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Example — Aloff-Wallach spaces

Denote Wy, = SU(3)/U(1)k, U(1)k, = diag(zX, 2/, z=(k+0)

S3 ) Lyjer s — Wi

!

CPP?

This is a (non-principal) S3-bundle iff |k + /| = 1. We have
H7(Wk’/7Z) = 7.

We find a duality

(Wpi-p,h=—(0°—p+1)) «— (Wﬁ,1_ﬁ;B=—(P2—P+1))
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Fourier Transform

Fourier series for f: S' - R

A~ 27r .
f(n) = 217T/0 f(x) e "™ dx

f(x) = > f(n)e™

neZ

Fourier transform for f : R — R

o) = /  f(x) e P* ax

21 J_

00— [ T(p)eP dp
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Fourier Transform - contd

More generally, for G a locally compact,AabeIian group, we have
a Fourier transform F : Fun(G) — Fun(G)

o) = [0 e = (1))

f(x) = /G?(m & dp

where R
G = Hom(G, U(1)) = char(G)

is the Pontryagin dual of G. l.e. a character is a U(1) valued
function on G, satisfying x(x + ¥) = x(¥)x(¥)-

The characters form a locally compact, abelian group G under
pointwise multiplication.
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Fourier Transform - contd

We can think of y(x, p) = eP* € Fun(G x G) as the universal
character.

Fourier transform expresses the fact that the characters of G
span Fun(G).
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Fourier Transform - contd

l.e. we have the following “correspondence”

GxG
G/ \G
Ff=7m.(n*(f) x x(x,p)) J
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Fourier Transform - Geometric generalisations

T-duality is a geometric version of harmonic analysis, i.e. by
replacing functions by geometric objects (such as bundles,
sheaves, D-modules, ...) or, as an intermediate step, by
topological characteristics associated to these objects
(cohomology, K-theory, derived categories, ...).
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Fourier-Mukai transform

Consider a manifold P = M x S'. By the Kiinneth theorem we
have
H*(P) = H*(M) @ H*(S")

l.e.
H"(P) = H"(M) & H" (M)

We have a similar decomposition at the level of forms
QU P)™ = Q"(M) @ Q"1 (M).

l.e. invariant degree n forms on P are of the form w or w A d#,
where w is an n, respectively n — 1, form on M.

Consider P = M x S'. We have an isomorphism

F: H(P) —= HT(P) |
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Fourier-Mukai transform - cont’'d

where
HY(P) =P H(P), H'(P)=PH?(P),
i>0 i>0
Explicitly R
w = diINw, dINw — w
or
FQ :/ H+dondi)a= [ edbg_ [ &Fq
St St St
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Fourier-Mukai transform - cont’'d

l.e. F is given by a correspondence

FQ=p.(p*QAren) J

M x S' x S
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Fourier-Mukai transform - cont’'d

Once we recognize that F = d A d@ is the curvature of a
canonical linebundle P (the Poincaré linebundle) over St x S,
in fact e = ch(P), this immediately suggests a
‘geometrization’ in terms of vector bundles over P and P. (*)

FE=p,(P"EQP) )

This gives rise to the so-called Fourier-Mukai transform

F . KI(P) —=— KI+(P) |

which has many of the properties of the Fourier transform
discussed earlier.

The discussion can be generalized to complexes of vector
bundles (complexes of sheaves) and thus gives rise to a
Fourier-Mukai correspondence between derived categories

D(P) and D(P).



T-duality - Closed string on M x S'

Closed strings on M x S' are described by
X:¥ > MxS

where ¥ = {(o, 7)} is the closed string worldsheet.
Upon quantization, we find

@ Momentum modes: p = &
@ Winding modes: X(0,7) ~ X(1,7) + mR

ny?2 5
E= (ﬁ) + (mR)“ 4 osc. modes

We have a duality R — 1/R, such that ST on M x S' is

equivalent to ST on M x S' (or a duality between IIA and 1B
ST, for susy ST)
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T-duality - Principal S'-bundles

Suppose we have a pair (P, H), consisting of a principal circle
bundle
S'l—sP

Ai;

and a so-called H-flux H on P, a Cech 3-cocycle.

Topologically, P is classified by an element in F € H?(M, Z)
while H gives a class in H3(P, 7Z)
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T-duality - Principal S'-bundles

The (topological) T-dual of (P, H) is given by the pair (P, H),
where the principal S'-bundle

5P

E

M

and the dual H-flux H € H3(P, Z), satisfy

F=mH, F =7.H J

where , : H3(P,Z) — H?(M, Z), is the pushforward map
(‘integration over the S'-fibre’).
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T-duality - Principal S'-bundles

The ambiguity in the choice of His (almost) removed by
requiring that

pPH—p*H=0 € H3P xuy P,Z)

where P xy, P is the correspondence space

~

PxyP={(x,%)€PxP|n(x)=7(X)}

PXMﬁ

ﬁy Wﬁﬂ
P\ P

M
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T-duality - Principal S'-bundles

Gysin sequences

e HY(M) e H3(P) T H2(M) Y A M) —— -

e HY(M) e HR(P) —E HR(M) e (M) —— -
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T-duality - Principal S'-bundles

F 7 - 7 F
0 e Hmy — H'(P) s HOWM) — s 2y
UF UF UR*F UF UF

1 UF 3 a* 3,5 T 2 UF 4
H'(M) H*(M) H*(P) H=(M) H* (M)
. . o . .

*F p* ~ Px *F

H'(P) =5 18P H3(P xy P) H2(P) =5 AP
T L P Tk T

o UF > m* PP T 1 UF 3
H*(M) H=(M) H=(P) H'(M) H*(M)
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T-duality - Examples

Consider principal S'-bundles P over M = S2, then
H2M,z)=7, HP,Z)=Z
and we have, for example,

(82 x S',0) — (S? x S',0)

(S2 x S',1) — (S8,0)

or more generally
(va k) — (Lkap)
where L, = S%/Z, is the lens space.
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T-duality - Twisted cohomology

Using QK(P)™ = Qk(M) @ Qk—1(M)
FZO’A7 H:H(3)+A/\H(2)

we find

such that

H-H=AANF—AAF=dAMA).

We have an isomorphism of (Z»-graded) differential complexes

T (P)™, dy) — (Q(P)™, dg)
where dy = d + HA.
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T-duality - Twisted cohomology

Define R
T.w :/ e
St
then
ay T. = T. dy.
D/
and consequently, we have isomorphisms
T. : HI(P,H) —=— HF(P,H) |
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T-duality - Twisted cohomology

as well as
T. . Ki(P,H) —=— K*+\(P,R) |
For example,
Z =
Ki(Look) = 26 10
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Spherical T-duality - Principal SU(2)-bundles

Much of the above can be generalized to principal
SU(2)-bundles:
Gysin sequence for principal SU(2)-bundles 7 : P — M

uca(P)

- —— H' (M) = H'(P) > H4(M) ==~ H}(M) —

where

c2(P) Tr(F A F) € HY(M)

~ 82
is (a de Rham representative of) the 2nd Chern class of P.
However, in this case,

[M, BSU(2)] — H*(M, Z)

is, in general, neither surjective nor injective.
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SU(2) and quaternions

Recall that

SU(2) = {U(a,b): ( g ‘é‘_’ ) : a,beC,|a\2+|b|2:1}

can be identified with the unit sphere S(H) = Sp(1) = S® in the
quaternions

H={a+ Bi+~j+dk: ij =k = —ji, cyclic}
The isomorphism is given explicitly as
SU(2) > U(a,b) — a+jbe Sp(1) = S®
The relationship of principal SU(2)-bundles to quaternionic line

bundles is analogous to the relationship of principal
U(1)-bundles to complex line bundles.
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Principal SU(2)-bundles and quaternionic line bundles

Recall that a quaternionic line bundle over a manifold M is a
complex rank 2 vector bundle V — M together with a reduction
of structure group to H \ {0}. Note that the unit sphere bundle
S(V) — M is an S%-bundle together with the inherited group
structure, i.e. a principal SU(2)-bundle.

Conversely, given a principal SU(2)-bundle P — M, then the
associated vector bundle

V:PXSu(g)H%M

is a quaternionic line bundle.
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Principal SU(2)-bundles on S*

Principal SU(2)-bundles on S* are described by smooth maps
g :SU(2) — SU(2). Let g(z) = z, z € SU(2), which is a degree
1 map. Then g(z) = z", r € Z is a degree r map. Let

P(r) — S* be the corresponding principal SU(2)-bundle on S*.
Then c(P(r)) = r € Z = H*(S*, Z).

The principal SU(2)-bundle S = P(1) — S* is known as the
Hopf bundle.
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Principal SU(2)-bundles on M*

Let M be a compact, connected, oriented 4-dimensional
manifold. Then one can show fairly easily that isomorphism
classes of principal SU(2)-bundles P on M is canonically
identified with homotopy classes [M, S$*] = H*(M; Z) given by
CQ(P).

More precisely, given a degree 1 map h: M — S*, then

h*(P(r)) — M is a principal SU(2)-bundle on M with
co(h*(P(r))) =r € Z= HYM, Z).
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Spherical T-duality

Recall the Gysin sequence for principal SU(2)-bundles
T P—=M

uea(P)

s H'(M) == H7(P) == H*(M) H8(M) —— - -

We consider pairs of the form (P, H) consisting of a principal
SU(2)-bundle P — M and a 7-cocycle H on P.

The Gysin sequence implies that . is a canonical isomorphism

H’(P,Z) = H*(M,Z) = 7Z, and intuitively spherical T-duality
exchanges H with the second Chern class ¢,
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Spherical T-duality

More precisely, the spherical T-dual bundle 7 : P = Mis
defined by cg(P) = 7. H while the dual 7-cocycle He H7(P)
related to c»(P) by the isomorphism 7., via a similar Gysin

sequence for P — M.
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Isomorphism of 7-twisted cohomology

Let M be a connected compact, oriented, 4 dimensional
manifold, and consider the principal SU(2)-bundle P(r) over M
with cx(P(r)) = r € Z = H*(M, Z), together with the 7-cocycle
H = s vol on P(r).

We can define integer-valued H-twisted cohomology as the
iterative cohomology

H*(P(r), H; Z) = H*(H*(P(r); Z), HU). ]
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Isomorphism of 7-twisted cohomology

Use the Gysin sequence to calculate the cohomology groups
Heven/odd( F(p). 7,), and obtain for p # 0
HI(P(r);Z) = H*I(M;Z), j = 0,1,2,3
HY(P(r); Z) = Z, & H'(M; Z)
H™=I(P(r);Z) = H*7/(M; 7Z), j = 0,1,2,3

Therefore there is an isomorphism of 7-twisted cohomology
groups over the integers with a parity change,

He"e”(P(r), s: Z) o HOdd(P(S)7 r: Z) ,
HO(P(r), 5;2) = H"(P(s), r; Z).

There is a similar isomorphism of 7-twisted K-theories.
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Spherical T-duality beyond dimension 4

Beyond dimension 4 the situation becomes more complicated
as not all integral 4-cocycles of M are realized as ¢, of a
principal SU(2)-bundle = : P — M and moreover multiple
bundles can have the same c,(P).

More precisely, principal SU(2)-bundles are classified upto
isomorphism by homotopy classes of maps into the classifying
space M — BSU(2). However, the complete homotopy type of
S® = SU(2) is still unknown, and therefore also for BSU(2).

However Serre’s theorem tells us that
mj(BSU(2)) ® Q = mj(K(Z,4)) ® Q, i.e. the homotopy groups of
degree higher than 4 are all torsion.
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Spherical T-duality beyond dimension 4

For example, recall that principal SU(2)-bundles over S° are
classified by 74(SU(2)) = Z,, while H*(S°,7Z) = 0.

By a theorem of Granja, there is a natural number N(d) where
d = dim(M), such that if « € N(d) x H*(M, Z), then it is the 2nd
Chern class of a principal SU(2)-bundle over M. Therefore a
pair (P, H) is spherical T-dualizable if 7.(H) € N(d) x H*(M; Z).
Then m.(H) = c,(P) where P is a principal SU(2)-bundle over
M. However, this does not necessarily uniquely specify P. But
at most, there are finitely many choices.

We will simply assert that a spherical T-dual 7 : P — Mbe any
SU(2)-bundle with c>(P) = m.H, with H defined such that

7.H = co(P) with p*H = p*lfl on the correspondence space
P XM P.
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Spherical T-duality beyond dimension 4

T-duality induces an isomorphism on twisted cohomologies with
real or rational coefficients.

Theorem

Heven(P7 H: Q) ) Hodd(ﬁ7 /:/ : Q),
Ho%(P, H; Q) = H®*"(P, H; Q).

There is a similar isomorphism of 7-twisted K-theories with
parity shift, upto Z»-extensions.
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Spherical T-duality - Non-Principal SU(2)-bundles

Much of the above can be generalized to non-principal
SU(2)-bundles:

There is a 1-1 correspondence between (oriented)
non-principal SU(2)-bundles and principal SO(4)-bundles,
given by

E=Q XSO(4) SU(2)
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Spherical T-duality - Non-Principal SU(2)-bundles

Thus, non-principal SU(2)-bundles over S* are classified by
m3(SO(4)) = Z @ Z. Explicitly, the clutching function
D(p.q) - S° — SO(4) is defined by

dpg(U)(X) =uPxu?,  xeR?

and we have p1(Q(p, q)) = 2(p — q), e(Q(p,q)) =P+ Q.

Theorem

For each integer p, there is an isomorphism of 7-twisted
cohomology groups over the integers with a parity change,

H"*"(E(p, q), hvol: Z) = H°™(E(p, h— p), (b + q) vol; Z) ,
HO%(E(p. q), hvol: Z) = H*"(E(p, h— B), (p + q) vk Z).

v
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Comments and open questions

@ What is the physics behind spherical T-duality? J

7-flux couples to 5-branes. 5-branes wrap 3-spheres to
give 2-branes. M-theory is a theory of 2- and 5-branes.

Is there a duality in M-theory (e.g. for the 2- and 5-brane
o-model) whose topological shadow is spherical T-duality?

@ Is there a generalised geometry counterpart of spherical
T-duality?

There exists an M-geometry based on

E=TE® N°T*E® N°T*E
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Comments and open questions,

TE' @ AST*E’

p=r @1

TE® N2T*E @ AST*E TE® A2T*E @ AST*E

TM @ APT*M @ A2T*M @ AST*M

where E' = E x g E.
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Comments and open questions, cont'd

© What are useful geometric realisations of integral 7-cocycles? J

@ Is there a useful geometric description of 7-twisted K-theory? J

© When dimM > 4, then it is known that not every spherical pair
(P, H) has a spherical T-dual. Can the missing spherical
T-duals be obtained some other way?

@ Is there a C*-algebra version of spherical T-duality? J
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THANK YOU !!
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