Courant algebroid connections and Einstein－Hilbert type actions

Jan Vysoký
Czech Technical University in Prague－Jacobs University Bremen

May 29 －June 1 2015，Bayrischzell Worskhop

Motivation

- In our recent work, generalized geometry proved to be useful tool to naturally describe the objects in open string low energy effective actions.

$$
S \propto \int d^{n} x \sqrt{\operatorname{det}(g+B+F)} .
$$

- Low energy effective closed string action gives Einstein-Hilbert type action:

$$
S \propto \int d^{n} x \sqrt{g} e^{-2 \Phi}\left(\mathcal{R}(g)-\frac{1}{12} d B^{2}+4 \nabla \Phi^{2}\right)
$$

- Is there a way how to obtain actions of this type from generalized geometry objects?
- Can we use this tools to find higher order corrections to effective actions?
- Collaboration with Branislav Jurčo

Generalized metric

- Let g be a Riemannian metric on a manifold $M, B \in \Omega^{2}(M)$ a B-field on M.
- A Hamiltonian density of Polyakov string moving in $M(g, B)$ can conveniently be described in terms of $2 n \times 2 n$ matrix \mathbf{G}

$$
\mathbf{G}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \\
-g^{-1} B & g^{-1}
\end{array}\right)
$$

- It can be viewed as a fiberwise metric on vector bundle

$$
E=T M \oplus T^{*} M
$$

- G is called a generalized metric
- Vector bundle E is equipped with a signature (n, n) fiberwise metric $g_{E} \equiv\langle\cdot, \cdot\rangle_{E}$ defined as a canonical pairing

$$
\langle V+\xi, W+\eta\rangle_{E}=\eta(V)+\xi(W) .
$$

- \mathbf{G} is equivalent to choosing rank n positive definite subbundle $V_{+} \subseteq E$ with respect to the metric $\langle\cdot, \cdot\rangle_{E}$.

Courant algebroids

- A way of promoting quadratic Lie algebra to the realm of vector bundles. Courant algebroid $=$ (Quadratic Lie algebra)-oid.

Definition

Let E be a vector bundle with base manifold M. Define the anchor $\rho \in \operatorname{Hom}(E, T M)$, fiberwise metric $g_{E} \equiv\langle\cdot, \cdot\rangle_{E}$ on E, and \mathbb{R}-bilinear bracket $[\cdot, \cdot]_{E}: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$.
Then $\left(E, \rho, g_{E},[\cdot, \cdot]_{E}\right)$ is a Courant algebroid if
(1) $\left(\Gamma(E),[\cdot, \cdot]_{E}\right)$ is a Leibniz algebra, that is

$$
\left[e,\left[e^{\prime}, e^{\prime \prime}\right]_{E}\right]_{E}=\left[\left[e, e^{\prime}\right]_{E}, e^{\prime \prime}\right]_{E}+\left[e^{\prime},\left[e, e^{\prime \prime}\right]_{E}\right]_{E}
$$

(2) It satisfies the Leibniz rule: $\left[e, f e^{\prime}\right]_{E}=f\left[e, e^{\prime}\right]_{E}+(\rho(e) . f) e^{\prime}$.
(3) Pairing g_{E} is invariant with respect to $[\cdot, \cdot]_{E}$:

$$
\rho(e) \cdot\left\langle e^{\prime}, e^{\prime \prime}\right\rangle_{E}=\left\langle\left[e, e^{\prime}\right]_{E}, e^{\prime \prime}\right\rangle_{E}+\left\langle e^{\prime},\left[e, e^{\prime \prime}\right]_{E}\right\rangle_{E} .
$$

(0) Skew-symmetry is reasonably broken: $\left\langle[e, e]_{E}, e^{\prime \prime}\right\rangle_{E}=\rho\left(e^{\prime}\right) \cdot\langle e, e\rangle_{E}$.

- Courant algebroid bracket is not skew-symmetric, $[\cdot, \cdot]_{E}$ is not a Lie algebra bracket.
- In fact, only Lie algebroid satisfying first 3 axioms has $\rho=0$, it is then a collection of quadratic Lie algebras on each fiber.
- Canonical non-trivial example is the (twisted) Dorfman bracket

Example

Consider $E=T M \oplus T^{*} M, g_{E}=\langle\cdot, \cdot\rangle_{E}$ be the canonical pairing defined previously, and $\rho(X+\xi)=X$. The H-twisted Dorfman bracket $[\cdot, \cdot]_{D}^{H}$ is defined as

$$
[X+\xi, Y+\eta]_{D}^{H}=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi-H(X, Y, \cdot),
$$

where $H \in \Omega^{3}(M)$.
Then $\left(E, \rho, g_{E},[\cdot, \cdot]_{D}^{H}\right)$ is a Courant algebroid, iff $d H=0$.

- For any $B \in \Omega^{2}(M)$, define the map $e^{B}(X+\xi)=X+\xi+B(X)$. Then there is a relation

$$
e^{B}\left([X+\xi, Y+\eta]_{D}^{H+d B}\right)=\left[e^{B}(X+\xi), e^{B}(Y+\eta)\right]_{D}^{H} .
$$

Connections on Courant algebroids

- On every vector bundle, a linear connection ∇ is a map $\nabla: \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)$, satisfying

$$
\begin{aligned}
\nabla_{f x} e^{\prime} & =f \nabla_{x} e^{\prime}, \\
\nabla_{x}\left(f e^{\prime}\right) & =f \nabla_{x} e^{\prime}+(X . f) e^{\prime} .
\end{aligned}
$$

- Consider Courant algebroid ($E, \rho, g_{E},[\cdot, \cdot]_{E}$). Having $\rho \in \operatorname{Hom}(E, T M)$, we can generalize. $\nabla: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ is a Courant algebroid connection, if

$$
\begin{aligned}
\nabla_{e} e^{\prime} & =f \nabla_{e} e^{\prime} \\
\nabla_{e}\left(f e^{\prime}\right) & =f \nabla_{e} e^{\prime}+(\rho(e) \cdot f) e^{\prime}
\end{aligned}
$$

for all $e, e^{\prime} \in \Gamma(E)$, and it is compatible with $\langle\cdot, \cdot\rangle_{E}$:

$$
\rho(e) \cdot\left\langle e^{\prime}, e^{\prime \prime}\right\rangle_{E}=\left\langle\nabla_{e} e^{\prime}, e^{\prime \prime}\right\rangle_{E}+\left\langle e^{\prime}, \nabla_{e} e^{\prime \prime}\right\rangle_{E} .
$$

- We say that ∇ is an induced Courant algebroid connection, if there is an ordinary connection ∇^{\prime}, such that $\nabla_{e}=\nabla_{\rho(e))}^{\prime}$.
- Courant algebroid axioms imply $\rho\left(\left[e, e^{\prime}\right]_{E}\right)=\left[\rho(e), \rho\left(e^{\prime}\right)\right]_{E}$. It is this property which is important in the following.
- Having a bracket $[\cdot, \cdot]_{E}$, we can try to generalize the torsion operator. A following naive guess fails:

$$
T_{N}\left(e, e^{\prime}\right)=\nabla_{e} e^{\prime}-\nabla_{e^{\prime}} e-\left[e, e^{\prime}\right]_{E} .
$$

- It is not tensorial, and it is not skew-symmetric.
- There are two correct definitions of torsion in the literature.
(1) M. Gualtieri:

$$
T_{G}\left(e, e^{\prime}, e^{\prime \prime}\right)=\left\langle T_{N}\left(e, e^{\prime}\right), e^{\prime \prime}\right\rangle_{E}+\frac{1}{2}\left(\left\langle\nabla_{e^{\prime \prime}} e, e^{\prime}\right\rangle_{E}-\left\langle\nabla_{e^{\prime \prime}} e^{\prime}, e\right\rangle_{E}\right)
$$

(2) P. Xu \& A. Alekseev:

$$
C\left(e, e^{\prime}, e^{\prime}\right)=\frac{1}{3}\left(\left\langle\left[e, e^{\prime}\right]_{E}, e^{\prime \prime}\right\rangle_{E}-\frac{1}{2}\left\langle\nabla_{e} e^{\prime}-\nabla_{e^{\prime}} e, e^{\prime \prime}\right\rangle_{E}+\operatorname{cyclic}\left(e, e^{\prime}, e^{\prime \prime}\right)\right.
$$

- Both are well defined based on Leibniz rule for $[\cdot, \cdot]_{E}$, but using the other axioms, one can see that in fact $T_{G} \in \Omega^{3}(E)$, and

$$
T_{G}\left(e, e^{\prime}, e^{\prime \prime}\right)=-C\left(e, e^{\prime}, e^{\prime \prime}\right) .
$$

- One can write this as $T_{G}\left(e, e^{\prime}, e^{\prime \prime}\right)=\left\langle T\left(e, e^{\prime}\right), e^{\prime \prime}\right\rangle_{E}$, where

$$
T\left(e, e^{\prime}\right)=\nabla_{e} e^{\prime}-\nabla_{e^{\prime}} e-\left[e, e^{\prime}\right]_{E}+\left\langle\nabla_{e_{\lambda}} e, e^{\prime}\right\rangle_{E} g_{E}^{-1}\left(e^{\lambda}\right),
$$

where we view $\mathbf{K}\left(e, e^{\prime}\right)=\left\langle\nabla_{e_{\lambda}} e, e^{\prime}\right\rangle_{E} g_{E}^{-1}\left(e^{\lambda}\right)$ as a correcting term, which kills the non-tensorial behavior of $T_{N}\left(e, e^{\prime}\right)$ in e :

$$
\begin{aligned}
& \mathbf{K}\left(f e, e^{\prime}\right)=f \mathbf{K}\left(e, e^{\prime}\right)+\left\langle e, e^{\prime}\right\rangle_{E} \mathcal{D} f, \\
& \mathbf{K}\left(e, f e^{\prime}\right)=f \mathbf{K}\left(e, e^{\prime}\right) .
\end{aligned}
$$

Here $\mathcal{D} f$ is a map defined by $\langle\mathcal{D} f, e\rangle_{E}=\rho(e) . f$.

- One can also attempt to generalize a curvature operator:

$$
R_{N}\left(e, e^{\prime}\right) e^{\prime \prime}=\left[\nabla_{e}, \nabla_{e^{\prime}}\right] e^{\prime \prime}-\nabla_{\left[e, e^{\prime}\right]_{E}} e^{\prime \prime}
$$

- This defines a tensorial object in ($e^{\prime}, e^{\prime \prime}$), but not in e. It works sufficently well only on isotropic subbundles, and for induced connections. Is there a way arround?
- Kind of. The idea is similar - correct the wrong behaviour in e.

$$
R\left(e, e^{\prime}\right) e^{\prime \prime}=\left[\nabla_{e}, \nabla_{e^{\prime}}\right] e^{\prime \prime}-\nabla_{\left[e, e^{\prime}\right]_{E}} e^{\prime \prime}+\nabla_{\mathbf{K}\left(e, e^{\prime}\right)} e^{\prime \prime}
$$

- This spoils the tensoriality in $e^{\prime \prime}$, unless $\rho\left(\mathbf{K}\left(e, e^{\prime}\right)\right)=0$. The \mathbf{K} defined above does not satisfy this.
- On the other hand, for ρ with locally constant rank, one can always find \mathbf{K} which works correctly. This choice, however, is not canonical.
- In fact, let $\mathfrak{d} f=\rho^{T}(d f) \in \Gamma\left(E^{*}\right)$. One can find $\mathbf{L} \in \mathcal{T}_{2}^{1}(E)$, such that

$$
\left[f e, e^{\prime}\right]_{E}=f\left[e, e^{\prime}\right]_{E}-\left(\rho\left(e^{\prime}\right) . f\right) e+\mathbf{L}\left(\mathfrak{d} f, e, e^{\prime}\right)
$$

It satisfies $\rho\left(\mathbf{L}\left(\mathfrak{d} f, e, e^{\prime}\right)\right)=0$. Note that $\mathfrak{d} f$ span Ann $(\operatorname{ker} \rho)$. If one can extend this property to $\Gamma\left(E^{*}\right)$, then

$$
\mathbf{K}\left(e, e^{\prime}\right)=\mathbf{L}\left(e^{\lambda}, \nabla_{e_{\lambda}} e, e^{\prime}\right)
$$

- One can see that \mathbf{L} for Courant algebroid has to satisfy

$$
\mathbf{L}\left(\mathfrak{d} f, e, e^{\prime}\right)=\left\langle e, e^{\prime}\right\rangle_{E} \mathcal{D} f
$$

- Let $E=T M \oplus T^{*} M$. Then one can extend the \mathbf{L} trivially to some isotropic complement to the subbundle Ann (ker ρ). This is as canonical as we can get. We obtain a class of maps parametrized by two-form $C \in \Omega^{2}(M)$:

$$
\mathbf{L}_{C}((\zeta+Z),(X+\xi),(Y+\eta))=\langle X+\xi, Y+\eta\rangle_{E}(\zeta-C(Z))
$$

- Let \mathbf{K}_{C} be a corresponding class of correcting maps. We tend to work with K_{0}.
- This works similarly also on exact Courant algebroids.
- Note that for Courant algebroid connections, the curvature operator R defined in this way still has some remarkable properties! We get

$$
R\left(e, e^{\prime}\right) e^{\prime \prime}=-R\left(e^{\prime}, e\right) e^{\prime \prime}
$$

It still posseses the following convenient symmetry:

$$
\left\langle R\left(e, e^{\prime}\right) f^{\prime}, f^{\prime \prime}\right\rangle_{E}=-\left\langle R\left(e^{\prime}, e\right) f^{\prime \prime}, f^{\prime}\right\rangle_{E}
$$

LC connections

- Let $E=T M \oplus T^{*} M$. Recall that we have generalized metric \mathbf{G}. We impose the generalized metric compatibility condition:

$$
\rho(e) \cdot \mathbf{G}\left(e^{\prime}, e^{\prime \prime}\right)=\mathbf{G}\left(\nabla_{e} e^{\prime}, e^{\prime \prime}\right)+\mathbf{G}\left(e^{\prime}, \nabla_{e} e^{\prime \prime}\right),
$$

for the Courant algebroid connection ∇.

- Further, we impose a torsion-free condition: $T\left(e, e^{\prime}\right)=0$.
- Usual formulas for Levi-Civita connections do not work.
- This cannot stop one from examining all possibilities. One arrives to the conclusion that

$$
\nabla_{e}=e^{B} \widehat{\nabla}_{e^{-B}(e)} e^{-B}\left(e^{\prime}\right),
$$

where $\hat{\nabla}$ is also a Courant algebroid connection, but compatible with $\mathbf{G}(B=0)$. The explicit form of $\widehat{\nabla}$ is \ldots on the next slide

$$
\begin{gathered}
\hat{\nabla}_{X}=\left(\begin{array}{cc}
\nabla_{X}^{L \mathcal{C}}+g^{-1} \mathcal{D}(X, \star, \cdot) & -\frac{1}{3} g^{-1} H\left(X, g^{-1}(\star), \cdot\right)-\mathcal{J}(g(X), \star, \cdot) \\
-\frac{1}{3} H(X, \star, \cdot)-g \mathcal{J}(g(X), g(\star), \cdot) & \nabla_{X}^{\text {LC }}+\mathcal{D}\left(X, g^{-1}(\star), \cdot\right)
\end{array}\right) \\
\hat{\nabla}_{\xi}=\left(\begin{array}{cc}
\frac{1}{6} g^{-1} H\left(g^{-1}(\xi), \star, \cdot\right)-\mathcal{J}(\xi, g(\star), \cdot) & g^{-1} \mathcal{D}\left(g^{-1}(\xi), g^{-1}(\star) \cdot \cdot\right) \\
\mathcal{D}\left(g^{-1}(\xi), \star, \cdot\right) & \frac{1}{6} H\left(g^{-1}(\xi), g^{-1}(\star), \cdot\right)-g \mathcal{J}(\xi, \star, \cdot)
\end{array}\right)
\end{gathered}
$$

- $\nabla^{L C}$ is the Levi-Civita connection corresponding to the metric g, and $H=d B$.
- $\mathcal{D} \in \Omega^{1}(M) \otimes \Omega^{2}(M)$ satisfies $\mathcal{D}(X, Y, Z)+\operatorname{cyclic}(X, Y, Z)=0$.
- $\mathcal{J} \in \mathfrak{X}^{1}(M) \otimes \mathfrak{X}^{2}(M)$ satisfies $\mathcal{J}(\xi, \eta, \zeta)+\operatorname{cyclic}(\xi, \eta, \zeta)=0$.
- This shows that torsion-free ∇ is not determined uniquelly by metric compatibility conditions. The freedom lies exactly in the choice of tensors \mathcal{D} and \mathcal{J}.
- What about the curvature operator R and scalar curvatures of such connections? It is a straightforward calculation...
... two weeks later ...
- Curvature operator R certainly depends on ($g, B, \mathcal{J}, \mathcal{D}$), and moreover on the choice of map \mathbf{K}_{C}.
- We can define a Ricci tensor Ric in a usual way as

$$
\operatorname{Ric}\left(e, e^{\prime}\right)=\left\langle e^{\lambda}, R\left(e_{\lambda}, e^{\prime}\right) e\right\rangle
$$

- Finally, we may use the two available metrics \mathbf{G}, and g_{E}, to produce two scalars:

$$
\begin{aligned}
\mathcal{R} & =\operatorname{Ric}\left(\mathbf{G}^{-1}\left(e^{\lambda}\right), e_{\lambda}\right), \\
\mathcal{R}_{E} & =\operatorname{Ric}\left(g_{E}^{-1}\left(e^{\lambda}\right), e_{\lambda}\right) .
\end{aligned}
$$

- Let $\mathcal{D}^{\prime}(X)=\mathcal{D}\left(g^{-1}\left(d y^{k}\right), \partial_{k}, X\right)$, and $\mathcal{J}^{\prime}(\xi)=\mathcal{J}\left(g\left(\partial_{k}\right), d y^{k}, \xi\right)$.
- The final result for curvatures is

$$
\begin{aligned}
\mathcal{R} & =\mathcal{R}(g)-\frac{1}{12} H_{i j k} H^{i j k}+4 \operatorname{div} \mathcal{D}^{\prime}-4\left\|\mathcal{D}^{\prime}\right\|_{g}^{2}-4\left\|\mathcal{J}^{\prime}\right\|_{g}^{2}, \\
\mathcal{R}_{E} & =-4 \operatorname{div} \mathcal{J}^{\prime}+8\left\langle\mathcal{J}^{\prime}, \mathcal{D}^{\prime}\right\rangle .
\end{aligned}
$$

Applications

- It is not clear yet, how to choose between the connections. Clearly, the most natural choice is $\mathcal{J}=\mathcal{D}=0$. In this case, we have

$$
\mathcal{R}=\mathcal{R}(g)-\frac{1}{12} H_{i j k} H^{i j k}, \mathcal{R}_{E}=0 .
$$

- \mathcal{R} is thus (without the dilaton Φ) exactly the closed string effective action, including the correct factor $1 / 12$.
- The fields (g, B) are coming from the string backgrounds, whereas \mathcal{J} and \mathcal{D} from the freedom in the connection. Can we fix them for example by equations of motion?
- Many interesting field redefinitions, e.g. T-duality or Seiberg-Witten open-closed relations, can be written as orthogonal transformations of the generalized metric \mathbf{G}.
- Assume that $\mathcal{O} \in O(E)$ is an orthogonal automorphism, that is

$$
\left\langle\mathcal{O}(e), \mathcal{O}\left(e^{\prime}\right)\right\rangle_{E}=\left\langle e, e^{\prime}\right\rangle_{E}
$$

- Then $\mathbf{G}^{\prime}=\mathcal{O}^{T} \mathbf{G} \mathcal{O}$ is again a generalized metric. This time corresponding to a different pair $\left(g^{\prime}, B^{\prime}\right)$.
- Having a connection ∇, define new connection ∇^{\prime} as

$$
\nabla_{e}^{\prime} e^{\prime}=\mathcal{O}^{-1} \nabla_{\mathcal{O}(e)} \mathcal{O}\left(e^{\prime}\right)
$$

- This is Courant algebroid connection metric compatible with \mathbf{G}^{\prime}.
- But we have to twist also the Courant algebroid bracket,

$$
[e, e]_{E}^{\prime}=\mathcal{O}^{-1}\left[\mathcal{O}(e), \mathcal{O}\left(e^{\prime}\right)\right]_{E}
$$

This twist is usually quite unpleasant.

- However, there always exist two stabilizing maps $\mathcal{N}_{ \pm}$, that is

$$
\mathcal{N}_{ \pm}^{T} \mathbf{G}^{\prime} \mathcal{N}_{ \pm}=\mathbf{G}^{\prime}
$$

making this transformation into nicer one: $\mathcal{F}_{ \pm}=\mathcal{O} \mathcal{N}_{ \pm}$.

- There are two automorphisms of $T M$, denoted as $\boldsymbol{\Phi}_{ \pm}$, induced by \mathcal{O}. The Lie algebroid on $T M$ is then $[X, Y]_{L}^{ \pm}=\boldsymbol{\Phi}_{ \pm}\left[\boldsymbol{\Phi}_{ \pm}^{-1}(X), \boldsymbol{\Phi}_{ \pm}^{-1}(Y)\right]$. The bracket $[\cdot, \cdot]_{E}^{ \pm}$is then $[X+\xi, Y+\eta]_{E}^{ \pm}=[X, Y]_{L}^{ \pm}+\mathcal{L}_{X}^{L \pm} \eta-i_{\eta} d_{L \pm}(\xi)-\left(d_{L \pm} \omega_{ \pm}\right)(X, Y, \cdot)$, for $\omega_{ \pm} \in \Omega^{2}(M)$.
- One can now define $\nabla_{e}^{ \pm} e^{\prime}=\mathcal{F}_{ \pm}^{-1} \nabla_{\mathcal{F}_{ \pm}(e)} \mathcal{F}_{ \pm}\left(e^{\prime}\right)$. By definition $\nabla_{e}^{ \pm} e^{\prime}$ is torsion-free with respect to $[\cdot, \cdot]_{E}^{ \pm}$.
- Their (both) scalar curvatures, calculated using the respective Courant brackets, coincide.
- One can use this approach to simply prove certain equalities, e.g.

$$
\mathcal{R}(g)-\frac{1}{12} H_{i j k} H^{i j k}=\mathcal{R}_{\theta}(G)-\frac{1}{12} S_{i j k} S^{i j k}
$$

where $G=-B g^{-1} B, \theta=B^{-1}$ is H-twisted Poisson tensor, $S=[\theta, \theta]_{S}$, and $\mathcal{R}_{\theta}(G)$ corresponds to $L C$-connection with respect to Koszul Lie algebroid on $T^{*} M$.

Outlooks

- So far, we have worked only with Dorfman bracket on $T M \oplus T^{*} M$.
- With minimum of modifications, everything works for exact Courant algebroids, because in fact $E \cong\left(T M \oplus T^{*} M\right)$.

$$
0 \longrightarrow T^{*} M^{g_{E}^{-1} \circ \rho^{T}} E \xrightarrow{\rho} T M \longrightarrow 0 .
$$

- We would like to re-itroduce the dilaton Φ. This corresponds to working with Atiyah-Lie algebroids coming from $U(1)$-bundles.
- We can thus think of $E=L \oplus L^{*}$, where L is a transitive Lie algebroid, E equipped with the Dorfman bracket corresponding to L.
- There are many more interesting Courant algebroids to try our approach on, e.g. heterotic Courant algebroids

$$
E \cong T M \oplus\left(P \times_{A d} \mathfrak{g}\right) \oplus T^{*} M,
$$

where (\mathfrak{g}, c) is a quadratic Lie algebra.

Thank you for your attention!

