $\operatorname{tr}\left(1_{B}\right)$ need be an integer

Moyal plane from Schrödinger representation
The projective representation of \mathbb{R}^{2} on $L^{2}(\mathbb{R})$ defined by

$$
\begin{gather*}
(\pi(z) \xi)(t)=e^{2 \pi i t \omega} \xi(t-x), \quad \text { for } z=(x, \omega) . \tag{4}\\
\pi(z) \pi\left(z^{\prime}\right)=e^{-2 \pi i x \omega^{\prime}} \pi\left(z+z^{\prime}\right) .
\end{gather*}
$$

The map $c: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{T}, c\left(z, z^{\prime}\right)=e^{-2 \pi i\left(x \omega^{\prime}\right)}$ is a 2-cocycle.
Its matrix-coefficients are defined for $\xi, \eta \in L^{2}(\mathbb{R})$ by

$$
V_{\eta} \xi(z):=\langle\xi, \pi(z) \eta\rangle_{L^{2}(\mathbb{R})}=\int_{\mathbb{R}} \xi(t) \bar{\eta}(t-x) e^{-2 \pi i t \omega} \mathrm{~d} t
$$

In signal analysis $V_{\eta} \xi$ is known as the short time Fourier transform
Moyal's identity: $\quad\left\langle V_{\eta} \xi, V_{\psi} \varphi\right\rangle_{L^{2}\left(\mathbb{R}^{2}\right)}=\langle\xi, \varphi\rangle_{L^{2}(\mathbb{R})} \overline{\langle\eta, \psi\rangle}_{L^{2}(\mathbb{R})}$

The twisted group algebra $L^{1}\left(\mathbb{R}^{2}, c\right)$ of \mathbb{R}^{2} associated to the cocycle c. For k and l in $L^{1}\left(\mathbb{R}^{2}\right)$, the twisted convolution ($k \nvdash l$):

$$
(k \not \square l)(z)=\iint k\left(z^{\prime}\right) l\left(z-z^{\prime}\right) c\left(z^{\prime}, z-z^{\prime}\right) \mathrm{d} z^{\prime}
$$

and twisted involution of $k \in L^{1}\left(\mathbb{R}^{2}\right)$:

$$
k^{\star}(z)=c(z, z) \overline{k(-z)}=e^{-2 \pi i x \omega} \overline{k(-z)}
$$

The integrated representation

$$
K=\pi(k)=\iint_{\mathbb{R}}^{2} k(z) \pi(z) \mathrm{d} z
$$

for $k \in L^{1}\left(\mathbb{R}^{2}\right)$, is a non-degenerate bounded representation of the twisted convolution algebra $L^{1}(\mathbb{R}, c)$ on $L^{2}\left(\mathbb{R}^{2}\right)$.

The adjoint of $K=\pi(k)$ is given by $K^{*}=\pi\left(k^{\star}\right)$ and the composition of $K=\pi(k)$ and $L=\pi(l)$ corresponds to ($k \nsucceq l$):

$$
K L=\iint_{\mathbb{R}}^{2}(k \not l l)(z) \pi(z) \mathrm{d} z
$$

Denote by \mathcal{A} the class of all operators $K=\pi(k)$ for $k \in \mathcal{S}\left(\mathbb{R}^{2}\right)$; they are all trace-class. Its norm closure is all compact operators.
\mathcal{A} is a model of the Moyal plane: the Fourier transforms of the symbols defining elements of \mathcal{A} yield the Moyal product:

$$
k \star l=\mathcal{F}^{-1}(\mathcal{F}(k) \downharpoonright \mathcal{F}(l)) \quad \text { for } \quad k, l \in \mathcal{S}\left(\mathbb{R}^{2}\right)
$$

Rieffel :

The space $\mathcal{E}=\mathcal{S}(\mathbb{R})$ is an equivalence bimodule between \mathcal{A} and \mathbb{C} with respect to the actions:

$$
\begin{aligned}
K \cdot \xi & =\iint k(z) \pi(z) \xi \mathrm{d} z \\
\xi \cdot \lambda & =\xi \bar{\lambda}
\end{aligned}
$$

and \mathcal{A} and \mathbb{C}-valued hermitian products:

$$
\begin{aligned}
& \bullet\langle\xi, \eta\rangle=\iint\langle\xi, \pi(z) \eta\rangle_{L^{2}(\mathbb{R})} \pi(z) \mathrm{d} z=\iint V_{\eta} \xi(z) \pi(z) \mathrm{d} z=\pi\left(V_{\eta} \xi\right) \\
& \langle\xi, \eta\rangle_{\bullet}=\langle\eta, \xi\rangle_{L^{2}(\mathbb{R})}
\end{aligned}
$$

A two dimensional spectral geometry
Commuting derivations (an infinitesimal action of \mathbb{T}^{2}) $\partial_{1}, \partial_{2}$:

$$
\begin{aligned}
& \partial_{1} K=2 \pi \mathrm{i} \iint_{\mathbb{R}^{2}} x k(x, \omega) \pi(x, \omega) \mathrm{d} x \mathrm{~d} \omega, \\
& \partial_{2} K=2 \pi \mathrm{i} \iint_{\mathbb{R}^{2}} \omega k(x, \omega) \pi(x, \omega) \mathrm{d} x \mathrm{~d} \omega .
\end{aligned}
$$

They lift to covariant derivatives on the equivalence bimodule \mathcal{E} :

$$
\left(\nabla_{1} \xi\right)(t)=2 \pi \mathrm{i} t \xi(t) \quad \text { and } \quad\left(\nabla_{2} \xi\right)(t)=\xi^{\prime}(t)
$$

they are compatible with both left and right hermitian structures.
The connection has constant curvature:

$$
F_{1,2}:=\left[\nabla_{1}, \nabla_{2}\right]=-2 \pi \mathrm{i}^{\mathrm{id}}{ }_{\varepsilon}
$$

Of course these are none other than the Heisenberg commutation relations (in the Schrödinger representation).

The anti-holomorphic connection $\bar{\nabla}=\nabla_{1}+i \nabla_{2}$ is the annihilation operator; the holomorphic $\nabla=\nabla_{1}-i \nabla_{2}$ is the creation operator.
$\psi \in \mathcal{S}(\mathbb{R})$ normalized as $\langle\psi, \psi\rangle_{\bullet}=\|\psi\|_{2}=1$,
\Rightarrow a non-trivial projection $p_{\psi}={ }_{\bullet}\langle\psi, \psi\rangle$ in \mathcal{A}.

The projection p_{ψ} is a solution of the self-duality equations,

$$
p_{\psi}\left(\partial p_{\psi}\right)=0
$$

if and only if, for some $\lambda \in \mathbb{C}$, the element ψ satisfies

$$
\bar{\nabla} \psi=\psi \lambda
$$

Eigenfunction equations for $\bar{\nabla}$; solutions are generalized Gaussians:

$$
\psi_{\lambda}(t)=c e^{-\pi t^{2}-i \lambda t}
$$

Explicitly,

$$
\begin{gathered}
p_{\psi}=\cdot\langle\psi, \psi\rangle=\iint_{\mathbb{R}^{2}} V_{\psi} \psi(z) \pi(z) \mathrm{d} z \\
V_{\psi} \psi(x, \omega)=e^{-\frac{\pi}{2}\left(x^{2}+\omega^{2}\right)} e^{-\pi \mathrm{i} x \omega-\frac{1}{2}(\bar{\lambda}+\lambda) x+\frac{1}{2}(\bar{\lambda}-\lambda) \omega}
\end{gathered}
$$

For its topological charge:

$$
c_{1}\left(p_{\psi}\right)=\operatorname{tr}\left(p_{\psi}\right)=V_{\psi} \psi(0)=1
$$

The self-duality equation for these projections
is the equation for the minimizers of the Heisenberg uncertainty relation, which explains why they are Gaussian ψ_{λ}.

The irrational rotation algebra (aka the noncommutative torus).
For $\theta \in \mathbb{R}$, the C^{*}-algebra noncommutative torus A_{θ} is the norm closure of the span of $\{\pi(\theta k, l): k, l \in \mathbb{Z}\}$:
the restriction of the Schrödinger rep (4) of \mathbb{R}^{2} on $L^{2}(\mathbb{R})$ to $\theta \mathbb{Z} \times \mathbb{Z} \subset \mathbb{R}^{2}$.
Denoting $\pi(0,1)=M_{1}$ and $\pi(\theta, 0)=T_{\theta}$ they satisfy:

$$
M_{1} T_{\theta}=e^{2 \pi i \theta} T_{\theta} M_{1}
$$

The smooth torus: subalgebra \mathcal{A}_{θ} of A_{θ} consisting of operators

$$
\pi(\mathbf{a})=\sum_{k, l \in \mathbb{Z}} a_{k l} \pi(\theta k, l), \quad \text { for } \quad \mathbf{a}=\left(a_{k l}\right) \in \mathscr{S}\left(\mathbb{Z}^{2}\right)
$$

With a and \mathbf{b} in $\mathcal{S}(\mathbb{R})$ we have for their product

$$
\pi(\mathrm{a}) \pi(\mathrm{b})=\pi(\mathrm{a} \not \mathrm{~b})
$$

where $\mathbf{a} \mathbf{a} b$ is the twisted convolution

$$
(\mathbf{a} \not \mathbf{} \mathbf{b})(k, l)=\sum_{m, n \in \mathbb{Z}} a_{m n} b_{k-m, n-l} e^{-2 \pi i \theta n(k-m)}
$$

while $\pi(\mathbf{a})^{*}=\pi\left(\mathbf{a}^{*}\right)$, where \mathbf{a}^{*} is the twisted involution of \mathbf{a} :

$$
\left(a_{k l}\right)^{*}=e^{-2 \pi i \theta k l} \overline{a_{-k,-l}} .
$$

Operators commuting with $\pi(\theta k, l)$ are associated with the lattice $\mathbb{Z} \times \theta^{-1} \mathbb{Z}$. They make up the algebra $\mathcal{A}_{1 / \theta}$ of elements

$$
b=\sum_{k, l \in \mathbb{Z}} b_{k l} \pi\left(k, \theta^{-1} l\right), \quad \text { for } \quad \mathbf{b}=\left(b_{k l}\right) \in \mathscr{S}\left(\mathbb{Z}^{2}\right)
$$

Take $\mathcal{A}=\mathcal{A}_{\theta}$ and $\mathcal{B}=\left(\mathcal{A}_{1 / \theta}\right)^{\text {op }} \simeq \mathcal{A}_{-1 / \theta}$

The space $\mathcal{E}=\mathcal{S}(\mathbb{R})$ is an equivalence bimodule between the noncommutative tori \mathcal{A} and \mathcal{B} with respect to the actions:

$$
\begin{aligned}
a \cdot \xi & =\sum_{k, l \in \mathbb{Z}} a_{k l} \pi(\theta k, l) \xi \\
\text { and } \quad \xi \cdot b & =\sum_{k, l \in \mathbb{Z}} b_{k l} \pi\left(k, \theta^{-1} l\right)^{*} \xi
\end{aligned}
$$

and with hermitian products

$$
\begin{aligned}
\bullet\langle\xi, \eta\rangle & =\theta \sum_{k, l \in \mathbb{Z}} V_{\eta} \xi(\theta k, l) \pi(\theta k, l) \\
\text { and } \quad\langle\xi, \eta\rangle_{\bullet} & =\sum_{k, l \in \mathbb{Z}} V_{\xi} \eta\left(k, l \theta^{-1}\right) \pi\left(k, \theta^{-1} l\right) .
\end{aligned}
$$

A two dimensional spectral geometry

The infinitesimal action of an ordinary torus \mathbb{T}^{2} on both algebras \mathcal{A}_{θ} and $\mathcal{A}_{-1 / \theta}$, are derivations. On \mathcal{A}_{θ} they are

$$
\begin{aligned}
\partial_{1}(a) & =2 \pi \mathrm{i} \sum_{k, l} k a_{k, l} \pi(\theta k, l) \\
\text { and } \quad \partial_{2}(a) & =2 \pi \mathrm{i} \sum_{k, l} l a_{k, l} \pi(\theta k, l),
\end{aligned}
$$

and the dual ones on $\mathcal{A}_{-1 / \theta}$ are then

$$
\begin{aligned}
\partial_{1}(b) & =-2 \pi \mathrm{i} \theta^{-1} \sum_{k, l} k b_{k, l} \pi\left(k, \theta^{-1} l\right)^{*} \\
\text { and } \quad \partial_{2}(b) & =-2 \pi \mathrm{i} \theta^{-1} \sum_{k, l} l b_{k, l} \pi\left(k, \theta^{-1} l\right)^{*} .
\end{aligned}
$$

Lift to covariant derivatives ∇_{1}, ∇_{2} on the bimodules $\mathcal{E}=\mathcal{S}(\mathbb{R})$:

$$
\left(\nabla_{1} \xi\right)(t)=2 \pi \mathrm{i} \theta^{-1} t \xi(t) \quad \text { and } \quad\left(\nabla_{2} \xi\right)(t)=\frac{\mathrm{d} \xi(t)}{\mathrm{d} t}=: \xi^{\prime}(t)
$$

The curvature is constant:

$$
F_{1,2}:=\left[\nabla_{1}, \nabla_{2}\right]=-2 \pi \mathrm{i} \theta^{-1} \mathrm{id}_{\mathcal{E}} .
$$

Frames

As a module over $\mathcal{A}_{\theta}, \mathcal{E}=\mathcal{S}(\mathbb{R})$ is of finite rank and projective and it admits a standard module Parseval frame $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$ for $\mathcal{S}(\mathbb{R})$, that is each $\xi \in \mathcal{S}(\mathbb{R})$ has an expansion,

$$
\xi=\bullet\left\langle\xi, \eta_{1}\right\rangle \eta_{1}+\cdots+\bullet\left\langle\xi, \eta_{n}\right\rangle \eta_{n}
$$

For $0<\theta<1$, the module $\mathcal{S}(\mathbb{R})$, is given by a projection in \mathcal{A}_{θ} itself: one can use a one-element Parseval frame η

From a standard module frame η one gets a Parseval frame $\tilde{\eta}$ by taking the element $\widetilde{\eta}:=\eta\left(\langle\eta, \eta\rangle_{0}\right)^{-1 / 2}$

Then $\langle\widetilde{\eta}, \tilde{\eta}\rangle_{\bullet}=1$ and $\bullet\langle\widetilde{\eta}, \tilde{\eta}\rangle$ is a projection in \mathcal{A}_{θ}.

Frames and projections:

- The Hermite function

$$
\eta=\psi_{k}(t)=c_{k} e^{\pi t^{2}} \frac{d^{k}}{d t^{k}} e^{-2 \pi t^{2}}
$$

gives a projection $p_{k}=\bullet\langle\widetilde{\eta}, \widetilde{\eta}\rangle \in \mathcal{A}_{\theta}$, if $0<\theta<(k+1)^{-1}$.

- Let $\eta \in \mathcal{S}(\mathbb{R})$ be a totally positive function of finite type greater than 2 . Then, $p_{\tilde{\eta}}=\cdot\langle\widetilde{\eta}, \widetilde{\eta}\rangle$ is a projection in \mathcal{A}_{θ} for $0<\theta<1$.

All of these projections have topological charge equal to 1. From

$$
c_{1}(p)=q \operatorname{tr}\left(1_{B}\right)
$$

with now $q=\theta^{-1}$ (the curvature) and $\operatorname{tr}\left(1_{B}\right)=\operatorname{tr}\left(\mathcal{A}_{-1 / \theta}\right)=\theta$.

Duality and Gabor frames
For a Parseval frame, the duality principle (Wexler-Raz identity), reads as an expansion of each ξ in $\mathcal{S}(\mathbb{R})$ both over \mathcal{A} and \mathcal{B},

$$
\xi=\bullet\langle\xi, \widetilde{\eta}\rangle \widetilde{\eta}=\widetilde{\eta}\langle\widetilde{\eta}, \xi\rangle_{\bullet},
$$

with $\bullet\langle\xi, \widetilde{\eta}\rangle \in \mathcal{A}$ and $\langle\widetilde{\eta}, \xi\rangle_{\bullet} \in \mathcal{B}$ which are uniquely determined.
This helps for the soliton equation.
As before, the s-d eqs for the projection p_{ψ} obeys $p_{\psi} \partial\left(p_{\psi}\right)=0$ translate to a generalized eigenvector equation

$$
\bar{\nabla} \psi=\psi \lambda
$$

with now $\lambda=\langle\psi, \bar{\nabla} \psi\rangle_{\bullet} \in \mathcal{A}_{-1 / \theta}$.
Using the duality principle we have that with $\psi:=\eta\left(\langle\eta, \eta\rangle_{0}\right)^{-1 / 2}$, the projection $p_{\psi}=\boldsymbol{\bullet}\langle\psi, \psi\rangle \in \mathcal{A}_{\theta}$ satisfies the s-d eqs:

- For $0<\theta<(k+1)^{-1}$, if η is the k -th Hermite functions ψ_{k}.
- For $0<\theta<1$, if η is a tot pos fun in $\mathcal{S}(\mathbb{R})$ of finite type greater than 2 .

In particular, the Gaussian function

$$
\psi_{\lambda}(t)=c e^{-\frac{\pi}{\theta} t^{2}-\mathrm{i} \lambda t}, \quad \text { for } \quad \lambda \in \mathbb{C}
$$

obeys the equation $\bar{\nabla} \psi_{\lambda}=\psi_{\lambda} \lambda$.
The right hermitian product $\left\langle\psi_{\lambda}, \psi_{\lambda}\right\rangle_{0}$ is invertible in $\mathcal{A}_{-1 / \theta}$ for all $0<\theta<1$,
so that the projections $p_{\lambda}=\cdot\left\langle\widetilde{\psi}_{\lambda}, \widetilde{\psi}_{\lambda}\right\rangle$, with $\widetilde{\psi_{\lambda}}:=\psi_{\lambda}\left(\left\langle\psi_{\lambda}, \psi_{\lambda}\right\rangle_{\bullet}\right)^{-1 / 2}$ are solutions of the self-duality equations

The moduli space of such Gaussian solutions, is parametrised by possible λ 's modulo gauge transformations
(implemented by invertible elements in $\mathcal{A}_{-1 / \theta}$)
is a copy of the complex torus.

Sigma-model solitons over the Moyal plane and noncommutative tori, as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in the source algebra

Solutions, having non-trivial topological content, are constructed via suitable Morita duality bimodules,

Inputs from time-frequency analysis and Gabor analysis
More interesting cases
Uses in time-frequency analysis and Gabor analysis coming up

