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Aims for the talk

@ Predict quantum physical effects from Deformation

@ Study extensions of QM and QFT

@ Investigate Emergent Gravity from Deformation of Space-time
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Deformation with Warped Convolutions

Q, self-adjoint and abelian [Q,, Q,] = 0,

—| 3 strongly continuous unitary group U(k) := e*"%

Buchholz, Lechner, Summers ’10:

Definition of Deformation

Let © be a skew-symmetric matrix, then the warped convolution Ag q of A € C* is

Acq® = Iirrgf dx dy x(ex, ey) e™ U(Ox) A U(-Ox)U(y)®, beDcH
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Deforming the Hamiltonian with Q(X)*

Free Hamiltonian:

\ H=—-PPl/(2m) = —A/(2m) \

Proposition

The scalar product (W, He q(x)®) is bounded,
KW, Hoou®) < CollWll, VYW eZ, de&c .7 (RY).
Therefore, the deformation for H is well-defined, self-adjoint** and the result is

Ho.ax)® = —% (P +i(©@Q) [Qx. P]) (P’ + i(©Q)[Q:, P']) .

* AM., JMP. Vol. 55, 022302 (2014)
**AM., JMP. Vol. 56, Issue 9, (2015)
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© Abelian Deformation in QM

@ Physical Effects from Abelian Deformation
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Example Q = X

Result for He x

1 i 9 1 poxpi
Ho xV = —ﬁ(Pj + Qi X ) (P + O X, )V = —5m P Py V
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Example Q = X

Result for He x

1 K : i 1 Jexpi
H@’X\U = —ﬁ(Pj + eij )(Pj + @"X,)\IJ = _ﬁPJ ng\ll

Lemma

Let the deformation matrix ©; be given as,
Q) = —(e/2)exB",  ©F = msy Q

where B is a magnetic field (MF) and Qf = (2GM/rys)w* is a gravitomagnetic
field (GMF). Then, Hg1 x becomes the Hamiltonian of the Landau quantization
and Hgz x of a QM-particle coupled to a GMF.
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Quantum Plane from QM

In lowest LL motion described by Q; = X; + (©")x P,

12.9] =2i(e"), |

Can one obtain the noncommuting coordinates from warped convolutions?
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Quantum Plane from QM

In lowest LL motion described by Q; = X; + (©")x P,

12.9] =2i(e"), |

Can one obtain the noncommuting coordinates from warped convolutions?

X,.B'P satisfies the commutation relations of the Moyal-Weyl plane Rﬁzg,

[X/7. X0) = ~2i)

If —6; is (©7");, then X,.”’P are equal to the guiding center coordinates Q;.

— |dea of lemma can be used for Gravitomagnetism and QFT!
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Quantum space from GM in QM

Take Xo-1,p to be GCC of an electron in LL,

[X° P, X2 7] = 2i(07);

with ©; = me ¥k = mey (2GM/ s )w* where Q is a gravitomagnetic field .

Uncertainty relations for coordinates in GMF

(AXSPY(AXETPY > h/(mQ).

— Physical effect deduced from deformation can be experimentally verified!
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e Non-Abelian Deformation in QM
@ Non-Abelian Warped Convolutions
@ Non-Abelian Gauge Fields
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Non-Abelian Warped Convolutions*

Let 7, be inf. generators of SU(m),

[ta, 78] = ifop, T fusy €C, a@,By=1,-- ,m?—1.
Define s.a. operator Q(X) on D; ® C™ ¢ # = £?(RY) @ C™ as
Q(X), :=2Z(X),® Y1,, pu=0,1,---,n

= 3 str. con. group on 7 :

m

U(p) := exp(ip"Qu(X)) = > U(Ap)@ WB,W™',  VpeR.

r=1

Definition of Deformation
Let © be a skew-symmetric matrix and W € D c 7. Then A® of A € C™ is

ASV = lim f f dx dy y(ex, ey) € UT(©x) A UF(=0x) U(y) ¥

*AM: Arxiv: 1511.07891



e Non-Abelian Deformation in QM

@ Non-Abelian Gauge Fields
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Applications of Non-Abelian Deformations

NA def. momentum op. (using Qx = Z(X)x ® Y,7°), is well-defined on Dg:

P;eT = Pi— qAiT",

where the gauge field A, is given as

-gA, == (0Z(X))dZ(X) ® Y,.

Non-Abelian Moyal-Weyl Plane

The def. coord. op. X (using Qx = Pk ® Y,7%) is well-defined on Dg and given
X = X'~ (OP) & Y,7".

Moreover, the non-abelian Moyal-Weyl plane is generated by the algebra of X6

[X,-,@T’ Xj,e,] — —2i0i g Y, .
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@ Deformation in QFT
@ Abelian Case
@ Non-Abelian Case
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@ Deformation in QFT
@ Abelian Case
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Wedge-Local QF’'s and NC Minkowski Space.”

Deformation of QF with P corresponds to QF on Moyal-Wey!!

Go(1)W = (21) f dy dk e UOy)s(NU(-0y + k)W, W eD

@ Deformed field fulfills the same bounds as undeformed field

@ ¢,(f) satisfies all Wightman axioms, except for covariance and locality.

Covariance and locality replaced by modified versions!

*Grosse, Lechner: JHEP, 0711:012, 2007

Albert Much Fundamental Interactions from Strict Deformations



Wedge-covariance and wedge-locality of ¢y p

#o.p(f) defined as QF’s on wedge by map Q : W — Q(W)

W Wg
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Letp = {pw : We W,y := LL W;} denote fields satisfying the Wightman axioms.
Then, ¢ is defined to be a wedge-local QF if the following holds:

@ Covariance: For any W € W, and f € .7(RY) the following holds

U(y. Ngw(NU(. N = gaw(fo (v A)'), (A e Pl

@ Wedge-locality:
[ow, (). ¢-w, (9)]V =0, WeD,

for all f,g € C(R?) with supp f ¢ W; and supp g ¢ —Wj.

Deformed Field ¢, is a wedge-local QF = Calculate two-particle scattering
matrix!
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@ Deformation in QFT

@ Non-Abelian Case
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Wedge-Local QF’'s on Non-abelian and NC Space-time.*

Deformation of QF with Q(P), = —P, ® Y,7* corresponds to QF on NA
Moyal-Weyl!

do. ()W = (27)° f f dy dk &% U (0y)o(UT(~0y) UKW, W e DeC™

@ Deformed field fulfills the same bounds as undeformed field

@ ¢o, (f) satisfies all Wightman axioms, except for covariance and locality.

Covariance and locality replaced by modified versions!

*AM: Arxiv: 1511.07891



Wedge-locality of Non-abelian Deformed QF

The deformed fields ¢e, (f) transform under the adjoint action of PL as follows,

U(x. Ao, (HUX. N) " = dperny (Fo (. A)T).  (y.A) e Pl
U(0.))ge, (NU(0.)" = ¢nenr), (fo (0.)7).

Therefore, the field ¢o, is a wedge-covariant field.

Proposition

By choosing Y to be matrix valued such that Y, 7" has positive eigenvalues, the
family of QF’s ¢ = {¢pw : W € W,} defined by ¢w(f) := ¢(Q(W), f) = ¢o.(f) are
on the Bosonic Fockspace ¢ @ C™.
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© Deformation of Space-Time
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Curving Space-Time with Deformation?*

Commutative Algebra

Let Ac be generated by x* fulfilling,

[, %] = 0.

Define A"(Ag) r-forms and a C-linear d : A"(Ag) — A (Ag) satisfying,

d®>=0, d(ww)=(dw)w + (-1) wdw’,

By applying d on the CR of A¢
[dx*, %] + [%*,dX*] = 0,

we find two possible solutions. The commutative one and a more

n
[, 0] = )" o d&”.

o=0

*AM, in preparation
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Deformation of Flat Space-Time

Define flat metric 7 € A'(Ac) ®a, A'(Ac) as tensor product of one forms,

n = N,dX" ®x, dX".

with abelian warped convolutions
o = [ U(©R) 10 &, a%')U(-0P) dE(p)

where U(p) = exp(ip,%*).

Choose algebra [X', d%/] = i¢"a /d%’ and deform = by choosing ©4 = 0,
©p = Oejand ©®a =H
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Deformation of Flat Space-Time

Define flat metric 7 € A'(Ac) ®a, A'(Ac) as tensor product of one forms,

n = N,dX" ®x, dX".

with abelian warped convolutions
1o = [ U@P) (13" @2, d¥")U(-p) cE(p).

where U(p) = exp(ip,%*).

Choose algebra [X', d%/] = i¢"a /d%’ and deform = by choosing ©4 = 0,
©p = Oejand ©®a =H

Metric of Inflationary Phase (FRW)

Curved Metric obained by a strict deformation of the flat space-time.

e = d&° @z, dX° — exp(—HX®)dX* ®#, dX«
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e Conclusion and Work in Progress
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Conclusion

@ From deformation = well-known QM effects and predicted new ones

@ Non-Abelian deformations give new class of wedge-local fields

@ (Quantum) space-time generated by deformation
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Work in Progress

@ Extend Deformations to SUSY QM
@ Investigate how far program of deformation of ST extends

@ Study deformation in Non-relativistic QF T
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Thank you for your Attention!
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