Open/closed string theory and operads

joint work of
Martin Doubek, Branislav Jurčo and Martin Markl

Charles University and Academy of Sciences of the Czech Republic, Prague

$$
30.4 .2016
$$

Closed string worldsheets

Quantum \mathcal{C} losed string operad:

$$
\mathcal{Q C}(n, G):=
$$

\{homeomorphism classes of compact orientable $2 D$ surfaces of genus G with n boundary components labelled $1,2, \ldots, n\}$

$|\mathcal{Q C}(n, G)|=1$

Closed string worldsheets - continued

Gluing of surfaces along boundary components:

$$
i \circ_{j}: \mathcal{Q C}\left(n_{1}, G_{1}\right) \times \mathcal{Q C}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{Q C}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right)
$$

Closed string worldsheets - continued

Gluing of surfaces along boundary components:

$$
i \circ_{j}: \mathcal{Q C}\left(n_{1}, G_{1}\right) \times \mathcal{Q C}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{Q C}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right)
$$

Closed string worldsheets - continued

Gluing of surfaces along boundary components:

$$
i \circ_{j}: \mathcal{Q C}\left(n_{1}, G_{1}\right) \times \mathcal{Q C}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{Q C}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right)
$$

Σ_{n} acts on $\mathcal{Q C}(n, G)$ by permuting the labels of the boundary components - trivial action.

Open string worldsheets

\mathcal{Q} uantum \mathcal{O} pen string operad:

$$
\mathcal{Q O}(n, G):=
$$

\{homeomorphism classes of compact orientable $2 D$ surfaces of genus g with n distinguished intervals (open inputs) labelled $1,2, \ldots, n$ on b boundary components,

$$
G=2 g+b-1\}
$$

$|\mathcal{Q O}(n, G)|>1$

Open string worldsheets - continued

Gluing of surfaces using ribbons:

$$
i \circ_{j}: \mathcal{Q O}\left(n_{1}, G_{1}\right) \times \mathcal{Q O}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{Q O}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right)
$$

Open string worldsheets - continued

Gluing of surfaces using ribbons:

$$
i \circ_{j}: \mathcal{Q O}\left(n_{1}, G_{1}\right) \times \mathcal{Q O}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{Q O}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right)
$$

$$
\xi_{i j}: \mathcal{Q O}(n, G) \rightarrow \mathcal{Q O}(n-2, G+1)
$$

$$
\xi_{i j}, \sqrt[5]{ } \quad\left(3^{j}=\sqrt[5]{2}\right) \infty
$$

Open string worldsheets - continued

Gluing of surfaces using ribbons:

$$
i \circ_{j}: \mathcal{Q O}\left(n_{1}, G_{1}\right) \times \mathcal{Q O}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{Q O}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right)
$$

$$
\begin{array}{rl}
\xi_{i j} & : \mathcal{Q O}(n, G) \rightarrow \mathcal{Q O}(n-2, G+1) \\
\xi_{i j} & i \sum^{2} \quad\left(\xi^{j}=5\right)
\end{array}
$$

Σ_{n} acts on $\mathcal{Q O}(n, G)$ by permuting the labels of the open inputs.

Modular operad

Symmetric monoidal category $C=(C, \otimes, I, s)$
Examples: (Set, $\times,\{*\}, s),\left(\mathrm{dgVec}_{\mathbb{K}}, \otimes, \mathbb{K}, s\right)$, SSet, Top,$\ldots$

Modular operad

Symmetric monoidal category $\mathrm{C}=(\mathrm{C}, \otimes, I, s)$
Examples: (Set, $\times,\{*\}, s),\left(\mathrm{dgVec}_{\mathbb{K}}, \otimes, \mathbb{K}, s\right)$, SSet, Top, \ldots
Modular operad \mathcal{P} in C consists of a collection $\{\mathcal{P}(n, G)\}_{n, G \geq 0}$ of objects of C with Σ_{n} actions by morphisms of C, and collections

$$
\begin{gathered}
\circ_{j}: \mathcal{P}\left(n_{1}, G_{1}\right) \otimes \mathcal{P}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{P}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right) \\
\xi_{i j}: \mathcal{P}(n, G) \rightarrow \mathcal{P}(n-2, G+1)
\end{gathered}
$$

of equivariant morphisms of C satisfying the axioms:

1. $i \circ_{j}=j \circ_{i} s, \quad \xi_{i j}=\xi_{j i}$
2. $\xi_{i j} \xi_{k l}=\xi_{k l} \xi_{i j}$
3. $\xi_{i j k} \circ \rho=\xi_{k l i} \circ_{j}$
4. $i \circ_{j}\left(\xi_{k l} \otimes 1\right)=\xi_{k l} i_{j}$
5. $i \circ_{j}\left(1 \otimes k \circ_{l}\right)=k \circ^{\prime}\left(i \circ_{j} \otimes 1\right)$

Operad variants

$\mathcal{C o m} \subset \mathcal{Q C}$: surfaces with genus $G=0$
$\mathcal{A s s} \subset \mathcal{Q O}$: surfaces with genus $g=0$ and a single boundary
Cyclic operad - no $\xi_{i j}$
Ordinary operad - one output, several inputs
Properad - several inputs, several outputs

Endomorphism operad

V is a vector space over $\mathbb{K}, \operatorname{dim}_{\mathbb{K}} V=: N<\infty$
$B: V \otimes V \rightarrow \mathbb{K}$ a scalar product $\left\{a_{i}\right\}_{i=1}^{N}$ a basis, $B^{i j}$ is the inverse matrix of $B_{i j}=B\left(a_{i}, a_{j}\right)$

Endomorphism operad

V is a vector space over $\mathbb{K}, \operatorname{dim}_{\mathbb{K}} V=: N<\infty$
$B: V \otimes V \rightarrow \mathbb{K}$ a scalar product $\left\{a_{i}\right\}_{i=1}^{N}$ a basis, $B^{i j}$ is the inverse matrix of $B_{i j}=B\left(a_{i}, a_{j}\right)$

$$
\mathcal{E} n d_{V}(n, G):=\operatorname{Hom}_{\mathbb{K}}\left(V^{\otimes n}, \mathbb{K}\right)
$$

$$
\begin{aligned}
& i \circ_{j}: \mathcal{E} n d_{V}\left(n_{1}, G_{1}\right) \otimes \mathcal{E} n d_{V}\left(n_{2}, G_{2}\right) \rightarrow \mathcal{E} n d_{V}\left(n_{1}+n_{2}-2, G_{1}+G_{2}\right) \\
& \quad\left(f_{i} \circ_{j} g\right)\left(v_{1}, \ldots, v_{n_{1}+n_{2}-2}\right):= \\
& =\sum_{k, l} f(v_{1}, \ldots, \underbrace{a_{k}}_{i-t h}, \ldots, v_{n_{1}-1}) B^{k l} g(v_{n_{1}}, \ldots, \underbrace{a_{l}}_{j-t h}, \ldots, v_{n_{1}+n_{2}-2}) \\
& \xi_{i j}:{\mathcal{E} n d_{V}(n, G) \rightarrow \mathcal{E} n d_{V}(n-2, G+1)}_{\left(\xi_{i j} f\right)\left(v_{1}, \ldots, v_{n-2}\right):=\sum_{k, l} f(v_{1}, \ldots, \underbrace{a_{k}}_{i-t h}, \ldots, \underbrace{a_{l}}_{j-t h}, \ldots, v_{n-2}) B^{k l}}^{l}
\end{aligned}
$$

$$
\sigma \in \Sigma_{n} \text { acts by }(\sigma \cdot f)\left(v_{1}, \ldots, v_{n}\right):=f\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)
$$

Algebra over an operad

Morphism $\alpha: \mathcal{P} \rightarrow \mathcal{Q}$ of modular operads is a collection of equivariant maps

$$
\alpha: \mathcal{P}(n, G) \rightarrow \mathcal{Q}(n, G), \quad n, G \geq 0
$$

satisfying

$$
\alpha\left(p_{1}\right) ; \circ_{j} \alpha\left(p_{2}\right)=\alpha\left(p_{1 ;} \circ_{j} p_{2}\right) \quad \text { and } \quad \xi_{i j} \alpha(p)=\alpha\left(\xi_{i j} p\right)
$$

Algebra over an operad

Morphism $\alpha: \mathcal{P} \rightarrow \mathcal{Q}$ of modular operads is a collection of equivariant maps

$$
\alpha: \mathcal{P}(n, G) \rightarrow \mathcal{Q}(n, G), \quad n, G \geq 0
$$

satisfying

$$
\alpha\left(p_{1}\right)_{i} \circ_{j} \alpha\left(p_{2}\right)=\alpha\left(p_{1 ;} \circ_{j} p_{2}\right) \quad \text { and } \quad \xi_{i j} \alpha(p)=\alpha\left(\xi_{i j} p\right)
$$

Algebra over \mathcal{P} (or \mathcal{P} algebra) on a vector space V is a modular operad morphism $\mathcal{P} \rightarrow \mathcal{E} n d_{V}$. compare: representation of group, $G \rightarrow \operatorname{End}(V)$

Examples of algebras over operads

Algebras over

- Com: non-unital commutative Frobenius algebra
- $\mathcal{Q C}$: essentially 2D TQFT
(compare: monoidal functor $\mathrm{Cob}_{2} \rightarrow \mathrm{Vec}_{\mathbb{C}}$)
- Ass: non-unital Frobenius algebra
- $\mathcal{Q O}$: essentially 2D open TQFT

Modular envelope

Modular envelope

$$
\text { CycOp } \underset{\text { forget }}{\stackrel{\text { Mod }}{\stackrel{\perp}{\longrightarrow}}} \text { ModOp }
$$

In particular $(\mathcal{P}=\mathcal{E} n d v)$:
$\{$ algebras over $\mathcal{C}\} \leftrightarrow\{$ algebras over $\operatorname{Mod}(\mathcal{C})\}$
Examples:

- $\operatorname{Mod}(\mathcal{C o m}) \cong \mathcal{Q C}$, explains 2D TQFT
- $\operatorname{Mod}(\mathcal{A s s}) \cong \mathcal{Q O}$
- $\operatorname{Mod}(\mathcal{O C}) /($ Cardy relation $) \cong \mathcal{Q O C}$

$\operatorname{Mod}(\mathcal{O C}) /($ Cardy relation $) \cong \mathcal{Q O C}$

2-coloured modular operad:
$\mathcal{Q O C}:=\{2 D$ surfaces with both open and closed inputs $\}$

2-coloured cyclic suboperad of $\mathcal{Q O C}$:
$\mathcal{O C}:=\{2 D$ surfaces of genus 0 with both open and closed inputs $\}$

$\operatorname{Mod}(\mathcal{O C}) /($ Cardy relation $) \cong \mathcal{Q O C}$

2-coloured modular operad:
$\mathcal{Q O C}:=\{2 D$ surfaces with both open and closed inputs $\}$

2-coloured cyclic suboperad of $\mathcal{Q O C}$:
$\mathcal{O C}:=\{2 D$ surfaces of genus 0 with both open and closed inputs $\}$
$\mathcal{Q O C}$ algebras: A, B Frobenius algebras, A commutative, $A \rightarrow B$ a morphisms of algebras, $f(A) \subset Z(B)$, Cardy condition

Homotopy algebras

$$
{ }_{n} C\left(V, d_{V}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right)
$$

Transfer problem: Given \mathcal{P} algebra structure on $(V, d V)$, given $d g$ maps p, i such that $i p \sim 1_{V}$ via homotopy h, find a \mathcal{P} algebra structure on $\left(H, d_{H}\right)$ and extend p, i to morphisms of \mathcal{P} algebras.

Example: Gauge fixing

Homotopy algebras

$$
h \circlearrowright\left(V, d_{V}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right)
$$

Transfer problem: Given \mathcal{P} algebra structure on $\left(V, d_{V}\right)$, given $d g$ maps p, i such that $i p \sim 1_{V}$ via homotopy h, find a \mathcal{P} algebra structure on $\left(H, d_{H}\right)$ and extend p, i to morphisms of \mathcal{P} algebras.

Example: Gauge fixing

$$
\{\mathcal{P} \text { algebras }\} \subset\left\{\mathcal{P}_{\infty} \text { algebras }\right\}
$$

E.g. cofibrant replacement $\mathcal{P}_{\infty} \xrightarrow{\sim} \mathcal{P}$

Theorem: The transfer problem is always solvable for algebras over cofibrant operads.

Ordinary operads: $\mathcal{P}_{\infty}=\Omega B(\mathcal{P})$ cobar-bar construction

$$
\mathcal{P}_{\infty}=\Omega\left(\mathcal{P}^{\mathrm{i}}\right) \text { Koszul resolution }
$$

Feynman transform

Let \mathcal{P} be a modular operad.
$\mathbf{F}(\mathcal{P})(n, G) \approx \mathbb{K}\{$ graphs of genus G with n legs
and vertices decorated by elements of $\mathcal{P}\}$
${ }^{\circ} \circ_{j}$ and $\xi_{i j}$ are defined by grafting of graphs

Feynman transform

Let \mathcal{P} be a modular operad.
$\mathbf{F}(\mathcal{P})(n, G) \approx \mathbb{K}\{$ graphs of genus G with n legs and vertices decorated by elements of $\mathcal{P}\}$
$i \circ_{j}$ and $\xi_{i j}$ are defined by grafting of graphs

where G_{v} is obtained from G by replacing a small neighborhood of vertex v decorated by $p \in \mathcal{P}$ by a graph with a single inner edge and vertices decorated using duals of $i \circ_{j}$ and $\xi_{i j}$ on \mathcal{P}.

Feynman transform - continued

$i \circ_{j}$ and $\xi_{i j}$ refers to \mathcal{P}

Homotopy algebras - cyclic and modular examples

Algebras over

- $\Omega($ Com $)$: cyclic L_{∞} algebras
- $\mathbf{F}(\mathcal{Q C})$: quantum L_{∞} algebras (a.k.a. loop homotopy algebras)
- $\Omega($ Ass $)$: cyclic A_{∞} algebras
- $\mathbf{F}(\mathcal{Q O})$: quantum A_{∞} algebras
- $\mathbf{F}(\mathcal{Q O C})$: quantum open/closed homotopy algebras

Master equation

$$
P:=\prod_{n, g}\left(\mathcal{P}(n, g) \otimes \mathcal{E} n d_{V}(n, g)\right)^{\Sigma_{n}} \quad \text { (invariants) }
$$

with operations $d, \Delta: P \rightarrow P,\{ \}: P \otimes P \rightarrow P:$

$$
\begin{gathered}
d(p \otimes e):=d_{\mathcal{P}}(p) \otimes e \pm p \otimes d(e) \\
\Delta(p \otimes e):=\xi_{i j} p \otimes \xi_{i j} e \\
\left\{p \otimes e, p^{\prime} \otimes e^{\prime}\right\}:=\sum_{\rho} \pm(\rho \otimes \rho)\left(\left(p_{i} \circ_{j} p^{\prime}\right) \otimes\left(e_{i} \circ_{j} e^{\prime}\right)\right)
\end{gathered}
$$

Master equation

$$
P:=\prod_{n, g}\left(\mathcal{P}(n, g) \otimes \mathcal{E} n d_{v}(n, g)\right)^{\Sigma_{n}} \quad \text { (invariants) }
$$

with operations $d, \Delta: P \rightarrow P,\{ \}: P \otimes P \rightarrow P:$

$$
\begin{gathered}
d(p \otimes e):=d_{\mathcal{P}}(p) \otimes e \pm p \otimes d(e) \\
\Delta(p \otimes e):=\xi_{i j} p \otimes \xi_{i j} e \\
\left\{p \otimes e, p^{\prime} \otimes e^{\prime}\right\}:=\sum_{\rho} \pm(\rho \otimes \rho)\left(\left(p_{i} \circ_{j} p^{\prime}\right) \otimes\left(e_{i} \circ_{j} e^{\prime}\right)\right)
\end{gathered}
$$

Theorem: Algebras over $\mathbf{F}(\mathcal{P})$ on (V, d) are in bijection with degree 0 solutions of the master equation in P :

$$
d S+\Delta S+\frac{1}{2}\{S, S\}=0, \quad S \in P
$$

Moreover, $(P, d, \Delta,\{ \})$ is a generalized Batalin-Vilkovisky algebra.

Master equation for $\mathbf{F}(\mathcal{Q C})$

with operations

$$
\begin{aligned}
\Delta(S) & =\sum_{i, j} \pm B^{i j} \frac{\partial^{2} S}{\partial \phi^{i} \partial \phi^{j}} \\
\{S, T\} & =\sum_{i, j} \pm B^{i j} \frac{\partial S}{\partial \phi^{i}} \cdot \frac{\partial T}{\partial \phi^{j}}
\end{aligned}
$$

for $S, T \in \mathbb{K}\left[\left[\phi^{1}, \ldots, \phi^{N}\right]\right]$.
$(P, d, \Delta,\{ \}, \cdot)$ is an honest Batalin-Vilkovisky algebra.

Homotopy transfer for $\mathbf{F} \mathcal{Q C}$ algebras

$$
\begin{gathered}
{ }^{n} C\left(V, d_{V}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H_{*}(V), 0\right) \\
\Downarrow \\
{ }^{n} C\left(P_{V},\left\{S_{0},-\right\}\right) \underset{{ }_{i}}{\rightleftarrows}\left(P_{H}, 0\right)
\end{gathered}
$$

The following are equivalent:

$$
\begin{aligned}
& \text { 1. } d_{V} S+\Delta_{V} S+\frac{1}{2}\{S, S\}_{V}=0 \\
& \text { 2. } \Delta_{V} S^{\prime}+\frac{1}{2}\left\{S^{\prime}, S^{\prime}\right\}_{V}=0 \text { for } S^{\prime}=S_{0}+S \\
& \text { 3. }\left(\Delta_{V}(-)+\left\{S^{\prime},-\right\}_{V}\right) \circ\left(\Delta_{V}(-)+\left\{S^{\prime},-\right\}_{V}\right)=0 \text {, i.e. } \\
& \left(\Delta_{V}(-)+\{S,-\}_{V}\right) \text { is a perturbation of }\left\{S_{0},-\right\}_{V}
\end{aligned}
$$

Homological perturbation lemma \Rightarrow explicit perturbation of 0 on P_{H} of the form $\Delta_{H}(-)+\left\{S_{H},-\right\}_{H}$, i.e. a $\mathbf{F}(\mathcal{Q C})$ algebra on $H_{*}(V)$

Homology of Feynman transform

- What are $\mathbf{F}(\mathcal{Q C}), \mathbf{F}(\mathcal{Q O}), \mathbf{F}(\mathcal{Q O C})$ cofibrantly replacing? Calculate homology!
- $H_{*}(\mathbf{F}(\underline{\text { Com }}))$ is classifying Vassiliev invariants
- $H_{*}(\mathbf{F}(\mathcal{Q O})(n, G)) \cong H^{\text {top }(e), e}\left(\bar{M}_{G, n}\right)$ (moduli space of complex stable curves)
- graph complexes...

Conclusion

	closed strings	open strings	open and closed
classical theory	\mathcal{C} om	$\mathcal{A s s}$	$\mathcal{O C}$
modular envelope	\downarrow	\downarrow	
quantum theory	$\mathcal{Q C}$	$\mathcal{Q O}$	$\mathcal{Q O C}$
tree level Feyn. d.	$\Omega(\mathcal{C o m})$	$\Omega(\mathcal{A s s})$	$\Omega(\mathcal{O C})$
full Feyn. diagrams	$\mathbf{F}(\mathcal{Q C})$	$\mathbf{F}(\mathcal{Q O})$	$\mathbf{F}(\mathcal{Q O C})$

generalizations: D-branes, different cyclic suboperads...

Conclusion

	closed strings	open strings	open and closed
classical theory	$\mathcal{C} o m$	$\mathcal{A s s}$	$\mathcal{O C}$
modular envelope	\downarrow	\downarrow	
quantum theory	$\mathcal{Q C}$	$\mathcal{Q O}$	$\mathcal{Q O C}$
tree level Feyn. d.	$\Omega(\mathcal{C} o m)$	$\Omega(\mathcal{A s s})$	$\Omega(\mathcal{O C})$
full Feyn. diagrams	$\mathbf{F}(\mathcal{Q C})$	$\mathbf{F}(\mathcal{Q O})$	$\mathbf{F}(\mathcal{Q O C})$

generalizations: D-branes, different cyclic suboperads...

Thank you for your attention!

