Some naturally defined star products for Kähler manifolds

Martin Schlichenmaier

Mathematics Research Unit University of Luxembourg

Bayrischzell Workshop 2016 April 29- May 3, 2016 Travaux mathématiques, Vol. 20 (2012), 187-204

- One mathematical aspect of quantization is the passage from the commutative world to the non-commutative world.
- one way a deformation quantization (also called star product)
- can only be done on the level of formal power series over the algebra of functions
- was pinned down in a mathematically satisfactory manner by Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimer.

OUTLINE

- give an overview of some naturally defined star products in the case that our "phase-space manifold" is a (compact) Kähler manifold
- here we have additional complex structure and search for star products respecting it
- yield star products of separation of variables type (Karabegov) resp. Wick or anti-Wick type (Bordemann and Waldmann)
- both constructions are quite different, but there is a 1:1 correspondence (Neumaier)
- still quite a lot of them

- single out certain naturally given ones.
- restrict to quantizable Kähler manifolds
- Berezin-Toeplitz star product, Berezin transform, Berezin star product
- a side result: star product of geometric quantization
- all of the above are equivalent star product, but not the same
- give Deligne-Fedosov class and Karabegov forms
- give the equivalence transformations

GEOMETRIC SET-UP

- (M,ω) a pseudo-Kähler manifold.
 M a complex manifold, and ω, a non-degenerate closed (1,1)-form
- ► if ω is a positive form then (M, ω) is a honest Kähler manifold
- C[∞](M) the algebra of complex-valued differentiable functions with associative product given by point-wise multiplication
- define the Poisson bracket

$$\{f,g\} := \omega(X_f,X_g) \qquad \omega(X_f,\cdot) = df(\cdot)$$

• $C^{\infty}(M)$ becomes a Poisson algebra.

star product for *M* is an associative product \star on $\mathcal{A} := C^{\infty}(\mathcal{M})[[\nu]]$, such 1. $f \star g = f \cdot g \mod \nu$, 2. $(f \star g - g \star f) / \nu = -i\{f, g\} \mod \nu$. Also

$$f\star g = \sum_{k=0}
u^k C_k(f,g), \qquad C_k(f,g) \in C^\infty(M),$$

differential (or local) if $C_k(,)$ are bidifferential operators. Usually: $1 \star f = f \star 1 = f$.

Equivalence of star products

 \star and \star' (the same Poisson structure) are *equivalent* means there exists

a formal series of linear operators

$$B = \sum_{i=0}^{\infty} B_i \nu^i, \qquad B_i : C^{\infty}(M) \to C^{\infty}(M),$$

with $B_0 = id$ and $B(f) \star' B(g) = B(f \star g)$.

to every equivalence class of a differential star product one assigns its Deligne-Fedosov class

$$\mathcal{C}(\star) \in rac{1}{\mathrm{i}}(rac{1}{
u}[\omega] + \mathrm{H}^2_{\mathcal{C}R}(\mathcal{M},\mathbb{C})[[
u]]).$$

gives a 1:1 correspondence Existence: by DeWilde-Lecomte, Omori-Maeda-Yoshioka, Fedosov,, Kontsevich.

SEPARATION OF VARIABLES TYPE

- pseudo-Kähler case: we look for star products adapted to the complex structure
- separation of variables type (Karabegov)
- Wick and anti-Wick type (Bordemann Waldmann)
- ► Karabegov convention: of separation of variables type if in C_k(.,.) for k ≥ 1 the first argument differentiated in anti-holomorphic and the second argument in holomorphic directions.
- we call this convention separation of variables (anti-Wick) type and call a star product of separation of variables (Wick) type if the role of the variables is switched
- we need both conventions

- (M, ω_{-1}) the pseudo-Kähler manifold
- a formal deformation of the form $(1/\nu)\omega_{-1}$ is a formal form

 $\widehat{\omega} = (1/\nu)\omega_{-1} + \omega_0 + \nu \,\omega_1 + \dots$

 $\omega_r, r \ge 0$, closed (1,1)-forms on *M*.

- ► Karabegov: to every such ŵ there exists a star product ★ of anti-Wick type
- and vice-versa
- Karabegov form of the star product \star is $kf(\star) := \widehat{\omega}$,
- ► the star product ★_K with classifying Karabegov form (1/ν)ω₋₁ is Karabegov's standard star product.

- Formal Berezin transform
- For local antiholomorphic functions a and holomorphic functions b on U ⊂ M we have the relation

$$a \star b = I_{\star}(b \star a) = I_{\star}(b \cdot a),$$

can be written as

$$I_{\star} = \sum_{i=0}^{\infty} I_i \nu^i, \quad I_i : C^{\infty}(M) \to C^{\infty}(M), \quad I_0 = id, \quad I_1 = \Delta.$$

• the formal Berezin transform I_{\star} determines the \star uniquely.

- Start with ★ separation of variables type (anti-Wick) (M, ω₋₁)
- opposite of the dual

$$f\star' g = I^{-1}(I(f)\star I(g)).$$

on (M, ω_{-1}) , is of Wick type

the formal Berezin transform I_{*} establishes an equivalence of the star products

 (\mathcal{A},\star) and (\mathcal{A},\star')

* star product of anti-Wick type with Karabegov form $kf(\star) = \hat{\omega}$ Deligne-Fedosov class calculates as

$$cl(\star) = rac{1}{\mathrm{i}} ([\widehat{\omega}] - rac{\delta}{2}).$$

[..] denotes the de-Rham class of the forms and δ is the canonical class of the manifold i.e. $\delta := c_1(K_M)$.

standard star product $\star_{\mathcal{K}}$ (with Karabegov form $\widehat{\omega} = (1/\nu)\omega_{-1}$)

$$Cl(\star_{\mathcal{K}}) = \frac{1}{i} (\frac{1}{\nu} [\omega_{-1}] - \frac{\delta}{2}).$$

- For the Karabegov form to be in 1:1 correspondence, we need to fix a convention: Wick or anti-Wick for reference
- here we refer to the anti-Wick type product
- it * is of Wick type we set

 $kf(\star):=kf(\star^{op}),$

where

$$f \star^{op} g = g \star f$$

is obtained by switching the arguments. It is a star product of (anti-Wick) type for the pseudo-Kähler manifold $(M, -\omega)$

OTHER GENERAL CONSTRUCTIONS

- Bordemann and Waldmann: modification of Fedosov's geometric existence proof.
- fibre-wise Wick product.
- by a modified Fedosov connection a star product *_{BW} of Wick type is obtained.
- Karabegov form is $-(1/\nu)\omega$
- Deligne class class

$$cl(\star_{BW}) = -cl(\star_{BW}^{op}) = \frac{1}{i}(\frac{1}{\nu}[\omega] + \frac{\delta}{2}).$$

Neumaier: by adding a formal closed (1, 1) form as parameter each star product of separation of variables type can be obtained by the Bordemann-Waldmann construction

Reshetikhin and Takhtajan:

formal Laplace expansions of formal integrals related to the star product.

coefficients of the star product can be expressed (roughly) by Feynman diagrams

BEREZIN-TOEPLITZ STAR PRODUCT

- compact and quantizable Kähler manifold (M, ω) ,
- ► quantum line bundle (L, h, \(\nabla\)), L is a holomorphic line bundle over M, h a hermitian metric on L, \(\nabla\) a compatible connection
- ► recall (M, ω) is quantizable, if there exists such (L, h, ∇), with

 $curv_{(L,\nabla)} = -i \omega$

• consider all positive tensor powers $(L^m, h^{(m)}, \nabla^{(m)})$,

scalar product

$$\langle \varphi, \psi \rangle := \int_{M} h^{(m)}(\varphi, \psi) \Omega, \qquad \Omega := \frac{1}{n!} \underbrace{\omega \wedge \omega \cdots \wedge \omega}_{n}$$

$$\Pi^{(m)}: L^2(M, L^m) \longrightarrow \Gamma_{hol}(M, L^m)$$

Take $f \in C^{\infty}(M)$, and $s \in \Gamma_{hol}(M, L^m)$

$$s \mapsto T_f^{(m)}(s) := \Pi^{(m)}(f \cdot s)$$

defines

$$T_f^{(m)}: \quad \Gamma_{hol}(M, L^m) \to \Gamma_{hol}(M, L^m)$$

the Toeplitz operator of level m.

Berezin-Toeplitz operator quantization

$$f\mapsto \left(T_{f}^{(m)}\right)_{m\in\mathbb{N}_{0}}.$$

has the correct semi-classical behavior Theorem (Bordemann, Meinrenken, and Schl.) (a) $\lim_{m\to\infty} ||T_f^{(m)}|| = |f|_{\infty}$

(b)

(C)

$$||mi[T_{f}^{(m)}, T_{g}^{(m)}] - T_{\{f,g\}}^{(m)}|| = O(1/m)$$

 $||T_{f}^{(m)}T_{g}^{(m)} - T_{f\cdot g}^{(m)}|| = O(1/m)$

Continuous field of \mathcal{C}^* algebras

- Statement of the previous theorem corresponds to the fact that we have a continuous field of C*-algebras (with additionally Dirac condition on commutators).
- over $I = \{0\} \cup \{\frac{1}{m} \in \mathbb{N}\},\$
- over {0} we set the algebra $C^{\infty}(M)$, over $\frac{1}{m}$ the algebra End($\Gamma_{hol}(M, L^m)$),
- section is given by $f \in C^{\infty}(M)$

$$f \mapsto (f, T_f^{(m)}, m \in \mathbb{N}).$$

Theorem (BMS, Schl., Karabegov and Schl.) ∃ a unique differential star product

$$f\star_{BT} g = \sum \nu^k C_k(f,g)$$

such that

$$T_f^{(m)}T_g^{(m)}\sim \sum_{k=0}^{\infty}\left(\frac{1}{m}
ight)^k T_{\mathcal{C}_k(f,g)}^{(m)}$$

Further properties: is of separation of variables type (Wick type)

classifying Deligne-Fedosov class $\frac{1}{i}(\frac{1}{\nu}[\omega] - \frac{\delta}{2})$ and Karabegov form $\frac{-1}{\nu}\omega + \omega_{can}$

possible: auxiliary hermitian line (or even vector) bundle can be added, meta-plectic correction.

Further result: The Toeplitz map of level m

$$T^{(m)}: C^{\infty}(M) \rightarrow End(\Gamma_{hol}(M, L^m))$$

is surjective

implies that the operator $Q_f^{(m)}$ of geometric quantization (with holomorphic polarization) can be written as Toeplitz operator of a function f_m (maybe different for every *m*)

indeed Tuynman relation:

$$Q_f^{(m)} = \mathrm{i} \ T_{f-\frac{1}{2m}\Delta f}^{(m)}$$

star product of geometric quantization

• set
$$B(f) := (id - \nu \frac{\Delta}{2})f$$

$$f \star_{GQ} g = B^{-1}(B(f) \star_{BT} B(g))$$

defines an equivalent star product

- can also be given by the asymptotic expansion of product of geometric quantisation operators
- it is not of separation of variable type
- but equivalent to \star_{BT} .

Where is the Berezin star product ??

- It is an important star product: Berezin, Cahen-Gutt-Rawnsley, etc.
- The original definition is limited in applicability.
- We will give a definition for quantizable Kähler manifold.
- Clue: define it as the opposite of the dual of \star_{BT} .
- $f \star_B g := I(I^{-1}(f) \star_{BT} I^{-1}(g))$
- Problem: How to determine /?
- describe the formal *I* by asymptotic expansion of some geometrically defined *I*^(m)

- assume the bundle L is very ample (i.e. has enough global sections)
- ▶ pass to its dual $(U, k) := (L^*, h^{-1})$ with dual metric k
- ▶ inside of the total space *U*, consider the circle bundle

$$\boldsymbol{Q} := \{ \lambda \in \boldsymbol{U} \mid \boldsymbol{k}(\lambda, \lambda) = \boldsymbol{1} \},\$$

• $\tau: \mathbf{Q} \to \mathbf{M}$ (or $\tau: \mathbf{U} \to \mathbf{M}$) the projection,

coherent vectors/states in the sense of Berezin-Rawnsley-Cahen-Gutt:

$$\langle \boldsymbol{e}_{\alpha}^{(m)}, \boldsymbol{s} \rangle = \alpha^{\otimes m}(\boldsymbol{s}(\tau(\alpha)))$$

where

$$oldsymbol{x} \in M \mapsto lpha = au^{-1}(oldsymbol{x}) \in U \setminus 0 \mapsto oldsymbol{e}^{(m)}_lpha \in \Gamma_{hol}(M,L^m)$$

As

$$oldsymbol{e}_{oldsymbol{c}lpha}^{(m)} = oldsymbol{ar{c}}^m \cdot oldsymbol{e}_lpha^{(m)}, \qquad oldsymbol{c} \in \mathbb{C}^* := \mathbb{C} \setminus \{\mathbf{0}\} \;.$$

we obtain:

$$\boldsymbol{x} \in \boldsymbol{M} \mapsto \mathbf{e}_{\boldsymbol{x}}^{(\boldsymbol{m})} := [\boldsymbol{e}_{\alpha}^{(\boldsymbol{m})}] \in \mathbb{P}(\Gamma_{hol}(\boldsymbol{M}, L^{\boldsymbol{m}}))$$

- Bergman projectors $\Pi^{(m)}$, Bergman kernels,
- Covariant Berezin symbol σ^(m)(A) (of level m) of an operator A ∈ End(Γ_{hol}(M, L^(m)))

 $\sigma^{(m)}(A): M \to \mathbb{C},$

$$x\mapsto \sigma^{(m)}(A)(x):=rac{\langle m{e}^{(m)}_lpha,m{A}m{e}^{(m)}_lpha
angle}{\langle m{e}^{(m)}_lpha,m{e}^{(m)}_lpha
angle}=\mathrm{Tr}(A\mathcal{P}^{(m)}_x)$$

IMPORTANCE OF THE COVARIANT SYMBOL

- Construction of the Berezin star product, only for limited classes of manifolds (see Berezin, Cahen-Gutt-Rawnsley)
- $\mathcal{A}^{(m)} \leq C^{\infty}(M)$, of level *m* covariant symbols.
- symbol map is injective (follows from Toeplitz map surjective)
- For σ^(m)(A) and σ^(m)(B) the operators A and B are uniquely fixed

$$\sigma^{(m)}(\mathbf{A})\star_{(m)}\sigma^{(m)}(\mathbf{B}):=\sigma^{(m)}(\mathbf{A}\cdot\mathbf{B})$$

- ▶ $\star_{(m)}$ on $\mathcal{A}^{(m)}$ is an associative and noncommutative product
- Crucial problem, how to obtain from *(m) a star product for all functions (or symbols) independent from the level m?

$$I^{(m)}: C^{\infty}(M) \to C^{\infty}(M), \qquad f \mapsto I^{(m)}(f) := \sigma^{(m)}(T^{(m)}_f)$$

Theorem: (Karabegov - Schl.) $I^{(m)}(f)$ has a complete asymptotic expansion as $m \to \infty$

$$I^{(m)}(f)(x) \sim \sum_{i=0}^{\infty} I_i(f)(x) rac{1}{m^i}$$

 $I_i: C^{\infty}(M) \rightarrow C^{\infty}(M), \ I_0(f) = f, \qquad I_1(f) = \Delta f.$

 Δ is the Laplacian with respect to the metric given by the Kähler form ω

BEREZIN STAR PRODUCT

 from asymptotic expansion of the Berezin transform get formal expression

$$I = \sum_{i=0}^{\infty} I_i \nu^i, \quad I_i : C^{\infty}(M) \to C^{\infty}(M)$$

- set $f \star_B g := I(I^{-1}(f) \star_{BT} I^{-1}(g))$
- ► ★_B is called the Berezin star product
- I gives the equivalence to ★_{BT} (I₀ = id). Hence, the same Deligne-Fedosov classes
- ► if the covariant symbol star product works, it will coincide with the star product ★B.

- separation of variables type (but now of anti-Wick type).
- Karabegov form is $\frac{1}{\nu}\omega + \mathbb{F}(i\partial\overline{\partial}\log u_m)$
- u_m is the Bergman kernel $\mathcal{B}_m(\alpha, \beta) = \langle e_{\alpha}^{(m)}, e_{\beta}^{(m)} \rangle$ evaluated along the diagonal
- F means: take asymptotic expansion in 1/m as formal series in ν
- I = I_{⋆B}, the geometric Berezin transform equals the formal Berezin transform of Karabegov for ⋆B
- both star products *_B and *_{BT} are dual and opposite to each other

SUMMARY OF NATURALLY DEFINED STAR PRODUCT

	name	Karabegov form	Deligne Fedosov class
*BT	Berezin-Toeplitz	$rac{-1}{ u}\omega+\omega_{\it can}$ (Wick)	$\frac{1}{\mathrm{i}}(\frac{1}{\nu}[\omega]-\frac{\delta}{2}).$
* <i>B</i>	Berezin	$\frac{1}{\nu}\omega + \mathbb{F}(\mathrm{i}\partial\overline{\partial}\log u_m)$	$\frac{1}{\mathrm{i}}(\frac{1}{\nu}[\omega]-\frac{\delta}{2}).$
*GQ	geometric quantization	()	$\frac{1}{i}(\frac{1}{\nu}[\omega]-\frac{\delta}{2}).$
*к	standard product	$(1/ u)\omega$ (anti-Wick)	$\frac{1}{i}(\frac{1}{\nu}[\omega]-\frac{\delta}{2}).$
*BW	Bordemann- Waldmann	$-(1/ u)\omega$ (Wick)	$\frac{1}{\mathrm{i}}(\frac{1}{\nu}[\omega]+\frac{\delta}{2}).$

 u_m Bergman kernel evalulated along the diagonal in $Q \times Q$ δ the canonical class of the manifold M

uni lu

- Berezin transform is not only the equivalence relating *_{BT} with *_B
- also it (resp. the Karabegov form) can be used to calculate the coefficients of these naturally defined star products,
- either directly
- or with the help of the certain type of graphs (see the very interesting work of Gammelgaard and Hua Xu).

INTEGRAL REPRESENTATION

$$\tau(\alpha) = x, \tau(\beta) = y \text{ with } \alpha, \beta \in Q$$

$$\begin{pmatrix} I^{(m)}(f) \end{pmatrix}(x) = \frac{1}{\mathcal{B}_m(\alpha, \alpha)} \int_Q \mathcal{B}_m(\alpha, \beta) \mathcal{B}_m(\beta, \alpha) \tau^* f(\beta) \mu(\beta)$$

= $\frac{1}{\langle \boldsymbol{e}_{\alpha}^{(m)}, \boldsymbol{e}_{\alpha}^{(m)} \rangle} \int_M \langle \boldsymbol{e}_{\alpha}^{(m)}, \boldsymbol{e}_{\beta}^{(m)} \rangle \cdot \langle \boldsymbol{e}_{\beta}^{(m)}, \boldsymbol{e}_{\alpha}^{(m)} \rangle f(y) \Omega(y) .$

Note that:

$$u_m(x) := \mathcal{B}_m(\alpha, \alpha) = \langle \boldsymbol{e}_{\alpha}^{(m)}, \boldsymbol{e}_{\alpha}^{(m)} \rangle,$$
$$v_m(x, y) := \mathcal{B}_m(\alpha, \beta) \cdot \mathcal{B}_m(\beta, \alpha) = \langle \boldsymbol{e}_{\alpha}^{(m)}, \boldsymbol{e}_{\beta}^{(m)} \rangle \cdot \langle \boldsymbol{e}_{\beta}^{(m)}, \boldsymbol{e}_{\alpha}^{(m)} \rangle$$

nni. In

are well-defined on M and on $M \times M$ respectively.