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Motivation

In our recent work, generalized geometry proved to be useful tool to
naturally describe the objects in open string low energy effective
actions.

S ∝
∫

dnx
√

det (g + B + F ).

Low energy effective closed string action gives Einstein-Hilbert type
action:

S ∝
∫

dnx
√
ge−2Φ(R(g)− 1

12
dB2 + 4∇Φ2).

Is there a way how to obtain actions of this type from generalized
geometry objects?

Can we use this tools to find higher order corrections to effective
actions?

Collaboration with Branislav Jurčo
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Generalized metric

Let g be a Riemannian metric on a manifold M, B ∈ Ω2(M) a
B-field on M.

A Hamiltonian density of Polyakov string moving in M(g ,B) can
conveniently be described in terms of 2n × 2n matrix G

G =

(
g − Bg−1B Bg−1

−g−1B g−1

)
It can be viewed as a fiberwise metric on vector bundle

E = TM ⊕ T ∗M.

G is called a generalized metric

Vector bundle E is equipped with a signature (n, n) fiberwise metric
gE ≡ 〈·, ·〉E defined as a canonical pairing

〈V + ξ,W + η〉E = η(V ) + ξ(W ).

G is equivalent to choosing rank n positive definite subbundle
V+ ⊆ E with respect to the metric 〈·, ·〉E .

Jan Vysoký Courant algebroid connections and Einstein-Hilbert type actions



Courant algebroids

A way of promoting quadratic Lie algebra to the realm of vector
bundles. Courant algebroid = (Quadratic Lie algebra)-oid.

Definition

Let E be a vector bundle with base manifold M. Define the anchor
ρ ∈ Hom(E ,TM), fiberwise metric gE ≡ 〈·, ·〉E on E , and R-bilinear
bracket [·, ·]E : Γ(E )× Γ(E )→ Γ(E ).
Then (E , ρ, gE , [·, ·]E ) is a Courant algebroid if

1 (Γ(E), [·, ·]E ) is a Leibniz algebra, that is

[e, [e′, e′′]E ]E = [[e, e′]E , e
′′]E + [e′, [e, e′′]E ]E .

2 It satisfies the Leibniz rule: [e, fe′]E = f [e, e′]E + (ρ(e).f )e′.

3 Pairing gE is invariant with respect to [·, ·]E :

ρ(e).〈e′, e′′〉E = 〈[e, e′]E , e′′〉E + 〈e′, [e, e′′]E 〉E .

4 Skew-symmetry is reasonably broken: 〈[e, e]E , e
′′〉E = ρ(e′).〈e, e〉E .
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Courant algebroid bracket is not skew-symmetric, [·, ·]E is not a Lie
algebra bracket.

In fact, only Lie algebroid satisfying first 3 axioms has ρ = 0, it is
then a collection of quadratic Lie algebras on each fiber.

Canonical non-trivial example is the (twisted) Dorfman bracket

Example

Consider E = TM ⊕ T ∗M, gE = 〈·, ·〉E be the canonical pairing defined
previously, and ρ(X + ξ) = X . The H-twisted Dorfman bracket [·, ·]HD is
defined as

[X + ξ,Y + η]HD = [X ,Y ] + LXη − iY dξ − H(X ,Y , ·),

where H ∈ Ω3(M).
Then (E , ρ, gE , [·, ·]HD) is a Courant algebroid, iff dH = 0.

For any B ∈ Ω2(M), define the map eB(X + ξ) = X + ξ + B(X ).
Then there is a relation

eB([X + ξ,Y + η]H+dB
D ) = [eB(X + ξ), eB(Y + η)]HD .
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Connections on Courant algebroids

On every vector bundle, a linear connection ∇ is a map
∇ : X(M)× Γ(E )→ Γ(E ), satisfying

∇fX e
′ = f∇X e

′,

∇X (fe′) = f∇X e
′ + (X .f )e′.

Consider Courant algebroid (E , ρ, gE , [·, ·]E ). Having
ρ ∈ Hom(E ,TM), we can generalize. ∇ : Γ(E )× Γ(E )→ Γ(E ) is a
Courant algebroid connection, if

∇ee
′ = f∇ee

′,

∇e(fe′) = f∇ee
′ + (ρ(e).f )e′,

for all e, e′ ∈ Γ(E ), and it is compatible with 〈·, ·〉E :

ρ(e).〈e′, e′′〉E = 〈∇ee
′, e′′〉E + 〈e′,∇ee

′′〉E .

We say that ∇ is an induced Courant algebroid connection, if
there is an ordinary connection ∇′, such that ∇e = ∇′ρ(e).
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Courant algebroid axioms imply ρ([e, e′]E ) = [ρ(e), ρ(e′)]E . It is this
property which is important in the following.

Having a bracket [·, ·]E , we can try to generalize the torsion
operator. A following naive guess fails:

TN(e, e′) = ∇ee
′ −∇e′e − [e, e′]E .

It is not tensorial, and it is not skew-symmetric.

There are two correct definitions of torsion in the literature.
1 M. Gualtieri:

TG (e, e′, e′′) = 〈TN(e, e′), e′′〉E +
1

2
(〈∇e′′e, e

′〉E − 〈∇e′′e
′, e〉E )

2 P. Xu & A. Alekseev:

C(e, e′, e′) =
1

3
(〈[e, e′]E , e′′〉E−

1

2
〈∇ee

′−∇e′e, e
′′〉E+cyclic(e, e′, e′′).

Both are well defined based on Leibniz rule for [·, ·]E , but using the
other axioms, one can see that in fact TG ∈ Ω3(E ), and

TG (e, e′, e′′) = −C (e, e′, e′′).
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One can write this as TG (e, e′, e′′) = 〈T (e, e′), e′′〉E , where

T (e, e′) = ∇ee
′ −∇e′e − [e, e′]E + 〈∇eλe, e

′〉Eg−1
E (eλ),

where we view K(e, e′) = 〈∇eλe, e
′〉Eg−1

E (eλ) as a correcting term,
which kills the non-tensorial behavior of TN(e, e′) in e:

K(fe, e′) = f K(e, e′) + 〈e, e′〉EDf ,
K(e, fe′) = f K(e, e′).

Here Df is a map defined by 〈Df , e〉E = ρ(e).f .

One can also attempt to generalize a curvature operator:

RN(e, e′)e′′ = [∇e ,∇e′ ]e
′′ −∇[e,e′]E e

′′.

This defines a tensorial object in (e′, e′′), but not in e. It works
sufficently well only on isotropic subbundles, and for induced
connections. Is there a way arround?
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Kind of. The idea is similar - correct the wrong behaviour in e.

R(e, e′)e′′ = [∇e ,∇e′ ]e
′′ −∇[e,e′]E e

′′ +∇K(e,e′)e
′′.

This spoils the tensoriality in e′′, unless ρ(K(e, e′)) = 0. The K
defined above does not satisfy this.

On the other hand, for ρ with locally constant rank, one can always
find K which works correctly. This choice, however, is not canonical.

In fact, let df = ρT (df ) ∈ Γ(E∗). One can find L ∈ T 1
2 (E ), such

that
[fe, e′]E = f [e, e′]E − (ρ(e′).f )e + L(df , e, e′),

It satisfies ρ(L(df , e, e′)) = 0. Note that df span Ann(ker ρ). If one
can extend this property to Γ(E∗), then

K(e, e′) = L(eλ,∇eλe, e
′).

One can see that L for Courant algebroid has to satisfy

L(df , e, e′) = 〈e, e′〉EDf .
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Let E = TM ⊕ T ∗M. Then one can extend the L trivially to some
isotropic complement to the subbundle Ann (ker ρ). This is as
canonical as we can get. We obtain a class of maps parametrized by
two-form C ∈ Ω2(M):

LC ((ζ + Z ), (X + ξ), (Y + η)) = 〈X + ξ,Y + η〉E (ζ − C (Z )).

Let KC be a corresponding class of correcting maps. We tend to
work with K0.

This works similarly also on exact Courant algebroids.

Note that for Courant algebroid connections, the curvature operator
R defined in this way still has some remarkable properties! We get

R(e, e′)e′′ = −R(e′, e)e′′,

It still posseses the following convenient symmetry:

〈R(e, e′)f ′, f ′′〉E = −〈R(e′, e)f ′′, f ′〉E .
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LC connections

Let E = TM ⊕ T ∗M. Recall that we have generalized metric G. We
impose the generalized metric compatibility condition:

ρ(e).G(e′, e′′) = G(∇ee
′, e′′) + G(e′,∇ee

′′),

for the Courant algebroid connection ∇.

Further, we impose a torsion-free condition: T (e, e′) = 0.

Usual formulas for Levi-Civita connections do not work.

This cannot stop one from examining all possibilities. One arrives to
the conclusion that

∇e = eB∇̂e−B (e)e
−B(e′),

where ∇̂ is also a Courant algebroid connection, but compatible with
G(B = 0). The explicit form of ∇̂ is ... on the next slide
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∇̂X =

(
∇LC

X + g−1D(X , ?, ·) − 1
3g
−1H(X , g−1(?), ·)− J (g(X ), ?, ·)

− 1
3H(X , ?, ·)− gJ (g(X ), g(?), ·) ∇LC

X +D(X , g−1(?), ·)

)

∇̂ξ =

(
1
6g
−1H(g−1(ξ), ?, ·)− J (ξ, g(?), ·) g−1D(g−1(ξ), g−1(?), ·)

D(g−1(ξ), ?, ·) 1
6H(g−1(ξ), g−1(?), ·)− gJ (ξ, ?, ·)

)

∇LC is the Levi-Civita connection corresponding to the metric g ,
and H = dB.

D ∈ Ω1(M)⊗ Ω2(M) satisfies D(X ,Y ,Z ) + cyclic(X ,Y ,Z ) = 0.

J ∈ X1(M)⊗ X2(M) satisfies J (ξ, η, ζ) + cyclic(ξ, η, ζ) = 0.

This shows that torsion-free ∇ is not determined uniquelly by metric
compatibility conditions. The freedom lies exactly in the choice of
tensors D and J .

What about the curvature operator R and scalar curvatures of such
connections? It is a straightforward calculation...

Jan Vysoký Courant algebroid connections and Einstein-Hilbert type actions



... two weeks later ...
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Curvature operator R certainly depends on (g ,B,J ,D), and
moreover on the choice of map KC .

We can define a Ricci tensor Ric in a usual way as

Ric(e, e′) = 〈eλ,R(eλ, e
′)e〉.

Finally, we may use the two available metrics G, and gE , to produce
two scalars:

R = Ric(G−1(eλ), eλ),

RE = Ric(g−1
E (eλ), eλ).

Let D′(X ) = D(g−1(dyk), ∂k ,X ), and J ′(ξ) = J (g(∂k), dyk , ξ).

The final result for curvatures is

R = R(g)− 1

12
H ijkH

ijk + 4 divD′ − 4‖D′‖2
g − 4‖J ′‖2

g ,

RE = −4 divJ ′ + 8〈J ′,D′〉.
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Applications

It is not clear yet, how to choose between the connections. Clearly,
the most natural choice is J = D = 0. In this case, we have

R = R(g)− 1

12
H ijkH

ijk , RE = 0.

R is thus (without the dilaton Φ) exactly the closed string effective
action, including the correct factor 1/12.

The fields (g ,B) are coming from the string backgrounds, whereas
J and D from the freedom in the connection. Can we fix them for
example by equations of motion?

Many interesting field redefinitions, e.g. T -duality or Seiberg-Witten
open-closed relations, can be written as orthogonal transformations
of the generalized metric G.

Assume that O ∈ O(E ) is an orthogonal automorphism, that is

〈O(e),O(e′)〉E = 〈e, e′〉E .
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Then G′ = OTGO is again a generalized metric. This time
corresponding to a different pair (g ′,B ′).

Having a connection ∇, define new connection ∇′ as

∇′ee′ = O−1∇O(e)O(e′).

This is Courant algebroid connection metric compatible with G′.

But we have to twist also the Courant algebroid bracket,

[e, e]′E = O−1[O(e),O(e′)]E .

This twist is usually quite unpleasant.

However, there always exist two stabilizing maps N±, that is

NT
±G′N± = G′,

making this transformation into nicer one: F± = ON±.
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There are two automorphisms of TM, denoted as Φ±, induced by
O. The Lie algebroid on TM is then
[X ,Y ]±L = Φ±[Φ−1

± (X ),Φ−1
± (Y )]. The bracket [·, ·]±E is then

[X + ξ,Y + η]±E = [X ,Y ]±L + LL±
X η − iηdL±(ξ)− (dL±ω±)(X ,Y , ·),

for ω± ∈ Ω2(M).

One can now define ∇±e e′ = F−1
± ∇F±(e)F±(e′). By definition ∇±e e′

is torsion-free with respect to [·, ·]±E .

Their (both) scalar curvatures, calculated using the respective
Courant brackets, coincide.

One can use this approach to simply prove certain equalities, e.g.

R(g)− 1

12
H ijkH

ijk = Rθ(G )− 1

12
SijkS

ijk ,

where G = −Bg−1B, θ = B−1 is H-twisted Poisson tensor,
S = [θ, θ]S , and Rθ(G ) corresponds to LC -connection with respect
to Koszul Lie algebroid on T ∗M.
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Outlooks

So far, we have worked only with Dorfman bracket on TM ⊕ T ∗M.

With minimum of modifications, everything works for exact Courant
algebroids, because in fact E ∼= (TM ⊕ T ∗M).

0 −→ T ∗M
g−1
E ◦ρ

T

−→ E
ρ−→ TM −→ 0.

We would like to re-itroduce the dilaton Φ. This corresponds to
working with Atiyah-Lie algebroids coming from U(1)-bundles.

We can thus think of E = L⊕ L∗, where L is a transitive Lie
algebroid, E equipped with the Dorfman bracket corresponding to L.

There are many more interesting Courant algebroids to try our
approach on, e.g. heterotic Courant algebroids

E ∼= TM ⊕ (P ×Ad g)⊕ T ∗M,

where (g, c) is a quadratic Lie algebra.
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Thank you for your attention!
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