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Abstract

Sigma-model solitons over the Moyal plane and noncommutative tori,
as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in
the source algebra

Solutions, having non-trivial topological content, are constructed via suitable
Morita duality bimodules,

Inputs from time-frequency analysis and Gabor analysis



Non-linear o-models: field theories of maps X between the source space
(X,9), and the target space (M,G). The action functional

1 . _
S =~ [ VG 9" Gy(0)8,X 0,X,
27'(' S
The stationary points: are harmonic maps from > to M; describe minimal

surfaces embedded in M.

2> two dimensional: the action S is conformally invariant, that is invariant by
any rescaling of the metric g — €7g.

Thus the action only depends on the conformal class of the metric and may
be rewritten using a complex structure on >

S[X] = %/ G (X)X ABXT
>



Here 8 and O, a complex structure and d = 9 + 0.

In two dimensions
complex and conformal

are the same thing.

In two dimensions, the conformal class of a general constant metric is parametrized
by a complex number r € C, &1 > 0.

Up to a conformal factor, the metric is

o= B



An algebraic generalization: by dualization and reformulation in terms of the
x-algebras A = C>*(3,C) and B=C>*(M,C).

Embeddings X of > into M correspond to x-algebra morphisms nwx from B to
A, with correspondence f+— nx(f) = f o X.

All this makes sense for general algebras A and B.
The configuration space is all x-algebra morphisms from B to A

The definition of the action functional involves generalizations of the confor-
mal and Riemannian geometries.



Connes: the conformal is understood within the framework of positive Hochschild
cohomology. The tri-linear map ¢ : A®3 — R,

b(fo, f1, f2) = + / fodf1 N>
T Jx

is an extremal of positive Hochschild cocycles belonging to the Hochschild
cohomology class of the cyclic cocycle ¢ defined by

V(fo, f1,f2) = o / fodfi Adfa.
TJs

On the one hand v, the fundamental class, allows to integrate 2-forms in
dimension 2, so it is a metric independent object

On the other hand, ¢ defines a suitable positive scalar product

(apda1, bodb1) = ¢(byao, a1, b])
on 1-forms and depends on the conformal class of the metric.



Expressions like ¢ and @ make sense for a general algebra A.

Compose the cocycle ¢ with a morphism = : B — A to obtain a positive
cocycle on B
¢r = o (M@@T Q)

Evaluate the cocycle ¢, on a suitably element of B®3 which provides the
noncommutative analogue of the metric on the target;

Easiest choice for this metric: a positive element G = 3. b},6b;6b% of the space
of universal 2-forms Q2?(B). Thus, the quantity

S[r] = ¢-(G) (1)

is well defined and positive: a noncommutative analogue of the action func-
tional of the non linear o-model.



Here 7 is the dynamical variable (the embedding) whereas ¢ (the conformal
structure on the source) and G (the metric on the target) are background
structures that have been fixed.

The critical points of the o-model for the action functional (1) are general-
izations of harmonic maps: “minimally embedded surfaces” in the (noncom-
mutative) space associated with B.

The role of the other cocycle ¢ is to give a topological ‘charge’.

More on this late on.



Two points as a target space

For a target space made of two points M = {1,2},
any continuous map from a connected surface > to a discrete space is con-
stant, a commutative theory would be trivial.

This is not the case if the source space is ‘noncommutative’ and there are,
in general, not trivial such maps, ‘dually’, as x-algebra morphisms from the
algebra of functions over M = {1,2}, that is C?, to the algebra A of the
noncommutative source space.

As a vector space C? is generated by the projection function e defined by
e(1) =1 and e(2) = 0;

= any s-algebra morphism 7 : C> — A is the same as a projection p = w(e) € A.

The configuration space of a two point target space sigma-model is the
collection of all projections P(A) in the algebra A.

Choosing the metric G = dede on the space M = {1,2}, and a Hochschild
cocycle ¢ for the conformal structure, the action functional is simply

Slpl = ¢(1,p,p),

From general consideration of positivity in Hochschild cohomology this action
is bounded by a topological term.



Noncommutative torus and Moyal plane as source space A:

the action functional is
1 _
S[p] = —tr(Opop).
4

with the natural complex structure on A given by
0= 01— i0o, 5=81+i82,

and derivations 0; and 0, infinitesimal generators of a T2?-action
and tr an invariant trace.
All of above can be extended to more general metrics.

In two dimensions, Up to a conformal factor the general constant metric is
parametrized by a complex number - € C, S > 0.

The corresponding ‘complex torus' T2 = IR{Q/Z + 77 would act infinitesimally
on A with two complex derivations

0=01+ 702, 0= 01+ 105



As usual, the critical points of the action functional are obtained by equating
to zero its first variation, that is the linear term in an infinitesimal variation

65[p] = Slp + dp] — Slpl, for op € T,(P(A)).

One gets
p A(p) (1—-p)=0 and (1-p) A(p) p=0,

or, equivalently the non-linear equations of the second order

p A(p) —A(p) p=0. (2)

with the Laplacian of the metric A = 2(89 + 99)



The cyclic 2-cocycle giving the fundamental class is

1
Y(ao,a1,a2) = 2—7Titr (a0(B1a182a2 — B2a101a2)),

For any projection p € P(A), the quantity

c1(p) == v (p,p,p)
iS an integer: the index of a Fredholm operator.

For any p € P(A) it holds that
Slp] > |e1(p)] -

The equality for projection p satisfying self-duality or anti-self duality egns

p(01 £102)(p) =0 (3)

These equation imply the EOM (2).



Projection from Morita equivalence (Rieffel)
A Morita equivalence between (pre C*-algebras) A and B:

a A — B-bimodule £ with a left-linear A-valued hp «-,-) and a right-linear
B-valued hp (-,-%. There is an associativity condition:

&1 ¢ =M, Che

It follows an identification B ~ K4(£) (compact endomorphisms).

In particular, there exist elements {n1,...,n,} in £ such that

Zj (nj>njde = 15.
Then, the associativity condition gives that the matrix p = (pj;x)

Pik = oNj, Nk)

is a projection in the matrix algebra M,(A).



Both algebras A and B are in the joint smooth domain of two commuting
derivations 91 and 0> ;: and have faithful invariant tracial states, which are
compatible in the sense that:

tr '<£7 77> = tr <777 §>‘

Derivations are lifted to £ as (left and right) covariant derivatives:
V,:€=€&, j=1,2,
Vi(a&) = (0ja)§ +a(V;§) and V,;(€b) = (V) b+ £(0;b)

compatible with both the A-valued hermitian structure -, ) and the B-valued
hermitian structure (-, -):

95 (&, m) = V&, m) + &, Vm)
and
9;((§,me) = (V&M + (€, Vjm)e -



Lifting self-duality equations; solitons (for simplicity ‘rank’ one)

The holomorphic/anti-holomorphic, connection on &,
V=V;—iVy, V=Vi+iV>

lift to £ the complex derivations 9 =91 —id» or & = 91 + i 9.

Seek solutions of the s-d eqgs (3) of the form

py =Y, ) € A with ¢ €& such that (¢,¢) = 15

‘The projection p, is a solution of the s-d egs:

pyO(py) = 0,

if and only if the vector v is a generalized eigenvector of V

i.e. there exists A\ € B such that
Vi = P,



How to compute the topological charge:

The curvature of the covariant derivatives is defined as

F12 = Vl VQ — V2V1

Let ¢ € £ be such that (¢,¢) = 1 and py 1= ¥, 9¥) € A the corresponding
projection. Then, its topological charge is:

1
c1py) = —5 1 (¢, Fiop)s .

Constant curvature: Fio = —2mwiqidg

the projection p,; = «¢,%) has then topological charge
ci1(p) = qtr(lp) € Z

note that neither ¢ nor tr(1g) need be an integer



Moyal plane from Schrodinger representation

The projective representation of R? on L?(R) defined by
(m(2) £)(t) = *™™E(t — z), for z = (z,w).

7(2) w() = e MW r(z 4 2.

The map ¢c: RxR = T, ¢(z,2') = e 27@) js 3 2-cocycle.

Its matrix-coefficients are defined for &,n € L?(R) by

Vié(z) = (& m(2)N) @) = /Rf(t)ﬁ(t —x)e 2mhdt

In signal analysis V¢ is known as the short time Fourier transform

Moyal's identity:  (Vy&, Vo) ramey = (€5 @) r2m) {5 V) r2(w)

(4)



The twisted group algebra L'(R?,¢) of R? associated to the cocycle c¢. For k
and [ in L1(R?), the twisted convolution (kfl):

(kb)) (z) = // E(ZD)l(z — 2)e(d, 2 — 2')d
and twisted involution of k € L1(R?):
k*(2) = c(z,2)k(—2) = e 2™ (—2)

The integrated representation

K = n(k) = //ﬂ: k(2)7m(2)dz

for k € Ll(RQ), IS @ non-degenerate bounded representation of the twisted
convolution algebra L'(R,c) on L?(R?).

The adjoint of K = =w(k) is given by K* = w(k*) and the composition of
K = 7n(k) and L = w(l) corresponds to (kyl):

KL = //H:(khl)(z)w(z)dz.



Denote by A the class of all operators K = n(k) for k € S(R?); they are all
trace-class. Its norm closure is all compact operators.

A is a model of the Movyal plane: the Fourier transforms of the symbols
defining elements of A yield the Moyal product:

kxl=F *F(k)FQ)) for k,l € S(R?).



Rieffel :

The space £ = S(R) is an equivalence bimodule between A and C

with respect to the actions:

K-¢= [[Kamea

£-A=¢X

and A and C-valued hermitian products:
den = [[E@n@m@n@ds= [[ Vig@me)dz = x(ve)

(&sme = (0, 8) 12(R) -



A two dimensional spectral geometry

Commuting derivations (an infinitesimal action of T?) 8, O-:

0K = 27Ti// xk(x,w)r(z,w) drdw,
RQ

O K = 2mi // wk(z,w)m(x,w) dedw.
RQ

They lift to covariant derivatives on the equivalence bimodule &:

(V1) () = 2mit£(¢) and (V26)(t) = £'(¢)

they are compatible with both left and right hermitian structures.

T he connection has constant curvature:

F1,2 = [Vl,VQ] = —2mi idg

Of course these are none other than the Heisenberg commutation relations
(in the Schrodinger representation).

The anti-holomorphic connection V = V; 4 iV5> is the annihilation operator;
the holomorphic V = V1 — iVsy is the creation operator.



Y € S(R) normalized as (i, v) = ||¢||2 = 1,

= a non-trivial projection p, = ¥, ¢) in A.

The projection p, is a solution of the self-duality equations,

py(Opy) =0
if and only if, for some \ € C, the element 1 satisfies

Vi = Y.
Eigenfunction equations for V: solutions are generalized Gaussians:

w)\(t) — ce—wtz—iAt.
Explicitly,

py = P, ) = // Vyp(z)m(z) dz
RQ
Vit (2 w) = e 3@ Ho) i SN o+ GAw

For its topological charge:

c1(py) = tr(py) = Vyp(0) = 1.



The self-duality equation for these projections
is the equation for the minimizers of the Heisenberg uncertainty relation,

which explains why they are Gaussian .



The irrational rotation algebra (aka the noncommutative torus).

For 0 € R, the C*-algebra noncommutative torus Ay is the norm closure of
the span of {n(0k,l) : k,l € Z}:

the restriction of the Schrodinger rep (4) of R? on L?(R) to 0Z x 7Z C R?.
Denoting 7(0,1) = M7 and «(0,0) = Ty they satisfy:
M1Ty = e>™TyM; .

The smooth torus: subalgebra Ay of Ay consisting of operators

m(a) = > apm(0k,1), for a= (ay) € L (Z?).
k€7
With a and b in S(R) we have for their product
m(a)w(b) = w(ajb)

where agb is the twisted convolution

(ab)(k,1) = > amnbp_m e 20t

m,ne



while w(a)* = w(a*), where a* is the twisted involution of a:

(aw)* = e *""ay, 7.

Y

Operators commuting with w(0k,1) are associated with the lattice Z x 671Z.

They make up the algebra A1/9 of elements

b= bym(k,607'), for b= (by) € .¥(Z?)
k,l€Z

Take A= Ay and B = (A1) >~ A_4



The space £ = S(R) is an equivalence bimodule between the noncommutative
tori A and B with respect to the actions:

a &€= aum(9k,DE,

klEZ

and £ b= Z b (k, 0 )*E,

k,leZ

and with hermitian products

{&m) =0 VyE(0k, Dm(6k, 1),

k,leZ

and  (&,me =) Ven(k,10~)m(k,071).
k,leZ



A two dimensional spectral geometry

The infinitesimal action of an ordinary torus T? on both algebras 4y and A_1/0,
are derivations. On Ay they are

01(a) = 2mi » _ kaym(6k, 1)
k,l

and 02(a) = 271 Y lagm(0k,1),
k.l

and the dual ones on A_; are then

01(b) = —2mi0 ™1 Y kbpym(k, 071"
k,l

and 02(b) = —2mi6 1Y " Ibym(k, 07 11)" .
k.l

Lift to covariant derivatives V1, V> on the bimodules £ = S(R) :

(Vi)W =207 1e(t) and  (Vao)() = T = ¢/(1).

The curvature is constant:
Fi5:=[V1,V2] = =270 tids.



Frames

As a module over Ay, £ = S(R) is of finite rank and projective and it admits
a standard module Parseval frame {n1,...,n,} for S(R), that is each £ € S(R)
has an expansion,

E=o&m)m + -+ &, ) e

For 0 < 8 <1, the module S(R), is given by a projection in Ay itself: one can
use a one-element Parseval frame n

From a standard module frame n one gets a Parseval frame n by taking the
element 77 := n((n,n)%) 1/

Then (n,m = 1 and «n,n) is a projection in Ajy.



Frames and projections:

e The Hermite function

gives a projection py = «1,7) € Ay, if 0 <0 < (k+ 1)1

e Let n € S(R) be a totally positive function of finite type greater than 2.
Then, p-= «1,m) is a projection in Ay for 0 < 6 < 1.

All of these projections have topological charge equal to 1. From

c1(p) = qtr(1lp)
with now ¢ = 6! (the curvature) and tr(1p) =tr(A_19) = 0.

Duality and Gabor frames
For a Parseval frame, the duality principle (Wexler-Raz identity), reads as an
expansion of each £ in S(R) both over A and B,

— °<€’7A7>77: ﬁ<ﬁ9§>°7



with &,m) € A and (n,€&) € B which are uniquely determined.
This helps for the soliton equation.

As before, the s-d egs for the projection p, obeys p,d(py,) = O translate to a
generalized eigenvector equation

Vi = A,
with now XA = (¢, V) € A_qp.

Using the duality principle we have that with ¢ := n((n,n)%) /2,
the projection py = ¢, ¥) € Ay satisfies the s-d eqs:
e For 0< 0 < (k+ 1)1, if nis the k-th Hermite functions ;.

e For 0< A <1, ifnis a tot pos fun in S(R) of finite type greater than 2.



In particular, the Gaussian function

() = ce i for AeC,
obeys the equation Vi, = ¥ \.

The right hermitian product (i, ) is invertible in A_;, for all 0 <6 < 1,
so that the projections p, = .<{EA, {DVA> With ¥ = ¥ ((¥x, ¥2)e) ~1/2 are solutions
of the self-duality equations

The moduli space of such Gaussian solutions, is parametrised by possible A's
modulo gauge transformations

(implemented by invertible elements in A_4 )

IS a copy of the complex torus.



Sigma-model solitons over the Moyal plane and noncommutative tori,
as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in
the source algebra

Solutions, having non-trivial topological content, are constructed via suitable
Morita duality bimodules,

Inputs from time-frequency analysis and Gabor analysis

More interesting cases

Uses in time-frequency analysis and Gabor analysis coming up



