Spherical T-duality and M-geometry

Peter Bouwknegt

Mathematical Sciences Institute Australian National University Canberra, Australia

2016 Bayrischzell Workshop on "Noncommutativity and Physics: Quantum Spacetime Structures"

29 Apr - 3 May, 2016

P. Bouwknegt, J. Evslin and V. Mathai, Spherical T-duality, [arXiv:1405.5844 [hep-th]].

P. Bouwknegt, J. Evslin and V. Mathai, Spherical T-duality II: An infinity of spherical T-duals for non-principal SU(2)-bundles, [arXiv:1409.1296 [hep-th]].

P. Bouwknegt, J. Evslin and V. Mathai, Spherical T-Duality and the spherical Fourier-Mukai transform, [arXiv:1502.04444 [hep-th]].

	String Theory	
	$M_4 imes Y_6$	
	Complex manifold	
$\mathcal{N}=1$	Kähler	
$\mathcal{N}=2$	Calabi-Yau	
$\mathcal{N}=3$	Hyper-Kähler	
	S ¹	
	Strings	
	$H\in\mathrm{H}^{3}(Y,\mathbb{Z})$	
	Mirror Symmetry / T-duality	
	generalized geometry	
	$S^1 \longrightarrow S^3$	
	S ²	

	String Theory	M-Theory / 11D SUGR
	$M_4 imes Y_6$	$M_4 imes Y_7$
	Complex manifold	Contact manifold
$\mathcal{N} = 1$	Kähler	Sasakian
$\mathcal{N}=2$	Calabi-Yau	Sasaki-Einstein
$\mathcal{N}=3$	Hyper-Kähler	3-Sasakian
	S^1	S^3
	Strings	2- and 5-branes
	$H\in\mathrm{H}^{3}(Y,\mathbb{Z})$	$H\in \mathrm{H}^7(Y,\mathbb{Z})$
	Mirror Symmetry / T-duality	Spherical T-duality?
	generalized geometry	M-geometry?
	$S^1 \longrightarrow S^3$	$S^3 \longrightarrow S^7$
		Y
	S^2	S ⁴

Example – Aloff-Wallach spaces

Denote $W_{k,l} = SU(3)/U(1)_{k,l}$, $U(1)_{k,l} = diag(z^k, z^l, z^{-(k+l)})$

$$S^3/\mathbb{Z}_{|k+l|} \longrightarrow W_{k,l}$$

$$\downarrow$$
 \mathbb{CP}^2

This is a (non-principal) S^3 -bundle iff |k + l| = 1. We have $H^7(W_{k,l}, \mathbb{Z}) \cong \mathbb{Z}$.

We find a duality

$$(W_{\rho,1-\rho},h=-(\widehat{\rho}^2-\widehat{\rho}+1)) \quad \longleftrightarrow \quad (W_{\widehat{\rho},1-\widehat{\rho}},\widehat{h}=-(\rho^2-\rho+1))$$

Fourier Transform

Fourier series for $f: S^1 \to \mathbb{R}$

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$
$$f(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{inx}$$

Fourier transform for $f : \mathbb{R} \to \mathbb{R}$

$$\widehat{f}(p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ipx} dx$$
$$f(x) = \int_{-\infty}^{\infty} \widehat{f}(p) e^{ipx} dp$$

Fourier Transform - cont'd

More generally, for G a locally compact, abelian group, we have a Fourier transform $\mathcal{F}:\mathsf{Fun}(G)\to\mathsf{Fun}(\widehat{G})$

$$\widehat{f}(p) = \int_{G} f(x) e^{-ipx} dx = \mathcal{F}(f)(p)$$
$$f(x) = \int_{\widehat{G}} \widehat{f}(p) e^{ipx} dp$$

where

$$\widehat{G} = Hom(G, U(1)) = char(G)$$

is the Pontryagin dual of G. I.e. a character is a U(1) valued function on G, satisfying $\chi(x + y) = \chi(x)\chi(y)$.

The characters form a locally compact, abelian group $\widehat{\mathsf{G}}$ under pointwise multiplication.

Fourier Transform - cont'd

$$\begin{split} \mathbf{G} &= \boldsymbol{S}^{1} \,, \qquad \widehat{\mathbf{G}} = \mathbb{Z} \,, \qquad \boldsymbol{e}^{\textit{inx}} \\ \mathbf{G} &= \mathbb{R} \,, \qquad \widehat{\mathbf{G}} = \mathbb{R} \,, \qquad \boldsymbol{e}^{\textit{ipx}} \end{split}$$

We can think of $\chi(x, p) = e^{ipx} \in Fun(G \times \widehat{G})$ as the universal character.

Fourier transform expresses the fact that the characters of G span Fun(G).

Fourier Transform - cont'd

I.e. we have the following "correspondence"

$$\mathcal{F}f = \widehat{\pi}_*(\pi^*(f) \times \chi(x, p))$$

T-duality is a geometric version of harmonic analysis, i.e. by replacing functions by geometric objects (such as bundles, sheaves, D-modules, ...) or, as an intermediate step, by topological characteristics associated to these objects (cohomology, K-theory, derived categories, ...).

Fourier-Mukai transform

Consider a manifold $P = M \times S^1$. By the Künneth theorem we have

$$H^{\bullet}(P) \cong H^{\bullet}(M) \otimes H^{\bullet}(S^{1})$$

I.e.

$$H^n(P) \cong H^n(M) \oplus H^{n-1}(M)$$

We have a similar decomposition at the level of forms

$$\Omega^n(P)^{\operatorname{inv}} \cong \Omega^n(M) \oplus \Omega^{n-1}(M)$$
.

I.e. invariant degree *n* forms on *P* are of the form ω or $\omega \wedge d\theta$, where ω is an *n*, respectively n - 1, form on *M*.

Consider $\widehat{P} = M \times \widehat{S}^1$. We have an isomorphism

Fourier-Mukai transform - cont'd

where

$$H^{\overline{0}}(P) = \bigoplus_{i \ge 0} H^{2i}(P), \quad H^{\overline{1}}(P) = \bigoplus_{i \ge 0} H^{2i+1}(P),$$

Explicitly

$$\omega \ \mapsto \ \mathbf{d}\widehat{\theta} \wedge \omega \,, \qquad \mathbf{d}\theta \wedge \omega \ \mapsto \ \omega$$

or

$$\mathcal{F}\Omega = \int_{\mathcal{S}^1} (1 + d\theta \wedge d\widehat{\theta}) \,\Omega = \int_{\mathcal{S}^1} e^{d\theta \wedge d\widehat{\theta}} \,\Omega = \int_{\mathcal{S}^1} e^{\mathcal{F}} \,\Omega$$

Fourier-Mukai transform - cont'd

I.e. ${\mathcal F}$ is given by a correspondence

$$\mathcal{F}\Omega = p_*\left(\widehat{p}^* \Omega \wedge e^F\right)$$

Fourier-Mukai transform - cont'd

Once we recognize that $F = d\theta \wedge d\hat{\theta}$ is the curvature of a canonical linebundle \mathcal{P} (the Poincaré linebundle) over $S^1 \times \hat{S}^1$, in fact $e^F = ch(\mathcal{P})$, this immediately suggests a 'geometrization' in terms of vector bundles over P and \hat{P} . (*)

$$\mathcal{F} E = p_* \left(\widehat{p}^* E \otimes \mathcal{P} \right)$$

This gives rise to the so-called Fourier-Mukai transform

$$\mathcal{F} : K^{i}(P) \xrightarrow{\cong} K^{i+1}(\widehat{P})$$

which has many of the properties of the Fourier transform discussed earlier.

The discussion can be generalized to complexes of vector bundles (complexes of sheaves) and thus gives rise to a Fourier-Mukai correspondence between derived categories D(P) and $D(\hat{P})$.

T-duality - Closed string on $M \times S^1$

Closed strings on $M \times S^1$ are described by

$$X : \Sigma \rightarrow M \times S^{2}$$

where $\Sigma = \{(\sigma, \tau)\}$ is the closed string worldsheet. Upon quantization, we find

- Momentum modes: $p = \frac{n}{B}$
- Winding modes: $X(0, \tau) \sim X(1, \tau) + mR$

$${\sf E}=\left(rac{n}{R}
ight)^2+(mR)^2+{
m osc.}$$
 modes

We have a duality $R \to 1/R$, such that ST on $M \times S^1$ is equivalent to ST on $M \times \widehat{S}^1$ (or a duality between IIA and IIB ST, for susy ST) Suppose we have a pair (P, H), consisting of a principal circle bundle

and a so-called H-flux H on P, a Čech 3-cocycle.

Topologically, *P* is classified by an element in $F \in H^2(M, \mathbb{Z})$ while *H* gives a class in $H^3(P, \mathbb{Z})$

T-duality - Principal S¹-bundles

The (topological) T-dual of (P, H) is given by the pair $(\widehat{P}, \widehat{H})$, where the principal S^1 -bundle

and the dual H-flux $\widehat{H} \in H^3(\widehat{P},\mathbb{Z})$, satisfy

$$\widehat{F} = \pi_* H$$
, $F = \widehat{\pi}_* \widehat{H}$

where $\pi_* : H^3(P, \mathbb{Z}) \to H^2(M, \mathbb{Z})$, is the pushforward map ('integration over the S^1 -fibre').

T-duality - Principal S¹-bundles

The ambiguity in the choice of \hat{H} is (almost) removed by requiring that

$$\widehat{p}^*H - p^*\widehat{H} \equiv 0 \quad \in H^3(P imes_M \widehat{P}, \mathbb{Z})$$

where $P \times_M \widehat{P}$ is the correspondence space

$$P imes_M \widehat{P} = \{(x, \widehat{x}) \in P imes \widehat{P} \mid \pi(x) = \widehat{\pi}(\widehat{x})\}$$

Gysin sequences

$$\cdots \longrightarrow H^{3}(M) \xrightarrow{\pi^{*}} H^{3}(P) \xrightarrow{\pi_{*}} H^{2}(M) \xrightarrow{\cup F} H^{4}(M) \longrightarrow \cdots$$

$$\cdots \longrightarrow H^{3}(M) \xrightarrow{\widehat{\pi}^{*}} H^{3}(\widehat{P}) \xrightarrow{\widehat{\pi}_{*}} H^{2}(M) \xrightarrow{\bigcup \widehat{F}} H^{4}(M) \longrightarrow \cdots$$

T-duality - Principal S¹-bundles

T-duality - Examples

Consider principal S^1 -bundles P over $M = S^2$, then

$$H^2(M,\mathbb{Z})\cong\mathbb{Z}\,,\qquad H^3(P,\mathbb{Z})\cong\mathbb{Z}$$

and we have, for example,

$$(\boldsymbol{S}^2 imes \boldsymbol{S}^1, \boldsymbol{0}) \longrightarrow (\boldsymbol{S}^2 imes \boldsymbol{S}^1, \boldsymbol{0})$$

$$(S^2 \times S^1, 1) \longrightarrow (S^3, 0)$$

or more generally

$$(L_p, k) \longrightarrow (L_k, p)$$

where $L_{p} = S^{3}/\mathbb{Z}_{p}$ is the lens space.

T-duality - Twisted cohomology

Using
$$\Omega^{k}(P)^{inv} \cong \Omega^{k}(M) \oplus \Omega^{k-1}(M)$$

 $F = dA, \qquad H = H_{(3)} + A \wedge H_{(2)}$

we find

$$\widehat{F} = H_{(2)} = d\widehat{A}, \qquad \widehat{H} = H_{(3)} + \widehat{A} \wedge F$$

such that

$$\widehat{H} - H = \widehat{A} \wedge F - A \wedge \widehat{F} = d(A \wedge \widehat{A}).$$

Theorem

We have an isomorphism of (\mathbb{Z}_2 -graded) differential complexes

$$T_*: \ (\Omega(P)^{inv}, d_H) \longrightarrow (\Omega(\widehat{P})^{inv}, d_{\widehat{H}})$$

where $d_H = d + H \wedge$.

T-duality - Twisted cohomology

and consequently, we have isomorphisms

$$T_* : H^{\overline{i}}(P, H) \xrightarrow{\cong} H^{\overline{i+1}}(\widehat{P}, \widehat{H})$$

as well as

$$T_* : K^i(P, H) \xrightarrow{\cong} K^{i+1}(\widehat{P}, \widehat{H})$$

For example,

$$\mathcal{K}^{i}(L_{p},k)\cong egin{cases} \mathbb{Z}_{k} & i=0\ \mathbb{Z}_{p} & i=1 \end{cases}$$

Spherical T-duality - Principal SU(2)-bundles

Much of the above can be generalized to principal SU(2)-bundles: Gysin sequence for principal SU(2)-bundles $\pi : P \to M$

$$\cdots \longrightarrow H^7(M) \xrightarrow{\pi^*} H^7(P) \xrightarrow{\pi_*} H^4(M) \xrightarrow{\cup c_2(P)} H^8(M) \longrightarrow \cdots$$

where

$$c_2(P)=rac{1}{8\pi^2}\operatorname{Tr}(F\wedge F)\in H^4(M)$$

is (a de Rham representative of) the 2nd Chern class of *P*. However, in this case,

$$[M, BSU(2)] \longrightarrow H^4(M, \mathbb{Z})$$

is, in general, neither surjective nor injective.

SU(2) and quaternions

Recall that

$$\mathrm{SU}(2)=\left\{U(a,b)=\left(egin{array}{cc} a & -ar{b} \\ b & ar{a} \end{array}
ight): \ a,b\in\mathbb{C}, |a|^2+|b|^2=1
ight\}$$

can be identified with the unit sphere $\mathcal{S}(\mathbb{H})=Sp(1)=\mathcal{S}^3$ in the quaternions

$$\mathbb{H} = \{ \alpha + \beta \mathbf{i} + \gamma \mathbf{j} + \delta \mathbf{k} : \mathbf{i} \mathbf{j} = \mathbf{k} = -\mathbf{j} \mathbf{i}, \, \mathsf{cyclic} \}$$

The isomorphism is given explicitly as

$$SU(2)
i U(a,b) \mapsto a + jb \in Sp(1) = S^3$$

The relationship of principal SU(2)-bundles to quaternionic line bundles is analogous to the relationship of principal U(1)-bundles to complex line bundles.

Recall that a **quaternionic line bundle** over a manifold *M* is a complex rank 2 vector bundle $V \rightarrow M$ together with a reduction of structure group to $\mathbb{H} \setminus \{0\}$. Note that the unit sphere bundle $S(V) \rightarrow M$ is an *S*³-bundle together with the inherited group structure, i.e. a principal SU(2)-bundle.

Conversely, given a principal SU(2)-bundle $P \rightarrow M$, then the associated vector bundle

$$V = P imes_{\mathsf{SU}(2)} \mathbb{H} o M$$

is a quaternionic line bundle.

Principal SU(2)-bundles on S^4 are described by smooth maps $g : SU(2) \rightarrow SU(2)$. Let $g(z) = z, z \in SU(2)$, which is a degree 1 map. Then $g(z) = z^r, r \in \mathbb{Z}$ is a degree *r* map. Let $P(r) \rightarrow S^4$ be the corresponding principal SU(2)-bundle on S^4 . Then $c_2(P(r)) = r \in \mathbb{Z} \cong H^4(S^4, \mathbb{Z})$.

The principal SU(2)-bundle $S^7 = P(1) \rightarrow S^4$ is known as the **Hopf bundle**.

Let *M* be a compact, connected, oriented 4-dimensional manifold. Then one can show fairly easily that isomorphism classes of principal SU(2)-bundles *P* on *M* is canonically identified with homotopy classes $[M, S^4] \cong H^4(M; \mathbb{Z})$ given by $c_2(P)$.

More precisely, given a degree 1 map $h: M \to S^4$, then $h^*(P(r)) \to M$ is a principal SU(2)-bundle on M with $c_2(h^*(P(r))) = r \in \mathbb{Z} \cong H^4(M, \mathbb{Z}).$

Recall the Gysin sequence for principal SU(2)-bundles $\pi: P \to M$

$$\cdots \longrightarrow H^{7}(M) \xrightarrow{\pi^{*}} H^{7}(P) \xrightarrow{\pi_{*}} H^{4}(M) \xrightarrow{\cup c_{2}(P)} H^{8}(M) \longrightarrow \cdots$$

We consider pairs of the form (P, H) consisting of a principal SU(2)-bundle $P \rightarrow M$ and a 7-cocycle H on P.

The Gysin sequence implies that π_* is a canonical isomorphism $H^7(P, \mathbb{Z}) \cong H^4(M, \mathbb{Z}) \cong \mathbb{Z}$, and intuitively spherical T-duality exchanges H with the second Chern class c_2

More precisely, the **spherical T-dual** bundle $\widehat{\pi} : \widehat{P} \to M$ is defined by $c_2(\widehat{P}) = \pi_* H$ while the dual 7-cocycle $\widehat{H} \in H^7(\widehat{P})$ is related to $c_2(P)$ by the isomorphism $\widehat{\pi}_*$, via a similar Gysin sequence for $\widehat{P} \to M$.

Let *M* be a connected compact, oriented, 4 dimensional manifold, and consider the principal SU(2)-bundle P(r) over *M* with $c_2(P(r)) = r \in \mathbb{Z} \cong H^4(M, \mathbb{Z})$, together with the 7-cocycle H = s vol on P(r).

We can define **integer-valued H-twisted cohomology** as the iterative cohomology

 $H^{\bullet}(P(r), H; \mathbb{Z}) \equiv H^{\bullet}(H^{\bullet}(P(r); \mathbb{Z}), H \cup).$

Isomorphism of 7-twisted cohomology

Use the Gysin sequence to calculate the cohomology groups $H^{even/odd}(F(p);\mathbb{Z})$, and obtain for $p \neq 0$

$$\begin{aligned} H^{j}(P(r);\mathbb{Z}) &= H^{4-j}(M;\mathbb{Z}), \, j = 0, 1, 2, 3\\ H^{4}(P(r);\mathbb{Z}) &= \mathbb{Z}_{r} \oplus H^{1}(M;\mathbb{Z})\\ H^{7-j}(P(r);\mathbb{Z}) &= H^{4-j}(M;\mathbb{Z}), \, j = 0, 1, 2, 3 \end{aligned}$$

Therefore there is an isomorphism of 7-twisted cohomology groups over the integers with a parity change,

Theorem

$$\begin{aligned} & H^{even}(P(r), s; \mathbb{Z}) \cong H^{odd}(P(s), r; \mathbb{Z}) \,, \\ & H^{odd}(P(r), s; \mathbb{Z}) \cong H^{even}(P(s), r; \mathbb{Z}) \,. \end{aligned}$$

There is a similar isomorphism of 7-twisted K-theories.

Beyond dimension 4 the situation becomes more complicated as not all integral 4-cocycles of *M* are realized as c_2 of a principal SU(2)-bundle $\pi : P \to M$ and moreover multiple bundles can have the same $c_2(P)$.

More precisely, principal SU(2)-bundles are classified upto isomorphism by homotopy classes of maps into the classifying space $M \rightarrow BSU(2)$. However, the complete homotopy type of $S^3 = SU(2)$ is still unknown, and therefore also for BSU(2).

However Serre's theorem tells us that $\pi_j(BSU(2)) \otimes \mathbb{Q} \cong \pi_j(K(\mathbb{Z}, 4)) \otimes \mathbb{Q}$, i.e. the homotopy groups of degree higher than 4 are all torsion.

For example, recall that principal SU(2)-bundles over S^5 are classified by $\pi_4(SU(2)) \cong \mathbb{Z}_2$, while $H^4(S^5, \mathbb{Z}) = 0$.

By a theorem of Granja, there is a natural number N(d) where $d = \dim(M)$, such that if $\alpha \in N(d) \times H^4(M, \mathbb{Z})$, then it is the 2nd Chern class of a principal SU(2)-bundle over M. Therefore a pair (P, H) is spherical T-dualizable if $\pi_*(H) \in N(d) \times H^4(M; \mathbb{Z})$. Then $\pi_*(H) = c_2(\widehat{P})$ where \widehat{P} is a principal SU(2)-bundle over M. However, this does not necessarily uniquely specify \widehat{P} . But at most, there are finitely many choices.

We will simply assert that a spherical T-dual $\hat{\pi} : \hat{P} \to M$ be any SU(2)-bundle with $c_2(\hat{P}) = \pi_* H$, with \hat{H} defined such that $\hat{\pi}_* \hat{H} = c_2(P)$ with $\hat{p}^* H = p^* \hat{H}$ on the correspondence space $P \times_M \hat{P}$.

T-duality induces an isomorphism on twisted cohomologies with real or rational coefficients.

Theorem

$$H^{even}(P, H; \mathbb{Q}) \cong H^{odd}(\widehat{P}, \widehat{H}; \mathbb{Q}),$$
$$H^{odd}(P, H; \mathbb{Q}) \cong H^{even}(\widehat{P}, \widehat{H}; \mathbb{Q}).$$

There is a similar isomorphism of 7-twisted K-theories with parity shift, upto \mathbb{Z}_2 -extensions.

Much of the above can be generalized to non-principal SU(2)-bundles:

Lemma

There is a 1–1 correspondence between (oriented) non-principal SU(2)-bundles and principal SO(4)-bundles, given by

$${\sf E} = {\sf Q} imes_{{\sf SO}(4)} {\sf SU}(2)$$

Spherical T-duality - Non-Principal SU(2)-bundles

Thus, non-principal SU(2)-bundles over S^4 are classified by $\pi_3(SO(4)) \cong \mathbb{Z} \oplus \mathbb{Z}$. Explicitly, the clutching function $\phi_{(p,q)} : S^3 \to SO(4)$ is defined by

$$\phi_{(p,q)}(u)(x) = u^p x u^q, \qquad x \in \mathbb{R}^4$$

and we have $p_1(Q(p,q)) = 2(p-q)$, e(Q(p,q)) = p+q.

Theorem

For each integer \hat{p} , there is an isomorphism of 7-twisted cohomology groups over the integers with a parity change,

$$egin{aligned} &\mathcal{H}^{even}(E(p,q),\mathit{hvol};\mathbb{Z})\cong\mathcal{H}^{odd}(E(\widehat{p},h-\widehat{p}),(p+q)\mathit{vol};\mathbb{Z})\,,\ &\mathcal{H}^{odd}(E(p,q),\mathit{hvol};\mathbb{Z})\cong\mathcal{H}^{even}(E(\widehat{p},h-\widehat{p}),(p+q)\mathit{vol};\mathbb{Z})\,. \end{aligned}$$

What is the physics behind spherical T-duality?

7-flux couples to 5-branes. 5-branes wrap 3-spheres to give 2-branes. M-theory is a theory of 2- and 5-branes. Is there a duality in M-theory (e.g. for the 2- and 5-brane σ -model) whose topological shadow is spherical T-duality?

Is there a generalised geometry counterpart of spherical T-duality?

There exists an M-geometry based on

$$\mathcal{E} = TE \oplus \wedge^2 T^*E \oplus \wedge^5 T^*E$$

Comments and open questions, cont'd

Comments and open questions, cont'd

- What are useful geometric realisations of integral 7-cocycles?
- Is there a useful geometric description of 7-twisted K-theory?
- When dim $M \ge 4$, then it is known that not every spherical pair (P, H) has a spherical T-dual. Can the missing spherical T-duals be obtained some other way?
 - Is there a C*-algebra version of spherical T-duality?

THANK YOU !!

Peter Bouwknegt Spherical T-duality and M-geometry