# Perspectives on Nonassociative Geometry 

## Ralph Blumenhagen

Max-Planck-Institut für Physik, München


## Introduction

## Introduction

Recall:

- Closed string theory is described by 2D non-linear sigma model

$$
\mathcal{S}=\frac{1}{2 \pi \alpha^{\prime}} \int_{\Sigma} d^{2} z\left(G_{a b}+B_{a b}\right) \partial X^{a} \bar{\partial} X^{b}+\ldots,
$$

- Classical vacua of string theory are described by 2D conformal field theories
- There exist conformal field theories which cannot be identified with such simple large radius geometries.

Examples are left-right asymmetric like asymmetric orbifolds.

## Introduction

## Introduction

Applying T-duality leads to the chain of fluxes (Shelton, Taylor, Wecht)

$$
H_{a b c} \leftrightarrow f_{a b}{ }^{c} \leftrightarrow Q_{a}{ }^{b c} \stackrel{?}{\leftrightarrow} R^{a b c},
$$

- $Q$ and $R$ are non-geometric fluxes. What is their nature?
- Need to better understand this regime of string theory $\rightarrow$ Generalized Geometry and Double Field Theory (DFT)
- DFT provides a formal definition of the non-geometric fluxes. In a non-geometric frame $B_{i j} \rightarrow \beta^{i j}$ and

$$
\begin{aligned}
Q_{k}^{i j} & =\partial_{k} \beta^{i j} \\
R^{i j k} & =\tilde{\partial}^{i} \beta^{j k]}
\end{aligned}
$$

## Introduction

## Introduction

Open string theory:

For non-vanishing $\mathcal{F}_{a b}$ flux on a D-brane, the two disc 2-point functions turn out to be different.


## Introduction

## Introduction

- Applying a left-right asymmetric rotation to a D-brane turns on the magnetic flux.
- D-brane with $F_{i j} \rightarrow$ non-commutative geometry with

$$
\left[x^{i}, x^{j}\right]=x^{i} \star x^{j}-x^{j} \star x^{i}=i \theta^{i j}
$$

with a non-commutative product on function space (Schomerus + Seiberg, Witten)

$$
f \star g=f \cdot g+\frac{i}{2} \theta^{i j} \partial_{i} f \partial_{j} g+\ldots
$$

Does there exist a generalization to the closed string?

## Fluxed closed string

## Fluxed closed string

Issues:

- On the world-sheet sphere, an $S L(2, \mathbb{Z})$ transformation can change the order of two points: $\left\{z_{1}, z_{2}, \infty\right\} \rightarrow\left\{z_{2}, z_{1}, \infty\right\} \Rightarrow$ NC not visible in CFT
- Choosing 3 points $\left\{z_{1}, z_{2}, z_{3}, \infty\right\}$, one can have for the cross-ratio $|X|=\left|\frac{z_{12} z_{34}}{z_{13} z_{24}}\right|<>1$
- A background 3-flux $\theta^{i j k}$ distinguishing these two configurations might potentially lead to nonassociativity

However, in CFT one requires crossing symmetry, $X \rightarrow 1 / X$, of correlation functions $\rightarrow$ on-shell there should be no nonassociativity present.

## Review of CFT results

## Review of CFT results

This question was analyzed by performing genuine CFT computations? (see also work of (Bouvknegt, Hannabuss, Mathai))

- Compute cyclic double commutator

$$
\begin{aligned}
& {\left[X^{\mu}, X^{\nu}, X^{\rho}\right]:=} \\
& \quad \lim _{\sigma_{i} \rightarrow \sigma}\left[\left[X^{\mu}\left(\sigma_{1}, \tau\right), X^{\nu}\left(\sigma_{2}, \tau\right)\right], X^{\rho}\left(\sigma_{3}, \tau\right)\right]+\mathrm{cyclic}
\end{aligned}
$$

for WZW-model (Bhg, Plauschinn, arXiv:1010.1263)

- Compute commutators by direct quantization of closed strings in linear $B$-field (Lusst, arXiv:1010.1361)(Condeescu, Florakis, Lüst,arXiv:1202.6366)(Andriot, Larfors, Lüst, Patalong, arXiv:1211.6437)
- Conformal perturbation theory around flat geometry with constant $H$-flux + CFT T-duality (Bhg, Deser, Lüst, Plauschinn, Rennecke, arXiv:1106.0316)


## Review of CFT results

## Review of CFT results

- Non-commutativity: Wilson line of $Q$-flux.
- Non-associativity: local $R$-flux .

A tri-bracket for the coordinates $x^{a}$ appeared as

$$
\left[x^{a}, x^{b}, x^{c}\right]=R^{a b c},
$$

and the precursor noncommutative algebra (Lust, arxiv:1010.1361)

$$
\left[x^{i}, x^{j}\right]=R^{i j k} p_{k}, \quad\left[x^{i}, p_{j}\right]=\delta^{i}{ }_{j} .
$$

Can be captured by a nonassociative $\star$-product on phase space $T^{*}(M)$ :

$$
f \star g=f g+R^{i j k} p_{k} \partial_{i} f \partial_{j} g+\left(\tilde{\partial}^{i} f \partial_{i} g-\partial_{i} f \tilde{\partial}_{i} g\right)+\ldots
$$

(Mylonas, Schupp, Szabo, arXiv:1207.0926+1312.1621) (Bakas, Lüst,
arXiv:1309.3172).

## Review of CFT results

## Review of CFT results

Keep in mind: these results were derived for a flat space with a constant flux and constant dilaton.
This does satisfy the closed string EOM only up to linear order in $H$

$$
\begin{aligned}
& 0=\left(R_{a b}-\frac{1}{4} H_{a}{ }^{c d} H_{b c d}+2 \nabla_{a} \nabla_{b} \Phi\right)+O\left(\alpha^{\prime 2}\right), \\
& 0=\left(-\frac{1}{2} \nabla_{c} H^{c}{ }_{a b}+\alpha^{\prime} H_{a b}{ }^{c} \nabla_{c} \Phi\right)+O\left(\alpha^{\prime 2}\right), \\
& 0=\frac{1}{4}\left(d-d_{\text {crit }}\right)+\alpha^{\prime}\left((\nabla \Phi)^{2}-\frac{1}{2} \nabla^{2} \Phi-\frac{1}{24} H^{2}\right)+O\left(\alpha^{\prime 2}\right) .
\end{aligned}
$$

- star-product was derived from correlation functions of tachyon vertex operators
- we were not able to construct the $H$-deformed graviton vertex operator


## Tri-products

## Tri-products

One defines tri-products for $f_{i} \in C^{\infty}(M)$ (Bht, Fuchs, Hassler, Lüst, Sun), (Aschieri,Szabo).
$f_{1} \Delta f_{2} \Delta \ldots \Delta f_{N}=\left.f_{1} \star\left(f_{2} \star\left(\ldots\left(f_{N-1} \star f_{N}\right) \ldots\right)\right)\right|_{p_{0}=0}$

$$
=\cdot\left[\exp \left(-\frac{l_{s}^{4}}{12} \sum_{1 \leq a<b<c \leq N} R^{i j k} \partial_{i}^{a} \otimes \partial_{j}^{b} \otimes \partial_{k}^{c}\right)\left(f_{1} \otimes \ldots \otimes f_{N}\right)\right] .
$$

- Note that one is restricting to the $p_{0}=0$ leaf. This implies e.g. $f_{1} \Delta f_{2}=f_{1} f_{2}$.
- Peculiar property: N-cyclicity

$$
\int d^{d} x f_{1} \Delta f_{2} \Delta \ldots \Delta f_{N}=\int d^{d} x f_{1} f_{2} \ldots f_{N}
$$

Issues

## Issues

Two puzzling issues:

- On-shell string theory is described by a 2D QFT $\Rightarrow$ associative operator algebra
- What is the microscopic description of $Q$ and $R$-flux?


## On-shell associativity

## On-shell associativity

For the open string we have:

1. For on-shell string scattering amplitudes, the conformal $S L(2, \mathbb{R})$ symmetry group leaves the cyclic order of fields invariant.
2. In CFT on the disc we have crossing symmetry of N-point functions $\rightarrow$ on-shell associativity.
(Herbst, Kling, Kreuzer),(Cornalba,Schiappa)
For the closed string we have:
3. In CFT on the sphere we have crossing symmetry of N -point functions $\rightarrow$ on-shell associativity. Could be guaranteed by N -cyclicity.

## Definition of R-flux

## Definition of R-flux

- Double Field Theory provides a unified description of non-geometric fluxes

$$
R^{i j k}=3 \tilde{\partial}^{[i} \beta^{j k]} .
$$

- No notion of a nonassociative, background dependent deformation of the geometry is visible.

Reviews on DFT: (Aldazabal, Marques, Nunez, arXiv: 1305.1907), (Berman, Thompson, arXiv: 1306.2643), (Hohm, Lüst, ,Zwiebach, arXiv: 1309.2977).

Comment: Attempt to formulate a nonassociative quantum mechanics in (Mylonas, Schupp, Szabo), (Bojowald, Brahma, Buyukcam, Strobl)

## Basics of DFT

## Basics of DFT

Doubled coordinates

$$
X^{M}=\left(\tilde{x}_{m}, x^{m}\right)
$$

One imposes symmetries:

- Generalized diffeomorphisms
- Generalized frame rotations
- Global $O(D, D)$ symmetry, including T-duality

Doubled diffeomorphisms, $X^{M} \rightarrow X^{M}+\xi^{M}$ acts via a generalized Lie-derivative, e.g.

$$
\mathcal{L}_{\xi} V^{M}=\xi^{N} \partial_{N} V^{M}+\left(\partial^{M} \xi_{N}-\partial_{N} \xi^{M}\right) V^{N} .
$$

Strong constraint: Stronger version of $L_{0}-\bar{L}_{0}=0$

$$
\partial_{M} \partial^{M}=0, \quad \partial_{M} f \partial^{M} g=0
$$

## DFT tri-poduct

## DFT tri-poduct

In DFT, the tri-product takes the form: (Bhg, Fuchs, Hassler, Lüst, Sun, arXiv:1312.0719).

$$
f \Delta g \Delta h=f g h+\tilde{\partial}^{[i} \beta^{j k]} \partial_{i} f \partial_{j} g \partial_{k} h+\ldots
$$

- It vanishes by the strong constraint!
- For a non-trivial tri-product the strong constraint (between background and fluctuations) needs to be weakened.

Change perspective: Make an attempt to construct a nonassociative differential geometry/gravity theory based on the R-star-product.

## Towards nonassociative gravity

## Towards nonassociative gravity

Idea: Extend the formalism of (Aschieri, Blohmann, Dimitrijevic, Meyer, Schupp, Wess) to nonassociative $\star$-products $\rightarrow$ quasi Hopf-algebras (Aschieri, Barnes, Mylonas, Schenkel, Schupp, Szabo), (Bhg, Fuchs)
Starting point: *-product to realize the precurcor nonassociative algebra:

$$
\begin{aligned}
f \star g=\cdot & {\left[\mathcal{F}^{-1}(f, g)\right] } \\
=\cdot & {\left[\operatorname { e x p } \left(\frac{1}{2} i \hbar\left(\partial_{i} \otimes \tilde{\partial}_{p}^{i}-\tilde{\partial}_{p}^{i} \otimes \partial_{i}\right)\right.\right.} \\
& \left.\left.+\frac{i l s}{12 \hbar} R^{i j k}\left(p_{k} \partial_{i} \otimes \partial_{j}-\partial_{j} \otimes p_{k} \partial_{i}\right)\right) f \otimes g\right]
\end{aligned}
$$

Note, it contains the momentum $p \rightarrow$ rather defined on functions $f(x, p)$ on $T^{*} M$.

## Towards nonassociative gravity

## Towards nonassociative gravity

The star-product still has two special features:

- Controlled permutation (talk by A. Schenkel)

$$
f \star g=\overline{\mathcal{R}}(g) \star \overline{\mathcal{R}}(f)
$$

with the universal $\mathcal{R}$-matrix $\mathcal{R}=\mathcal{F}^{-2}$.

- Reordering of brackets controlled by the associator $\phi$

$$
(f \star g) \star h=f^{\phi} \star\left(g^{\phi} \star h^{\phi}\right)
$$

with

$$
\phi(f, g, h)=\exp \left(\frac{l_{s}^{4}}{6} R^{i j k} \partial_{i} \otimes \partial_{j} \otimes \partial_{k}\right)(f \otimes g \otimes h)
$$

## Towards nonassociative gravity

## Towards nonassociative gravity

Tensor calculus: $x$-scalar $f$ transforms under $\star$-diffeos as

$$
\delta_{\xi} f=\mathcal{L}_{\xi} f=\xi^{m} \star \partial_{m} f
$$

The $\star$-product of two scalars is again a scalar

$$
\begin{aligned}
\delta_{\xi}(f \star g) & =\mathcal{L}_{\xi}(f \star g)=\xi^{m} \star \partial_{m}(f \star g) \\
& =\xi^{m} \star\left(\partial_{m} f \star g\right)+\xi^{m} \star\left(f \star \partial_{m} g\right) \\
& =\left(\mathcal{L}_{\xi^{\Phi}} f^{\bar{\phi}}\right) \star g^{\bar{\phi}}+\overline{\mathcal{R}}^{\alpha}\left(f^{\overline{\phi \phi}}\right) \star\left(\mathcal{L}_{\overline{\mathcal{R}}_{\alpha}\left(\xi^{\Phi \phi}\right)} g^{\overline{\phi \phi}}\right) .
\end{aligned}
$$

This defines the $\star$-Leibniz rule.
Can be continued to the structure of star-tensors, star-covariant derivative, star-torsion, star-curvature.
(talk by Szabo)

## Towards nonassociative gravity

## Towards nonassociative gravity

Metric as

- scalar product
- object to raise and lower indices

A star-metric $g_{i j}$ as the duality $\operatorname{map} \mathcal{G}: T \mathcal{M} \xrightarrow{g} T^{*} \mathcal{M}$, whose inverse should satisfy

$$
\left(v^{k} \star g_{k j}\right) \star\left(g^{-1 \star}\right)^{j i}=v^{i}
$$

Therefore, an inverse satisfying

$$
g_{i j} \star\left(g^{-1 \star}\right)^{j k}=\delta_{i}^{k}
$$

does not satisfy the above relation.

## Towards nonassociative gravity

## Towards nonassociative gravity

Up to linear order, one finds explicitly

$$
\begin{aligned}
g_{L / R}^{\star-1 i j}=g^{i j} & -\frac{i l_{s}^{4}}{6 \hbar} R^{a b c} p_{c} g^{i m} \partial_{a} g_{m n} \partial_{b} g^{n j} \\
& \pm \frac{l_{s}^{4}}{12} R^{a b c} \partial_{a} g^{i m} \partial_{b} g_{m n} \partial_{c} g^{n j}
\end{aligned}
$$

with $\phi\left(g_{i j}, g^{j k},.\right) \neq 1$.
Properties:

- not symmetric, with $g_{L / R}^{\star-1(i j)}=g^{i j}$
- momentum dependent
- left- and right-inverse differ by an associator


## Towards nonassociative gravity

## Towards nonassociative gravity

One cannot solve $\nabla g=\partial g-\Gamma \star g=0$ in terms of a LC-connection $\Gamma$.

Possible way out: define its covariant derivative on a covector as

$$
\begin{aligned}
\nabla^{\mathrm{LC}} \omega & =\partial \omega-\left(\left(\sum \partial g\right) \circ g_{L}^{\star-1}\right)(\omega) \\
& =\partial \omega-\left(\sum \partial g\right) \star\left(g_{L}^{\star-1} \star \omega\right) .
\end{aligned}
$$

Open questions:

- Is this a mathematically consistent possibility?
- Can one define a star-Einstein-Hilbert action so that linear corrections in $R$ are total derivatives?


## Other approach

## Other approach

Alternative recent approach:
There exists an $\alpha^{\prime}$ deformed C-bracket (Hohm, Siegel, Zwiebach, arXiv:
1306.2970)

$$
[\xi, \eta]_{C}=[\xi, \eta]_{C}^{(0)}-\alpha^{\prime}[\xi, \eta]_{C}^{(1)}
$$

with

$$
[\xi, \eta]_{C}^{(1), N}=\frac{1}{2}\left(\partial^{N} \partial_{Q} \xi^{P} \partial_{P} \eta^{Q}-(\xi \leftrightarrow \eta)\right)
$$

Idea: Write this as a result of a $\star$-product, defining a deformation of a Courant algebroid structure (Deser, arXiv: 1412.5966).

Suggests: (Asymmetric) heterotic string theory to be the framework for non-associative gravity?

## Sorry! - an open end

## Sorry! - an open end

- What can we expect from such a nonassociative gravity theory?
- Could be a trivial deformation
- Inclusion of $\alpha^{\prime}$ corrections (like for the open string)
- It is not clear whether this ansatz leads to something related to string theory. How are star-diffeomorphisms related to standard diffoes?
- In DFT it is not clear which form of the constraint is the right one. Related to the question whether Scherk-Schwarz reductions and gauged supergravities are parts of string theory

Stay tuned!

