Some T-dual bundles over noncommutative spaces

Giovanni Landi

Trieste

Quantum spacetime structures: Dualities and new geometries
Bayrischzell, April 29- May 3, 2016

Work done over few years with

Francesca Arici

Simon Brain

Francesco D'Andrea

Jens Kaad

Abstract:

- Pimsner algebras of 'tautological' line bundles:

A procedure to construct total spaces of principal bundles out of a Fock-space construction

- Gysin-like sequences in KK-theory (D-brane charges)
- some hint to T-dual noncommutative bundles
- Examples: Quantum lens spaces as direct sums of line bundles over weighted quantum projective spaces
‘grand motivations’ :
Gauge fields on noncommutative spaces
T-duality for noncommutative spaces
Chern-Simons theory

A Gysin sequence for $U(1)$-bundles
relates H-flux (three-forms on the total space E) to line bundles (two-forms on the base space M) also giving an isomorphism between Dixmier-Douady classes on E and line bundles on M

The classical Gysin sequence

Long exact sequence in cohomology; for any sphere bundle

In particular, for circle bundles: $\mathrm{U}(1) \rightarrow E \xrightarrow{\pi} X$

$$
\begin{gathered}
\cdots \longrightarrow H^{k}(E) \xrightarrow{\pi_{*}} H^{k-1}(X) \xrightarrow{\cup c_{1}(E)} H^{k+1}(X) \xrightarrow{\pi^{*}} H^{k+1}(E) \longrightarrow \cdots \\
\cdots \longrightarrow H^{3}(M) \xrightarrow{\pi^{*}} H^{3}(E) \xrightarrow{\pi_{*}} H^{2}(X) \xrightarrow{\cup c_{1}(E)} H^{4}(X) \longrightarrow \cdots \\
H^{3}(E) \ni H \mapsto \pi_{*}(H)=F^{\prime}=c_{1}\left(E^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\cdots \longrightarrow H^{3}(M) \xrightarrow{\pi^{*}} H^{3}\left(E^{\prime}\right) \xrightarrow{\pi_{*}} H^{2}(X) \xrightarrow{\cup c_{1}\left(E^{\prime}\right)} H^{4}(X) \longrightarrow \cdots \\
F^{\prime} \cup F=0=F \cup F^{\prime} \\
\Rightarrow \quad \exists \quad H^{3}\left(E^{\prime}\right) \ni H^{\prime} \mapsto \pi_{*}(H)=F=c_{1}(E)
\end{gathered}
$$

T-dual (E, H) and $\left(E^{\prime}, H^{\prime}\right)$
Bouwknegt, Evslin, Mathai, 2004
difficult to generalize to quantum spaces
rather go to K-theory ; a six term exact sequence (see later)

K-theory elements = D-branes charges

Projective spaces and lens spaces
$\mathbb{C P}^{n}=\mathrm{S}^{2 n+1} / \mathrm{U}(1) \quad$ and $\quad L^{(n, r)}=\mathrm{S}^{2 n+1} / \mathbb{Z}_{r}$
assemble in principal bundles: $\mathbf{S}^{2 n+1} \longrightarrow \mathrm{~L}^{(n, r)} \xrightarrow{\pi} \mathbb{C} \mathrm{P}^{n}$
This leads to the Gysin sequence in topological K-theory:

$$
0 \longrightarrow K^{1}(\mathrm{~L}(n, r)) \xrightarrow{\delta} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\alpha} K^{0}\left(\mathbb{C P}^{n}\right) \xrightarrow{\pi^{*}} K^{0}(\mathrm{~L}(n, r)) \longrightarrow 0
$$

δ is a 'connecting homomorphism'
α is multiplication by the Euler class $\chi\left(\mathcal{L}_{-r}\right):=1-\left[\mathcal{L}_{-r}\right]$
From this:

$$
K^{1}\left(\mathrm{~L}^{(n, r)}\right) \simeq \operatorname{ker}(\alpha) \quad \text { and } \quad K^{0}\left(\mathrm{~L}^{(n, r)}\right) \simeq \operatorname{coker}(\alpha)
$$

torsion groups

U(1)-principal bundles
The Hopf algebra

$$
\mathcal{H}=\mathcal{O}(\mathrm{U}(1)):=\mathbb{C}\left[z, z^{-1}\right] /\left\langle 1-z z^{-1}\right\rangle
$$

$\Delta: z^{n} \mapsto z^{n} \otimes z^{n} \quad ; \quad S: z^{n} \mapsto z^{-n} \quad ; \quad \epsilon: z^{n} \mapsto 1$
Let \mathcal{A} be a right comodule algebra over \mathcal{H} with coaction

$$
\Delta_{R}: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{H}
$$

$\mathcal{B}:=\left\{x \in \mathcal{A} \mid \Delta_{R}(x)=x \otimes 1\right\}$ be the subalgebra of coinvariants
Definition 1. The datum $(\mathcal{A}, \mathcal{H}, \mathcal{B})$ is a quantum principal $U(1)$ bundle when the canonical map is an isomorphism

$$
\operatorname{can}: \mathcal{A} \otimes_{\mathcal{B}} \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{H}, \quad x \otimes y \mapsto x \Delta_{R}(y)
$$

\mathbb{Z}-graded algebras

$\mathcal{A}=\oplus_{n \in \mathbb{Z}} \mathcal{A}_{n}$ a \mathbb{Z}-graded algebra. A right \mathcal{H}-comodule algebra:

$$
\Delta_{R}: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{H} \quad x \mapsto x \otimes z^{-n}, \text { for } x \in \mathcal{A}_{n}
$$

with the subalgebra of coinvariants given by \mathcal{A}_{0}.

Proposition 2. The triple $\left(\mathcal{A}, \mathcal{H}, \mathcal{A}_{0}\right)$ is a quantum principal $U(1)$ bundle if and only if there exist finite sequences

$$
\left\{\xi_{j}\right\}_{j=1}^{N},\left\{\beta_{i}\right\}_{i=1}^{M} \text { in } \mathcal{A}_{1} \quad \text { and } \quad\left\{\eta_{j}\right\}_{j=1}^{N},\left\{\alpha_{i}\right\}_{i=1}^{M} \text { in } \mathcal{A}_{-1}
$$

such that:

$$
\sum_{j=1}^{N} \xi_{j} \eta_{j}=1_{\mathcal{A}}=\sum_{i=1}^{M} \alpha_{i} \beta_{i}
$$

Corollary 3. Same conditions as above. The right-modules \mathcal{A}_{1} and \mathcal{A}_{-1} are finitely generated and projective over \mathcal{A}_{0}.

Proof. For \mathcal{A}_{1} : define the module homomorphisms

$$
\begin{gathered}
\Phi_{1}: \mathcal{A}_{1} \rightarrow\left(\mathcal{A}_{0}\right)^{N}, \\
\Phi_{1}(\zeta)=\left(\begin{array}{c}
\eta_{1} \zeta \\
\eta_{2} \zeta \\
\vdots \\
\eta_{N} \zeta
\end{array}\right) \quad \text { and } \\
\Psi_{1}:\left(\mathcal{A}_{0}\right)^{N} \rightarrow \mathcal{A}_{1}, \quad \Psi_{1}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\sum_{j} \xi_{j} x_{j} .
\end{gathered}
$$

Then $\Psi_{1} \Phi_{1}=\operatorname{Id}_{\mathcal{A}_{1}}$.
Thus $E_{1}:=\Phi_{1} \Psi_{1}$ is an idempotent in $M_{N}\left(\mathcal{A}_{0}\right)$.

The above results show that $\left(\mathcal{A}, \mathcal{H}, \mathcal{A}_{0}\right)$ is a quantum principal $U(1)$-bundle if and only if \mathcal{A} is strongly \mathbb{Z}-graded, that is

$$
\mathcal{A}_{n} \mathcal{A}_{m}=\mathcal{A}_{n+m}
$$

Equivalently, the right-modules $\mathcal{A}_{(\pm 1)}$ are finitely generated and projective over \mathcal{A}_{0} if and only if \mathcal{A} is strongly \mathbb{Z}-graded
C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory
K.H. Ulbrich, 1981

More generally: G any group with unit e
An algebra \mathcal{A} is G-graded if $\mathcal{A}=\oplus_{g \in G} \mathcal{A}_{g}$, and $\mathcal{A}_{g} \mathcal{A}_{h} \subseteq \mathcal{A}_{g h}$
If $\mathcal{H}:=\mathbb{C} G$ the group algebra, then \mathcal{A} is G-graded if and only if \mathcal{A} is a right \mathcal{H}-comodule algebra for the coaction $\delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{H}$

$$
\delta\left(a_{g}\right)=a_{g} \otimes g, \quad a_{g} \in \mathcal{A}_{g}
$$

coinvariants given by $\mathcal{A}^{\text {coH }}=\mathcal{A}_{e}$, the identity components.
Proposition 4. The datum $\left(\mathcal{A}, \mathcal{H}, \mathcal{A}_{e}\right)$ is a noncommutative principal \mathcal{H}-bundle for the canonical map

$$
\operatorname{can}: \mathcal{A} \otimes_{\mathcal{A}_{e}} \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{H}, \quad a \otimes b \mapsto \sum_{g} a b_{g} \otimes g
$$

if and only if \mathcal{A} is strongly graded, that is $\mathcal{A}_{g} \mathcal{A}_{h}=\mathcal{A}_{g h}$.
When $G=\mathbb{Z}=\widehat{(1)}$, then $\mathbb{C} G=\mathcal{O}(U(1))$ as before.

More general scheme: Pimsner algebras M.V. Pimsner '97

The right-modules \mathcal{A}_{1} and \mathcal{A}_{-1} before are 'line bundles' over \mathcal{A}_{0}

The slogan:

> a line bundle
is a
self-Morita equivalence bimodule

Morita equivalence in one-page
E a (right) Hilbert module over B
B-valued hermitian structure $\langle\cdot, \cdot\rangle_{\bullet}$ on E
$\mathcal{L}(E)$ adjointable operators; $\mathcal{K}(E) \subseteq \mathcal{L}(E)$ compact operators
With $\xi, \eta \in E$, denote $\theta_{\xi, \eta} \in \mathcal{K}(E)$ defined by $\theta_{\xi, \eta}(\zeta)=\xi\langle\eta, \zeta\rangle$
$\mathcal{K}(E)$-valued hermitian structure $\quad\langle\cdot, \cdot\rangle \quad$ on $E: \quad \bullet\langle\xi, \eta\rangle:=\theta_{\xi, \eta}$
The hermitian structures are compatible by construction

$$
\bullet \xi, \eta\rangle \zeta=\xi\langle\eta, \zeta\rangle_{\bullet}
$$

Algebras $\mathcal{K}(E)$ and B are Morita equivalent via the bimodule E.

For a line bundle we are asking that there is an isomorphism $\phi: B \rightarrow \mathcal{K}(E)$ and thus E is a B-bimodule

Comparing with before:

$$
\mathcal{A}_{0} \leadsto B \quad \text { and } \quad \mathcal{A}_{-1} \leadsto E
$$

Look for the analogue of $\mathcal{A} \leadsto \mathcal{O}_{E}$ Pimsner algebra

Examples

$$
\begin{gathered}
B=\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right) \quad \text { quantum (weighted) projective spaces } \\
E=\mathcal{L}_{-r} \simeq\left(\mathcal{L}_{-1}\right)^{r} \quad \text { (powers of) tautological line bundle } \\
\mathcal{O}_{E}=\mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right) \quad \text { quantum lens spaces }
\end{gathered}
$$

Define the B-module

$$
E_{\infty}:=\bigoplus_{N \in \mathbb{Z}} E^{\widehat{\otimes}_{\phi} N}, \quad E^{0}=B
$$

$E \otimes_{\phi} E$ the inner tensor product: a B-Hilbert module with B valued hermitian structure

$$
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\eta_{1}, \phi\left(\left\langle\xi_{1}, \xi_{2}\right\rangle\right) \eta_{2}\right\rangle
$$

$E^{-1}=E^{*}$ the dual module;
its elements are written as λ_{ξ} for $\xi \in E: \lambda_{\xi}(\eta)=\langle\xi, \eta\rangle$

For each $\xi \in E$ a bounded adjointable operator

$$
S_{\xi}: E_{\infty} \rightarrow E_{\infty}
$$

generated by $S_{\xi}: E^{\widehat{\otimes}_{\phi} N} \rightarrow E^{\widehat{\otimes}_{\phi}(N+1)}$:

$$
\begin{aligned}
S_{\xi}(b) & :=\xi b, & b \in B \\
S_{\xi}\left(\xi_{1} \otimes \cdots \otimes \xi_{N}\right) & :=\xi \otimes \xi_{1} \otimes \cdots \otimes \xi_{N}, & N>0 \\
S_{\xi}\left(\lambda_{\xi_{1}} \otimes \cdots \otimes \lambda_{\xi_{-N}}\right) & :=\lambda_{\xi_{2} \phi^{-1}\left(\theta_{\xi_{1}, \xi}\right)} \otimes \lambda_{\xi_{3}} \otimes \cdots \otimes \lambda_{\xi_{-N}}, & N<0
\end{aligned}
$$

Definition 5. The Pimsner algebra \mathcal{O}_{E} of the pair (ϕ, E) is the smallest subalgebra of $\mathcal{L}\left(E_{\infty}\right)$ which contains the operators S_{ξ} : $E_{\infty} \rightarrow E_{\infty}$ for all $\xi \in E$.

Pimsner: universality of \mathcal{O}_{E}

There is a natural inclusion

$$
B \hookrightarrow \mathcal{O}_{E} \quad \text { a generalized principal circle bundle }
$$

roughly: as a vector space $\mathcal{O}_{E} \simeq E_{\infty}$ and

$$
E^{\widehat{\otimes}_{\phi} N} \ni \eta \mapsto \eta \lambda^{-N}, \quad \lambda \in \mathrm{U}(1)
$$

Two natural classes in KK-theory:

1. the class $[E] \in K K_{0}(B, B)$
of the even Kasparov module ($E, \phi, 0$) (with trivial grading)
the map $1-[E]$ has the role of the Euler class $\chi(E):=1-[E]$
of the line bundle E over the 'noncommutative space' B
2. the class $[\partial] \in K K_{1}\left(\mathcal{O}_{E}, B\right)$ of the odd Kasparov module ($\left.E_{\infty}, \widetilde{\phi}, F\right)$:
$F:=2 P-1 \in \mathcal{L}\left(E_{\infty}\right)$ of the projection $P: E_{\infty} \rightarrow E_{\infty}$ with

$$
\operatorname{Im}(P)=\left(\oplus_{N=0}^{\infty} E^{\widehat{\otimes}_{\phi} N}\right) \subseteq E_{\infty}
$$

and inclusion $\tilde{\phi}: \mathcal{O}_{E} \rightarrow \mathcal{L}\left(E_{\infty}\right)$.

The Kasparov product induces group homomorphisms

$$
[E]: K_{*}(B) \rightarrow K_{*}(B), \quad[E]: K^{*}(B) \rightarrow K^{*}(B)
$$

and

$$
[\partial]: K_{*}\left(\mathcal{O}_{E}\right) \rightarrow K_{*+1}(B), \quad[\partial]: K^{*}(B) \rightarrow K^{*+1}\left(\mathcal{O}_{E}\right)
$$

Associated six-terms exact sequences Gysin sequences: in K-theory:

$$
\begin{array}{ccccc}
K_{0}(B) & \xrightarrow{1-[E]} & K_{0}(B) & \xrightarrow{i_{*}} & K_{0}\left(\mathcal{O}_{E}\right) \\
{[\partial] \mid} & & \mid[\partial] \\
K_{1}\left(\mathcal{O}_{E}\right) & \overleftarrow{i_{*}} & K_{1}(B) & \overleftarrow{1-[E]} & K_{1}(B)
\end{array}
$$

the corresponding one in K -homology:

$$
\begin{array}{cccc}
K^{0}(B) & \overleftarrow{1-[E]} & K^{0}(B) & \overleftarrow{i^{*}}
\end{array} K^{0}\left(\mathcal{O}_{E}\right)
$$

In fact in KK-theory

The quantum spheres and the projective spaces
The coordinate algebra $\mathcal{O}\left(S_{q}^{2 n+1}\right)$ of quantum sphere $S_{q}^{2 n+1}$: *-algebra generated by $2 n+2$ elements $\left\{z_{i}, z_{i}^{*}\right\}_{i=0, \ldots, n}$ s.t.:

$$
\begin{aligned}
z_{i} z_{j} & =q^{-1} z_{j} z_{i} & & 0 \leq i<j \leq n \\
z_{i}^{*} z_{j} & =q z_{j} z_{i}^{*} & & i \neq j \\
{\left[z_{n}^{*}, z_{n}\right]=0, \quad\left[z_{i}^{*}, z_{i}\right] } & =\left(1-q^{2}\right) \sum_{j=i+1}^{n} z_{j} z_{j}^{*} & & i=0, \ldots, n-1
\end{aligned}
$$

and a sphere relation:

$$
1=z_{0} z_{0}^{*}+z_{1} z_{1}^{*}+\ldots+z_{n} z_{n}^{*}
$$

L. Vaksman, Ya. Soibelman, 1991 ; M. Welk, 2000

The $*$-subalgebra of $\mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)$ generated by

$$
p_{i j}:=z_{i}^{*} z_{j}
$$

coordinate algebra $\mathcal{O}\left(\mathbb{C P}{ }_{q}^{n}\right)$ of the quantum projective space $\mathbb{C} P_{q}^{n}$
Invariant elements for the $U(1)$-action on the algebra $\mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)$:

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(\lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n}\right), \quad \lambda \in \cup(1)
$$

the fibration $\mathrm{S}_{q}^{2 n+1} \rightarrow \mathbb{C P}_{q}^{n}$ is a quantum $\mathrm{U}(1)$-principal bundle:

$$
\mathcal{O}\left(\mathbb{C} P_{q}^{n}\right)=\mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)^{U(1)} \hookrightarrow \mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)
$$

The C^{*}-algebras $C\left(\mathrm{~S}_{q}^{2 n+1}\right)$ and $C\left(\mathbb{C P}_{q}^{n}\right)$ of continuous functions: completions of $\mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)$ and $\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right)$ in the universal C^{*}-norms these are graph algebras J.H. Hong, W. Szymański 2002
$\Rightarrow \quad K_{0}\left(\mathbb{C P}_{q}^{n}\right) \simeq \mathbb{Z}^{n+1} \simeq K^{0}\left(C\left(\mathbb{C P}_{q}^{n}\right)\right)$
F. D'Andrea, G. L. 2010

Generators of the homology group $K^{0}\left(C\left(\mathbb{C P}_{q}^{n}\right)\right)$ given explicitly as (classes of) even Fredholm modules

$$
\mu_{k}=\left(\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right), \mathcal{H}_{(k)}, \pi^{(k)}, \gamma_{(k)}, F_{(k)}\right), \quad \text { for } \quad 0 \leq k \leq n
$$

Generators of the K-theory $K_{0}\left(\mathbb{C P}_{q}^{n}\right)$ also given explicitly as projections whose entries are polynomial functions:

line bundles \& projections

For $N \in \mathbb{Z}$, vector-valued functions

$$
\Psi_{N}:=\left(\psi_{j_{0}, \ldots, j_{n}}^{N}\right) \quad \text { s.t. } \quad \Psi_{N}^{*} \Psi_{N}=1
$$

$\Rightarrow \quad P_{N}:=\Psi_{N} \Psi_{N}^{*}$ is a projection:

$$
P_{N} \in \mathrm{M}_{d_{N}}\left(\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right)\right), \quad d_{N}:=\binom{|N|+n}{n}
$$

Entries of P_{N} are $U(1)$-invariant and so elements of $\mathcal{O}\left(\mathbb{C} P_{q}^{n}\right)$

Proposition 6. For all $N \in \mathbb{N}$ and for all $0 \leq k \leq n$ it holds that

$$
\left\langle\left[\mu_{k}\right],\left[P_{-N}\right]\right\rangle:=\operatorname{Tr}_{\mathcal{H}_{k}}\left(\gamma_{(k)}\left(\pi^{(k)}\left(\operatorname{Tr} P_{-N}\right)\right)=\binom{N}{k}\right.
$$

$\left[\mu_{0}\right], \ldots,\left[\mu_{n}\right]$ are generators of $K^{0}\left(C\left(\mathbb{C P}_{q}^{n}\right)\right)$,
and $\left[P_{0}\right], \ldots,\left[P_{-n}\right]$ are generators of $K_{0}\left(\mathbb{C} P_{q}^{n}\right)$
The matrix of couplings $M \in \mathrm{M}_{n+1}(\mathbb{Z})$ is invertible over \mathbb{Z} :

$$
M_{i j}:=\left\langle\left[\mu_{i}\right],\left[P_{-j}\right]\right\rangle=\binom{j}{i}, \quad\left(M^{-1}\right)_{i j}=(-1)^{i+j}\binom{j}{i}
$$

These are bases of \mathbb{Z}^{n+1} as \mathbb{Z}-modules;
they generate \mathbb{Z}^{n+1} as an Abelian group.

The inclusion $\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right) \hookrightarrow \mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)$ is a $\mathrm{U}(1)$ q.p.b.
To a projection P_{N} there corresponds an associated line bundle

$$
\mathcal{L}_{N} \simeq\left(\mathcal{O}\left(\mathbb{C} P_{q}^{n}\right)\right)^{d_{N}} P_{N} \simeq P_{-N}\left(\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right)\right)^{d_{N}}
$$

\mathcal{L}_{N} made of elements of $\mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)$ transforming under $\mathrm{U}(1)$ as

$$
\varphi_{N} \mapsto \varphi_{N} \lambda^{-N}, \quad \lambda \in \mathrm{U}(1)
$$

Each \mathcal{L}_{N} is indeed a bimodule over $\mathcal{L}_{0}=\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right)$; - the bimodule of equivariant maps for the IRREP of $\mathrm{U}(1)$ with weight N. Also,

$$
\mathcal{L}_{N} \otimes_{\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right)} \mathcal{L}_{M} \simeq \mathcal{L}_{N+M}
$$

The module \mathcal{L}_{N} is a line bundle, in the sense that its 'rank' (as computed by pairing with $\left[\mu_{0}\right]$) is equal to 1

Completely characterized by its 'first Chern number' (as computed by pairing with the class $\left[\mu_{1}\right]$):

Proposition 7. For all $N \in \mathbb{Z}$ it holds that

$$
\left\langle\left[\mu_{0}\right],\left[\mathcal{L}_{N}\right]\right\rangle=1 \quad \text { and } \quad\left\langle\left[\mu_{1}\right],\left[\mathcal{L}_{N}\right]\right\rangle=-N .
$$

The line bundle \mathcal{L}_{-1} emerges as a central character: its only non-vanishing charges are

$$
\left\langle\left[\mu_{0}\right],\left[\mathcal{L}_{-1}\right]\right\rangle=1 \quad\left\langle\left[\mu_{1}\right],\left[\mathcal{L}_{-1}\right]\right\rangle=1
$$

\mathcal{L}_{-1} is the tautological line bundle for $\mathbb{C} P_{q}^{n}$, with Euler class

$$
u=\chi\left(\left[\mathcal{L}_{-1}\right]\right):=1-\left[\mathcal{L}_{-1}\right]
$$

Proposition 8. It holds that

$$
K_{0}\left(\mathbb{C} P_{q}^{n}\right) \simeq \mathbb{Z}[u] / u^{n+1} \simeq \mathbb{Z}^{n+1}
$$

[μ_{k}] and $(-u)^{j}$ are dual bases of K-homology and K-theory

The quantum lens spaces

Fix an integer $r \geq 2$ and define

$$
\mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right):=\bigoplus_{N \in \mathbb{Z}} \mathcal{L}_{r N}
$$

Proposition 9.

$\mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right)$ is a *-algebra; all elements of $\mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)$ invariant under the action $\alpha_{r}: \mathbb{Z}_{r} \rightarrow \operatorname{Aut}\left(\mathcal{O}\left(\mathrm{~S}_{q}^{2 n+1}\right)\right)$ of the cyclic group \mathbb{Z}_{r} :

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(e^{2 \pi \mathrm{i} / r} z_{0}, e^{2 \pi \mathrm{i} / r} z_{1}, \ldots, e^{2 \pi \mathrm{i} / r} z_{n}\right)
$$

The 'dual' $\mathrm{L}_{q}^{(n, r)}$:
the quantum lens space of dimension $2 n+1$ (and index r)
There are algebra inclusions

$$
j: \mathcal{O}\left(\mathbb{C} P_{q}^{n}\right) \hookrightarrow \mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right) \hookrightarrow \mathcal{O}\left(\mathrm{S}_{q}^{2 n+1}\right)
$$

Pulling back line bundles

Proposition 10. The algebra inclusion $j: \mathcal{O}\left(\mathbb{C P}{ }_{q}^{n}\right) \hookrightarrow \mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right)$ is a quantum principal bundle with structure group $\tilde{U}(1):=$ $U(1) / \mathbb{Z}_{r}$:

$$
\mathcal{O}\left(\mathbb{C} P_{q}^{n}\right)=\mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right)^{\widetilde{\mathrm{U}}(1)}
$$

Then one can 'pull-back' line bundles from $\mathbb{C P}{ }_{q}^{n}$ to $\mathrm{L}_{q}^{(n, r)}$.

Definition 11. For each \mathcal{L}_{N} an $\mathcal{O}\left(\mathbb{C P}_{q}^{n}\right)$-bimodule (a line bundle over $\mathbb{C P}_{q}^{n}$), its 'pull-back' to $\mathrm{L}_{q}^{(n, r)}$ is the $\mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right)$-bimodule

$$
\widetilde{\mathcal{L}}_{N}=j_{*}\left(\mathcal{L}_{N}\right):=\mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right) \otimes_{\mathcal{O}\left(\mathbb{C} P_{q}^{n}\right)} \mathcal{L}_{N} .
$$

The algebra inclusion $j: \mathcal{O}\left(\mathbb{C} \mathrm{P}_{q}^{n}\right) \rightarrow \mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right)$ induces a map

$$
j_{*}: K_{0}\left(\mathbb{C P}_{q}^{n}\right) \rightarrow K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)
$$

Each \mathcal{L}_{N} over $\mathbb{C P}_{q}^{n}$ is not free when $N \neq 0$,
this need not be the case for $\widetilde{\mathcal{L}}_{N}$ over $\mathrm{L}_{q}^{(n, r)}$:
the pull-back $\widetilde{\mathcal{L}}_{-r}$ of \mathcal{L}_{-r} is tautologically free :

$$
\tilde{\mathcal{L}}_{-r}=\mathcal{O}\left(\mathrm{L}_{q}^{(n, r)}\right) \otimes_{\mathcal{L}_{0}} \mathcal{L}_{-r} \simeq \mathcal{O}\left(\mathrm{~L}_{q}^{(n, r)}\right)=\widetilde{\mathcal{L}}_{0}
$$

$\Rightarrow\left(\widetilde{\mathcal{L}}_{-N}\right)^{\otimes r} \simeq \widetilde{\mathcal{L}}_{-r N}$ also has trivial class for any $N \in \mathbb{Z}$
$\widetilde{\mathcal{L}}_{-N}$ define torsion classes; they generate the group $K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)$

Multiplying by the Euler class

A second crucial ingredient

$$
\alpha: K_{0}\left(\mathbb{C} P_{q}^{n}\right) \rightarrow K_{0}\left(\mathbb{C} P_{q}^{n}\right)
$$

α is multiplication by

$$
\chi\left(\mathcal{L}_{-r}\right):=1-\left[\mathcal{L}_{-r}\right]
$$

the Euler class of the line bundle \mathcal{L}_{-r}

Assembly these into an exact sequence, the Gysin sequence

$$
0 \rightarrow K_{1}\left(\mathrm{~L}_{q}^{(n, r)}\right) \xrightarrow{\partial} K_{0}\left(\mathbb{C} P_{q}^{n}\right) \xrightarrow{\alpha} K_{0}\left(\mathbb{C P}_{q}^{n}\right) \longrightarrow K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right) \longrightarrow 0
$$

$$
0 \rightarrow K_{1}\left(\mathrm{~L}_{q}^{(n, r)}\right) \xrightarrow{\mathrm{Ind}_{\mathfrak{B}}} K_{0}\left(\mathbb{C P}_{q}^{n}\right) \longrightarrow \ldots \ldots
$$

and

$$
\ldots . . K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right) \xrightarrow{\text { Ind }_{\mathfrak{B}}} 0
$$

Ind $_{\mathfrak{D}}$ comes from Kasparov theory

Some practical and important applications, notably, the computation of the K-theory of the quantum lens spaces $\mathrm{L}_{q}^{(n, r)}$.

Thus

$$
K_{1}\left(\mathrm{~L}_{q}^{(n, r)}\right) \simeq \operatorname{ker}(\alpha), \quad K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right) \simeq \operatorname{coker}(\alpha)
$$

Moreover, geometric generators of the groups

$$
K_{1}\left(\mathrm{~L}_{q}^{(n, r)}\right) \quad K_{0}\left(\mathrm{\llcorner }_{q}^{(n, r)}\right)
$$

for the latter as pulled-back line bundles from $\mathbb{C} P_{q}^{n}$ to $\mathrm{L}_{q}^{(n, r)}$
Explicit generators as integral combinations of powers of the pull-back to the lens space $\mathrm{L}_{q}^{(n, r)}$ of the generator

$$
u:=1-\left[\mathcal{L}_{-1}\right]
$$

The K-theory of quantum Iens spaces
Proposition 12. The $(n+1) \times(n+1)$ matrix α has rank n :

$$
K_{1}\left(C\left(\mathrm{~L}_{q}^{(n, r)}\right)\right) \simeq \mathbb{Z}
$$

On the other hand, the structure of the cokernel of the matrix A depends on the divisibility properties of the integer r.

This leads to

$$
K_{0}\left(\mathrm{~L}_{q}^{(n, r)}\right)=\mathbb{Z} \oplus \mathbb{Z} / \alpha_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / \alpha_{n} \mathbb{Z}
$$

for suitable integers $\alpha_{1}, \ldots, \alpha_{n}$.

Example 13. For $n=1$

$$
K_{0}\left(C\left(\mathrm{~L}_{q}^{(1, r)}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}_{r} .
$$

From definition $\left[\widetilde{\mathcal{L}}_{-r}\right]=1$, thus $\widetilde{\mathcal{L}}_{-1}$ generates the torsion part.
Alternatively, from $u^{2}=0$ it follows that $\mathcal{L}_{-j}=-(j-1)+j \mathcal{L}_{-1}$; upon lifting to $\mathrm{L}_{q}^{(1, r)}$, for $j=r$ this yields

$$
r\left(1-\left[\widetilde{\mathcal{L}}_{-1}\right]\right)=0
$$

or $1-\left[\widetilde{\mathcal{L}}_{-1}\right]$ is cyclic of order r.

Example 14. If $r=2 \quad \mathrm{~L}_{q}^{(n, 2)}=\mathrm{S}_{q}^{2 n+1} / \mathbb{Z}_{2}=\mathbb{R} P_{q}^{2 n+1}$, the quantum real projective space, we get

$$
K_{0}\left(C\left(\mathbb{R} P_{q}^{2 n+1}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}_{2^{n}}
$$

the generator $1-\left[\tilde{\mathcal{L}}_{-1}\right]$ is cyclic with the correct order 2^{n}.

Example 15. For $n=2$ there are two cases.
When $r=2 k+1$:

$$
r \widetilde{u}=0, \quad r \widetilde{u}^{2}=0, \quad K_{0}\left(\mathrm{~L}_{q}^{(2, r)}\right)=\mathbb{Z} \oplus \mathbb{Z}_{r} \oplus \mathbb{Z}_{r}
$$

When $r=2 k$:

$$
\frac{1}{2} r\left(\widetilde{u}^{2}+2 \widetilde{u}\right)=0, \quad 2 r \widetilde{u}=0, \quad K_{0}\left(C\left(\mathrm{~L}_{q}^{(2, r)}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}_{\frac{r}{2}} \oplus \mathbb{Z}_{2 r}
$$

T-dual Pimsner algebras: a simple example

$$
0 \rightarrow K_{1}\left(\mathrm{~L}_{q}^{(1, r)}\right) \xrightarrow{\partial} K_{0}\left(\mathbb{C P}_{q}^{1}\right)^{1-[\underline{\mathcal{L}}-r]} K_{0}\left(\mathbb{C P}_{q}^{1}\right) \longrightarrow K_{0}\left(\mathrm{~L}_{q}^{(1, r)}\right) \longrightarrow 0
$$

$$
\operatorname{ker}\left(1-\left[\mathcal{L}_{-r}\right]\right)=<u>=<1-\left[\mathcal{L}_{-1}\right]>
$$

$$
\Rightarrow
$$

$$
K_{1}\left(\mathrm{~L}_{q}^{(1, r)}\right) \ni h \mapsto \partial(h)=h\left(1-\left[\mathcal{L}_{-1}\right]\right) \simeq 1-\left[\mathcal{L}_{-h}\right]
$$

and

$$
\left(1-\left[\mathcal{L}_{-r}\right]\right)\left(1-\left[\mathcal{L}_{-h}\right]\right)=0=\left(1-\left[\mathcal{L}_{-h}\right]\right)\left(1-\left[\mathcal{L}_{-r}\right]\right)
$$

The exactness of the dual sequence for

$$
0 \rightarrow K_{1}\left(\mathrm{~L}_{q}^{(1, h)}\right) \xrightarrow{\partial} K_{0}\left(\mathbb{C P}_{q}^{1}\right)^{1-\left[\mathcal{L}_{-h}\right]} K_{0}\left(\mathbb{C P}_{q}^{1}\right) \longrightarrow K_{0}\left(\mathrm{~L}_{q}^{(1, h)}\right) \longrightarrow 0
$$

implies there exists a $r \in K_{1}\left(\mathrm{~L}_{q}^{(1, r)}\right)$ such that

$$
K_{1}\left(\mathrm{~L}_{q}^{(1, h)}\right) \ni r \mapsto \partial(r)=r\left(1-\left[\mathcal{L}_{-1}\right]\right) \simeq 1-\left[\mathcal{L}_{-r}\right]
$$

The couples
$\left(\mathrm{L}_{q}^{(1, r)}, h \in K_{1}\left(\mathrm{~L}_{q}^{(1, r)}\right)\right)$ and $\left(\mathrm{L}_{q}^{(1, h)}, r \in K_{1}\left(\mathrm{~L}_{q}^{(1, h)}\right)\right)$ are 'T-dual'

More generally : Quantum w. projective lines and Iens spaces:
$B=\mathcal{O}\left(W_{q}(k, l)\right)=$ quantum weighted projective line the fixed point algebra for a weighted circle action on $\mathcal{O}\left(S_{q}^{3}\right)$

$$
z_{0} \mapsto \lambda^{k} z_{0}, \quad z_{1} \mapsto \lambda^{l} z_{1}, \quad \lambda \in \cup(1)
$$

The corresponding universal enveloping C^{*}-algebra $C\left(W_{q}(k, l)\right)$ does not in fact depend on the label k : isomorphic to the unitalization of l copies of $\mathcal{K}=$ compact operators on $l^{2}\left(\mathbb{N}_{0}\right)$

$$
C\left(W_{q}(k, l)\right)=\widetilde{\oplus_{s=0}^{l} \mathcal{K}}
$$

Then:

$$
K_{0}\left(C\left(W_{q}(k, l)\right)\right)=\mathbb{Z}^{l+1}, \quad K_{1}\left(C\left(W_{q}(k, l)\right)\right)=0
$$

a partial resolution of singularities, since classically

$$
K_{0}(C(W(k, l)))=\mathbb{Z}^{2} .
$$

$\mathcal{O}_{E}=\mathcal{O}\left(L_{q}(l k ; k, l)\right)=$ quantum lens space
Indeed, a vector space decomposition

$$
\mathcal{O}\left(L_{q}(l k ; k, l)\right)=\oplus_{N \in \mathbb{Z}} \mathcal{L}_{n}(k, l),
$$

with $E=\mathcal{L}_{1}(k, l)$ a right finitely projective module

$$
\mathcal{L}_{1}(k, l):=\left(z_{1}^{*}\right)^{k} \cdot \mathcal{O}\left(W_{q}(k, l)\right)+\left(z_{0}^{*}\right)^{l} \cdot \mathcal{O}\left(W_{q}(k, l)\right)
$$

Also, $\mathcal{O}\left(L_{q}(l k ; k, l)\right)$ the fixes point algebra of a cyclic action

$$
\begin{gathered}
\mathbb{Z} /(l k) \mathbb{Z} \times S_{q}^{3} \rightarrow S_{q}^{3} \\
z_{0} \mapsto \exp \left(\frac{2 \pi \mathbf{i}}{l}\right) z_{0}, \quad z_{1} \mapsto \exp \left(\frac{2 \pi \mathbf{i}}{k}\right) z_{1} .
\end{gathered}
$$

K-theory and K-homology of quantum Iens space
Denote the diagonal inclusion by $\iota: \mathbb{Z} \rightarrow \mathbb{Z}^{l}, 1 \mapsto(1, \ldots, 1)$ with transpose $\iota^{t}: \mathbb{Z}^{l} \rightarrow \mathbb{Z}, \iota^{t}\left(m_{1}, \ldots, m_{l}\right)=m_{1}+\ldots+m_{l}$.

Proposition 16. (Arici, Kaad, L.) With $k, l \in \mathbb{N}$ coprime:

$$
\begin{aligned}
& \left.K_{0}\left(L_{q}(l k ; k, l)\right)\right) \simeq \operatorname{coker}(1-E) \simeq \mathbb{Z} \oplus\left(\mathbb{Z}^{l} / \operatorname{Im}(\iota)\right) \\
& \left.K_{1}\left(L_{q}(l k ; k, l)\right)\right) \simeq \operatorname{ker}(1-E) \simeq \mathbb{Z}^{l}
\end{aligned}
$$

as well as

$$
\begin{aligned}
& \left.K^{0}\left(L_{q}(l k ; k, l)\right)\right) \simeq \operatorname{ker}\left(1-E^{t}\right) \simeq \mathbb{Z} \oplus\left(\operatorname{ker}\left(\iota^{t}\right)\right) \\
& \left.K^{1}\left(L_{q}(l k ; k, l)\right)\right) \simeq \operatorname{coker}\left(1-E^{t}\right) \simeq \mathbb{Z}^{l}
\end{aligned}
$$

Again there is no dependence on the label k.

Summing up:

A general procedure to construct principal circle bundle over a noncommutative space out of a Pimsner algebra connection

A Gysin like sequence relating D-brane charges.
consequences for

> T-duality for noncommutative spaces
and
Chern-Simons theory

Thank you !!

