Spherical T-duality and M-geometry

Peter Bouwknegt

Mathematical Sciences Institute
Australian National University
Canberra, Australia
2016 Bayrischzell Workshop on "Noncommutativity and Physics: Quantum Spacetime Structures"

29 Apr - 3 May, 2016

References

P. Bouwknegt, J. Evslin and V. Mathai, Spherical T-duality, [arXiv:1405.5844 [hep-th]].
P. Bouwknegt, J. Evslin and V. Mathai,

Spherical T-duality II: An infinity of spherical T-duals for non-principal $\operatorname{SU}(2)$-bundles,
[arXiv:1409.1296 [hep-th]].
P. Bouwknegt, J. Evslin and V. Mathai,

Spherical T-Duality and the spherical Fourier-Mukai transform, [arXiv:1502.04444 [hep-th]].

	String Theory $M_{4} \times Y_{6}$	
$\mathcal{N}=1$	Complex manifold	
$\mathcal{N}=2$	Kähler	
$\mathcal{N}=3$	Calabi-Yau	
	Hyper-Kähler	S^{1}
	Strings $^{1} \in \mathrm{H}^{3}(Y, \mathbb{Z})$	
	Mirror Symmetry / T-duality	
	generalized geometry	
	$S^{1} \longrightarrow S^{3}$	
		S^{2}

	String Theory	M-Theory /11D SUGR
$M_{4} \times Y_{7}$		
$=1$	$M_{4} \times Y_{6}$	Contact manifold
$\mathcal{N}=2$	Kähler	Sasakian
$\mathcal{N}=3$	Calabi-Yau	Sasaki-Einstein
	Hyper-Kähler	3-Sasakian
	S^{1}	S^{3}
	Strings	2 - and 5-branes
	$H \in \mathrm{H}^{3}(Y, \mathbb{Z})$	$H \in \mathrm{H}^{7}(Y, \mathbb{Z})$
	Mirror Symmetry / T-duality	Spherical T-duality?
	generalized geometry	M-geometry?
	$S^{1} \longrightarrow S^{3}$	$S^{3} \longrightarrow S^{7}$
		S^{2}

Example - Aloff-Wallach spaces

Denote $W_{k, l}=\operatorname{SU}(3) / \mathrm{U}(1)_{k, l}, \mathrm{U}(1)_{k, l}=\operatorname{diag}\left(z^{k}, z^{\prime}, z^{-(k+l)}\right)$

$$
S^{3} / \mathbb{Z}_{|k+1|} \longrightarrow W_{k, l}
$$

This is a (non-principal) S^{3}-bundle iff $|k+I|=1$. We have $H^{7}\left(W_{k, l}, \mathbb{Z}\right) \cong \mathbb{Z}$.

We find a duality
$\left(W_{p, 1-p}, h=-\left(\widehat{p}^{2}-\widehat{p}+1\right)\right)$
$\left(W_{\widehat{p}, 1-\widehat{p}}, \widehat{h}=-\left(p^{2}-p+1\right)\right)$

Fourier Transform

Fourier series for $f: S^{1} \rightarrow \mathbb{R}$

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x \\
f(x) & =\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{i n x}
\end{aligned}
$$

Fourier transform for $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
\widehat{f}(p) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i p x} d x \\
f(x) & =\int_{-\infty}^{\infty} \widehat{f}(p) e^{i p x} d p
\end{aligned}
$$

More generally, for G a locally compact, abelian group, we have a Fourier transform $\mathcal{F}: \operatorname{Fun}(\mathrm{G}) \rightarrow \operatorname{Fun}(\widehat{\mathrm{G}})$

$$
\begin{aligned}
& \widehat{f}(p)=\int_{\mathrm{G}} f(x) e^{-i p x} d x=\mathcal{F}(f)(p) \\
& f(x)=\int_{\widehat{G}} \widehat{f}(p) e^{i p x} d p
\end{aligned}
$$

where

$$
\widehat{\mathrm{G}}=\operatorname{Hom}(\mathrm{G}, \mathrm{U}(1))=\operatorname{char}(\mathrm{G})
$$

is the Pontryagin dual of G . I.e. a character is a $\mathrm{U}(1)$ valued function on G , satisfying $\chi(x+y)=\chi(x) \chi(y)$.
The characters form a locally compact, abelian group \widehat{G} under pointwise multiplication.

$$
\begin{array}{lcc}
\mathrm{G}=S^{1}, & \widehat{\mathrm{G}}=\mathbb{Z}, & e^{i n x} \\
\mathrm{G}=\mathbb{R}, & \widehat{\mathrm{G}}=\mathbb{R}, & e^{i j x}
\end{array}
$$

We can think of $\chi(x, p)=e^{i p x} \in \operatorname{Fun}(G \times \widehat{G})$ as the universal character.
Fourier transform expresses the fact that the characters of G span Fun(G).

Fourier Transform - cont'd

l.e. we have the following "correspondence"

$$
\mathcal{F} f=\widehat{\pi}_{*}\left(\pi^{*}(f) \times \chi(x, p)\right)
$$

Fourier Transform - Geometric generalisations

T-duality is a geometric version of harmonic analysis, i.e. by replacing functions by geometric objects (such as bundles, sheaves, D-modules, ...) or, as an intermediate step, by topological characteristics associated to these objects (cohomology, K-theory, derived categories, ...).

Consider a manifold $P=M \times S^{1}$. By the Künneth theorem we have

$$
H^{\bullet}(P) \cong H^{\bullet}(M) \otimes H^{\bullet}\left(S^{1}\right)
$$

l.e.

$$
H^{n}(P) \cong H^{n}(M) \oplus H^{n-1}(M)
$$

We have a similar decomposition at the level of forms

$$
\Omega^{n}(P)^{\mathrm{inv}} \cong \Omega^{n}(M) \oplus \Omega^{n-1}(M)
$$

I.e. invariant degree n forms on P are of the form ω or $\omega \wedge d \theta$, where ω is an n, respectively $n-1$, form on M.
Consider $\widehat{P}=M \times \widehat{S}^{1}$. We have an isomorphism

$$
\mathcal{F}: H^{\bar{i}}(P) \xrightarrow{\cong} H^{\overline{i+1}}(\widehat{P})
$$

where

$$
H^{\overline{0}}(P)=\bigoplus_{i \geq 0} H^{2 i}(P), \quad H^{-1}(P)=\bigoplus_{i \geq 0} H^{2 i+1}(P)
$$

Explicitly

$$
\omega \mapsto d \widehat{\theta} \wedge \omega, \quad d \theta \wedge \omega \mapsto \omega
$$

or

$$
\mathcal{F} \Omega=\int_{S^{1}}(1+d \theta \wedge d \widehat{\theta}) \Omega=\int_{S^{1}} e^{d \theta \wedge d \widehat{\theta}} \Omega=\int_{S^{1}} e^{F} \Omega
$$

Fourier-Mukai transform - cont'd

I.e. \mathcal{F} is given by a correspondence

$$
\mathcal{F} \Omega=p_{*}\left(\widehat{p}^{*} \Omega \wedge e^{F}\right)
$$

Fourier-Mukai transform - cont'd

Once we recognize that $F=d \theta \wedge d \widehat{\theta}$ is the curvature of a canonical linebundle \mathcal{P} (the Poincaré linebundle) over $S^{1} \times \widehat{S}^{1}$, in fact $e^{F}=\operatorname{ch}(\mathcal{P})$, this immediately suggests a 'geometrization' in terms of vector bundles over P and \widehat{P}. (*)

$$
\mathcal{F} E=p_{*}\left(\widehat{p}^{*} E \otimes \mathcal{P}\right)
$$

This gives rise to the so-called Fourier-Mukai transform

$$
\mathcal{F}: K^{i}(P) \xrightarrow{\cong} K^{i+1}(\widehat{P})
$$

which has many of the properties of the Fourier transform discussed earlier.
The discussion can be generalized to complexes of vector bundles (complexes of sheaves) and thus gives rise to a Fourier-Mukai correspondence between derived categories $D(P)$ and $D(\widehat{P})$.

T-duality - Closed string on $M \times S^{1}$

Closed strings on $M \times S^{1}$ are described by

$$
X: \Sigma \rightarrow M \times S^{1}
$$

where $\Sigma=\{(\sigma, \tau)\}$ is the closed string worldsheet.
Upon quantization, we find

- Momentum modes: $p=\frac{n}{R}$
- Winding modes: $X(0, \tau) \sim X(1, \tau)+m R$

$$
E=\left(\frac{n}{R}\right)^{2}+(m R)^{2}+\text { osc. modes }
$$

We have a duality $R \rightarrow 1 / R$, such that ST on $M \times S^{1}$ is equivalent to ST on $M \times \widehat{S}^{1}$ (or a duality between IIA and IIB ST, for susy ST)

T-duality - Principal S^{1}-bundles

Suppose we have a pair (P, H), consisting of a principal circle bundle

and a so-called H -flux H on P, a Čech 3-cocycle.
Topologically, P is classified by an element in $F \in H^{2}(M, \mathbb{Z})$ while H gives a class in $H^{3}(P, \mathbb{Z})$

T-duality - Principal S^{1}-bundles

The (topological) T-dual of (P, H) is given by the pair $(\widehat{P}, \widehat{H})$, where the principal S^{1}-bundle

and the dual H-flux $\widehat{H} \in H^{3}(\widehat{P}, \mathbb{Z})$, satisfy

$$
\widehat{F}=\pi_{*} H, \quad F=\widehat{\pi}_{*} \widehat{H}
$$

where $\pi_{*}: H^{3}(P, \mathbb{Z}) \rightarrow H^{2}(M, \mathbb{Z})$, is the pushforward map ('integration over the S^{1}-fibre').

T-duality - Principal S^{1}-bundles

The ambiguity in the choice of \hat{H} is (almost) removed by requiring that

$$
\hat{p}^{*} H-p^{*} \widehat{H} \equiv 0 \quad \in H^{3}\left(P \times_{M} \widehat{P}, \mathbb{Z}\right)
$$

where $P \times_{M} \widehat{P}$ is the correspondence space

$$
P \times_{M} \widehat{P}=\{(x, \widehat{x}) \in P \times \widehat{P} \mid \pi(x)=\widehat{\pi}(\widehat{x})\}
$$

T-duality - Principal S^{1}-bundles

Gysin sequences
$\cdots \longrightarrow H^{3}(M) \xrightarrow{\pi^{*}} H^{3}(P) \xrightarrow{\pi_{*}} H^{2}(M) \xrightarrow{\cup F} H^{4}(M) \longrightarrow \cdots$
$\cdots \longrightarrow H^{3}(M) \xrightarrow{\hat{\pi}^{*}} H^{3}(\widehat{P}) \xrightarrow{\hat{\pi}_{*}} H^{2}(M) \xrightarrow{\langle\hat{F}} H^{4}(M) \longrightarrow \cdots$

T-duality - Principal S^{1}-bundles

T-duality - Examples

Consider principal S^{1}-bundles P over $M=S^{2}$, then

$$
H^{2}(M, \mathbb{Z}) \cong \mathbb{Z}, \quad H^{3}(P, \mathbb{Z}) \cong \mathbb{Z}
$$

and we have, for example,

$$
\begin{gathered}
\left(S^{2} \times S^{1}, 0\right) \longrightarrow\left(S^{2} \times S^{1}, 0\right) \\
\left(S^{2} \times S^{1}, 1\right) \longrightarrow\left(S^{3}, 0\right)
\end{gathered}
$$

or more generally

$$
\left(L_{p}, k\right) \longrightarrow\left(L_{k}, p\right)
$$

where $L_{p}=S^{3} / \mathbb{Z}_{p}$ is the lens space.

T-duality - Twisted cohomology

Using $\Omega^{k}(P)^{\mathrm{inv}} \cong \Omega^{k}(M) \oplus \Omega^{k-1}(M)$

$$
F=d A, \quad H=H_{(3)}+A \wedge H_{(2)}
$$

we find

$$
\widehat{F}=H_{(2)}=d \widehat{A}, \quad \widehat{H}=H_{(3)}+\widehat{A} \wedge F
$$

such that

$$
\widehat{H}-H=\widehat{A} \wedge F-A \wedge \widehat{F}=d(A \wedge \widehat{A})
$$

Theorem

We have an isomorphism of $\left(\mathbb{Z}_{2}\right.$-graded) differential complexes

$$
T_{*}:\left(\Omega(P)^{i n v}, d_{H}\right) \longrightarrow\left(\Omega(\widehat{P})^{i n v}, d_{\hat{H}}\right)
$$

where $d_{H}=d+H \wedge$.

T-duality - Twisted cohomology

Proof.
Define

$$
T_{*} \omega=\int_{S^{1}} e^{A \wedge \widehat{A}} \omega
$$

then

$$
d_{H} T_{*}=T_{*} d_{\widehat{H}} .
$$

and consequently, we have isomorphisms

$$
T_{*}: H^{\bar{i}}(P, H) \xrightarrow{\cong} H^{\overline{i+1}}(\widehat{P}, \widehat{H})
$$

T-duality - Twisted cohomology

as well as

$$
T_{*}: K^{i}(P, H) \xrightarrow{\cong} K^{i+1}(\widehat{P}, \widehat{H})
$$

For example,

$$
K^{i}\left(L_{p}, k\right) \cong \begin{cases}\mathbb{Z}_{k} & i=0 \\ \mathbb{Z}_{p} & i=1\end{cases}
$$

Spherical T-duality - Principal SU(2)-bundles

Much of the above can be generalized to principal SU(2)-bundles:
Gysin sequence for principal $\operatorname{SU}(2)$-bundles $\pi: P \rightarrow M$
$\cdots \longrightarrow H^{7}(M) \xrightarrow{\pi^{*}} H^{7}(P) \xrightarrow{\pi_{*}} H^{4}(M) \xrightarrow{\cup c_{2}(P)} H^{8}(M) \longrightarrow \cdots$
where

$$
c_{2}(P)=\frac{1}{8 \pi^{2}} \operatorname{Tr}(F \wedge F) \in H^{4}(M)
$$

is (a de Rham representative of) the $2 n d$ Chern class of P. However, in this case,

$$
[M, B S U(2)] \longrightarrow H^{4}(M, \mathbb{Z})
$$

is, in general, neither surjective nor injective.

SU(2) and quaternions

Recall that

$$
\operatorname{SU}(2)=\left\{U(a, b)=\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right): a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1\right\}
$$

can be identified with the unit sphere $S(\mathbb{H})=S p(1)=S^{3}$ in the quaternions

$$
\mathbb{H}=\{\alpha+\beta i+\gamma j+\delta k: i j=k=-j i, \text { cyclic }\}
$$

The isomorphism is given explicitly as

$$
\mathrm{SU}(2) \ni U(a, b) \mapsto a+j b \in \mathrm{Sp}(1)=S^{3}
$$

The relationship of principal $S U(2)$-bundles to quaternionic line bundles is analogous to the relationship of principal $\mathrm{U}(1)$-bundles to complex line bundles.

Recall that a quaternionic line bundle over a manifold M is a complex rank 2 vector bundle $V \rightarrow M$ together with a reduction of structure group to $\mathbb{H} \backslash\{0\}$. Note that the unit sphere bundle $S(V) \rightarrow M$ is an S^{3}-bundle together with the inherited group structure, i.e. a principal $\mathrm{SU}(2)$-bundle.

Conversely, given a principal $\mathrm{SU}(2)$-bundle $P \rightarrow M$, then the associated vector bundle

$$
V=P \times_{\mathrm{SU}(2)} \mathbb{H} \rightarrow M
$$

is a quaternionic line bundle.

Principal SU(2)-bundles on S^{4}

Principal $\operatorname{SU}(2)$-bundles on S^{4} are described by smooth maps $g: \mathrm{SU}(2) \rightarrow \mathrm{SU}(2)$. Let $g(z)=z, z \in \mathrm{SU}(2)$, which is a degree 1 map. Then $g(z)=z^{r}, r \in \mathbb{Z}$ is a degree r map. Let $P(r) \rightarrow S^{4}$ be the corresponding principal $\mathrm{SU}(2)$-bundle on S^{4}. Then $c_{2}(P(r))=r \in \mathbb{Z} \cong H^{4}\left(S^{4}, \mathbb{Z}\right)$.

The principal SU(2)-bundle $S^{7}=P(1) \rightarrow S^{4}$ is known as the Hopf bundle.

Let M be a compact, connected, oriented 4-dimensional manifold. Then one can show fairly easily that isomorphism classes of principal $\operatorname{SU}(2)$-bundles P on M is canonically identified with homotopy classes $\left[M, S^{4}\right] \cong H^{4}(M ; \mathbb{Z})$ given by $c_{2}(P)$.

More precisely, given a degree 1 map $h: M \rightarrow S^{4}$, then $h^{*}(P(r)) \rightarrow M$ is a principal $\operatorname{SU}(2)$-bundle on M with $c_{2}\left(h^{*}(P(r))\right)=r \in \mathbb{Z} \cong H^{4}(M, \mathbb{Z})$.

Spherical T-duality

Recall the Gysin sequence for principal SU(2)-bundles
$\pi: P \rightarrow M$
$\cdots \longrightarrow H^{7}(M) \xrightarrow{\pi^{*}} H^{7}(P) \xrightarrow{\pi_{*}} H^{4}(M) \xrightarrow{\cup c_{2}(P)} H^{8}(M) \longrightarrow \cdots$

We consider pairs of the form (P, H) consisting of a principal SU(2)-bundle $P \rightarrow M$ and a 7-cocycle H on P.

The Gysin sequence implies that π_{*} is a canonical isomorphism $H^{7}(P, \mathbb{Z}) \cong H^{4}(M, \mathbb{Z}) \cong \mathbb{Z}$, and intuitively spherical T-duality exchanges H with the second Chern class c_{2}

Spherical T-duality

More precisely, the spherical T-dual bundle $\widehat{\pi}: \widehat{P} \rightarrow M$ is defined by $c_{2}(\widehat{P})=\pi_{*} H$ while the dual 7 -cocycle $\widehat{H} \in H^{7}(\widehat{P})$ is related to $c_{2}(P)$ by the isomorphism $\widehat{\pi}_{*}$, via a similar Gysin sequence for $\widehat{P} \rightarrow M$.

Isomorphism of 7-twisted cohomology

Let M be a connected compact, oriented, 4 dimensional manifold, and consider the principal SU(2)-bundle $P(r)$ over M with $c_{2}(P(r))=r \in \mathbb{Z} \cong H^{4}(M, \mathbb{Z})$, together with the 7-cocycle $H=s$ vol on $P(r)$.

We can define integer-valued H-twisted cohomology as the iterative cohomology

$$
H^{\bullet}(P(r), H ; \mathbb{Z}) \equiv H^{\bullet}\left(H^{\bullet}(P(r) ; \mathbb{Z}), H \cup\right)
$$

Isomorphism of 7-twisted cohomology

Use the Gysin sequence to calculate the cohomology groups $H^{\text {even/odd }}(F(p) ; \mathbb{Z})$, and obtain for $p \neq 0$

$$
\begin{aligned}
H^{j}(P(r) ; \mathbb{Z}) & =H^{4-j}(M ; \mathbb{Z}), j=0,1,2,3 \\
H^{4}(P(r) ; \mathbb{Z}) & =\mathbb{Z}_{r} \oplus H^{1}(M ; \mathbb{Z}) \\
H^{7-j}(P(r) ; \mathbb{Z}) & =H^{4-j}(M ; \mathbb{Z}), j=0,1,2,3
\end{aligned}
$$

Therefore there is an isomorphism of 7-twisted cohomology groups over the integers with a parity change,

Theorem

$$
\begin{aligned}
H^{\text {even }}(P(r), s ; \mathbb{Z}) & \cong H^{\text {odd }}(P(s), r ; \mathbb{Z}) \\
H^{\text {odd }}(P(r), s ; \mathbb{Z}) & \cong H^{\text {even }}(P(s), r ; \mathbb{Z})
\end{aligned}
$$

There is a similar isomorphism of 7-twisted K-theories.

Spherical T-duality beyond dimension 4

Beyond dimension 4 the situation becomes more complicated as not all integral 4-cocycles of M are realized as c_{2} of a principal $\mathrm{SU}(2)$-bundle $\pi: P \rightarrow M$ and moreover multiple bundles can have the same $c_{2}(P)$.

More precisely, principal $\operatorname{SU}(2)$-bundles are classified upto isomorphism by homotopy classes of maps into the classifying space $M \rightarrow B S U(2)$. However, the complete homotopy type of $S^{3}=\operatorname{SU}(2)$ is still unknown, and therefore also for $B S U(2)$.

However Serre's theorem tells us that
$\pi_{j}(B S U(2)) \otimes \mathbb{Q} \cong \pi_{j}(K(\mathbb{Z}, 4)) \otimes \mathbb{Q}$, i.e. the homotopy groups of degree higher than 4 are all torsion.

Spherical T-duality beyond dimension 4

For example, recall that principal $\operatorname{SU}(2)$-bundles over S^{5} are classified by $\pi_{4}(S U(2)) \cong \mathbb{Z}_{2}$, while $H^{4}\left(S^{5}, \mathbb{Z}\right)=0$.

By a theorem of Granja, there is a natural number $N(d)$ where $d=\operatorname{dim}(M)$, such that if $\alpha \in N(d) \times H^{4}(M, \mathbb{Z})$, then it is the 2 nd Chern class of a principal $\operatorname{SU}(2)$-bundle over M. Therefore a pair (P, H) is spherical T-dualizable if $\pi_{*}(H) \in N(d) \times H^{4}(M ; \mathbb{Z})$. Then $\pi_{*}(H)=c_{2}(\widehat{P})$ where \widehat{P} is a principal $\operatorname{SU}(2)$-bundle over M. However, this does not necessarily uniquely specify \widehat{P}. But at most, there are finitely many choices.
We will simply assert that a spherical T-dual $\widehat{\pi}: \widehat{P} \rightarrow M$ be any $\mathrm{SU}(2)$-bundle with $c_{2}(\widehat{P})=\pi_{*} H$, with \hat{H} defined such that $\widehat{\pi}_{*} \widehat{H}=c_{2}(P)$ with $\widehat{p}^{*} H=p^{*} \widehat{H}$ on the correspondence space $P \times_{M} \widehat{P}$.

Spherical T-duality beyond dimension 4

T-duality induces an isomorphism on twisted cohomologies with real or rational coefficients.

Theorem

$$
\begin{aligned}
H^{\text {even }}(P, H ; \mathbb{Q}) & \cong H^{\text {odd }}(\widehat{P}, \widehat{H} ; \mathbb{Q}) \\
H^{\text {odd }}(P, H ; \mathbb{Q}) & \cong H^{\text {even }}(\widehat{P}, \widehat{H} ; \mathbb{Q})
\end{aligned}
$$

There is a similar isomorphism of 7 -twisted K-theories with parity shift, upto \mathbb{Z}_{2}-extensions.

Spherical T-duality - Non-Principal SU(2)-bundles

Much of the above can be generalized to non-principal SU(2)-bundles:

Lemma

There is a 1-1 correspondence between (oriented) non-principal $\mathrm{SU}(2)$-bundles and principal $\mathrm{SO}(4)$-bundles, given by

$$
E=Q \times_{\mathrm{SO}(4)} \mathrm{SU}(2)
$$

Spherical T-duality - Non-Principal SU(2)-bundles

Thus, non-principal $\operatorname{SU}(2)$-bundles over S^{4} are classified by $\pi_{3}(\mathrm{SO}(4)) \cong \mathbb{Z} \oplus \mathbb{Z}$. Explicitly, the clutching function $\phi_{(p, q)}: S^{3} \rightarrow \mathrm{SO}(4)$ is defined by

$$
\phi_{(p, q)}(u)(x)=u^{p} x u^{q}, \quad x \in \mathbb{R}^{4}
$$

and we have $p_{1}(Q(p, q))=2(p-q), e(Q(p, q))=p+q$.

Theorem

For each integer \widehat{p}, there is an isomorphism of 7 -twisted cohomology groups over the integers with a parity change,

$$
\begin{aligned}
H^{\text {even }}(E(p, q), h v o l ; \mathbb{Z}) \cong H^{\text {odd }}(E(\widehat{p}, h-\hat{p}),(p+q) \text { vol } ; \mathbb{Z}), \\
H^{\text {odd }}(E(p, q), h v o l ; \mathbb{Z}) \cong H^{\text {even }}(E(\widehat{p}, h-\widehat{p}),(p+q) \text { vol } ; \mathbb{Z}) .
\end{aligned}
$$

Comments and open questions

(1) What is the physics behind spherical T-duality?

7 -flux couples to 5 -branes. 5 -branes wrap 3 -spheres to give 2-branes. M-theory is a theory of 2 - and 5 -branes. Is there a duality in M-theory (e.g. for the 2- and 5-brane σ-model) whose topological shadow is spherical T-duality?
(2) Is there a generalised geometry counterpart of spherical T-duality?

There exists an M-geometry based on

$$
\mathcal{E}=T E \oplus \wedge^{2} T^{*} E \oplus \wedge^{5} T^{*} E
$$

Comments and open questions, cont'd

where $E^{\prime}=E \times{ }_{s^{3}} \widehat{E}$.

Comments and open questions, cont'd

(4) What are useful geometric realisations of integral 7-cocycles?
(5) Is there a useful geometric description of 7-twisted K-theory?
(6) When $\operatorname{dim} M \geq 4$, then it is known that not every spherical pair (P, H) has a spherical T-dual. Can the missing spherical T-duals be obtained some other way?
(Is there a C^{*}-algebra version of spherical T-duality?

THANK YOU !!

