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I would like to discuss a problem in a non-abelian theory of 2-form gauge fields 
appearing in the effective theory of multiple M2/M5-branes.

This theory is considered to be a 6-dimensional N=(2,0) supersymmetric 
theory. And there are two major problems:

1. Selfdual 2-form gauge field

2. Interacting non-abelian 2-form gauge field theory

Here we want to focus on the second problem. 
Our aim is

1. List a wider class of higher gauge theories based on Lie 2-algebras. 
�����We find a new class of theory in 5 dimensions.  

2. Search for off-shell covariant theories 
      and analyze the properties. 

INTRODUCTION



PHYSICAL BACKGROUND: MULTIPLE M2 AND M5

3-dimensional field theory on M2 world volume: 
N=6(8) Supersymmetric  Chern-Simons matter theory

Effective theory of n M5-branes is not known yet

6-dimensional field theory on single M5-brane world volume should be 
a theory of the following supermultiplet:

WE EXPECT

5 scalar fields for transversal coordinates in 11-dim. spacetime
1 fermion field as superpartner: 4-component Weyl spinor (8 d.o.f.)

We need 3 more bosonic DOF on the world volume

Vector field in 6 dim.: massless 4=6-2, massive 5=6-1❌

2-form field in 6 dim.:  massless              , massive 
✓
4

2

◆
= 6

✓
5

2

◆
= 10❌

Self-dual 2-form field in 6 dim.:  6/2=3 ⭕

Effective theory of multiple (i.e. n) M2-branes is now known as ABJM theory



HIGHER GAUGE THEORY
Single M5-brane effective theory:

X

i
, B =

1

2
Bµ⌫dx

µ
dx

⌫
, 

with self-duality condition dB = ⇤dB
2 MAJOR PROBLEMS

Covariant action problem of self-dual 2-form gauge field:
F (3) = dB = ⇤dB = ⇤F (3)

S /
Z

F (3) ^ ⇤F (3) =

Z
F (3) ^ F (3) = 0

①

② Interacting (non-abelian) gauge theory of 2-form field:  HIGHER GAUGE 
THEORY

Theory based on crossed module: Strict Lie 2-algebra [Baez-Crans, 2004]

Semi-strict Lie 2-algebra [Roytenberg, 2007]

① Discard Lorentz covariance  [Chu-Ko 2005,Ho-Huang-Matsuo 2007] 
② Use of deformed higher gauge theory  [Ho-Matsuo 2009]

TRIALS:

NO solution yet

NO ACTION?



STARTING POINT OF HGT
Gauge theory based on strict Lie 2-algebra  [Baez 2002]

two Lie algebras:       and        and the following maps between them:g h

g 2 gs.t. for               ,                 

Correspondingly, we introduce two gauge fields:
-valued 1-form:
-valued 2-form:

g

h

Aa

BI

Easy way: Define the Lie 2-algebra by the differential crossed module:

Field strengths are given by

THEN Bianchi identity and closure of gauge transformations are analyzed

-invariance:g

Peiffer identity:

t : h ! g ↵ : g ! Der(h)

t(↵(g) . h) = [g, t(h)]

F = dA+
1

2
A ^A� t(B)

H = dB + ↵(A) ^B

↵(t(h)) . h0 = [h, h0]

h, h0 2 h



Since the (differential) Crossed Module is a basic object in our 
construction, we introduce a little more detailed expressions:

Crossed module:  A pair of Lie algebras, (  ,   ) with homomorphisms  t,↵g h

t : h ! g ↵ : g ! Der(h)

To write down the field theory, we introduce a local basis:

ga 2 g , hA 2 h

t(hA) = taAga↵(ga) . hA = ↵B
aAhB

f c
ab f̃C

AB↵A
aB taA

There are now 4 structure constants

Among them there are some relations required by consistency

Crossed Module:  

then the maps are

[ga, gb] = f c
abgc                                        ,                                     ,    [hA, hB ] = f̃C

ABhC

                                        ,                                            



To construct gauge field theories, we use a so-called QP-manifold. For our 
purpose, we take the graded manifold with a pair of vector spaces      and       

Mn = T ⇤[n](W [1]� V [2])

V W

where       shifts the degree n of the coordinates, thus the local coordinates are[n]

(qa, QA, pa, PA) (1, 2, n� 1, n� 2)

QP-structure

P-structure

then we have a corresponding graded Poisson bracket of degree -n,

Q-structure is given by a Hamiltonian       :        

Hamiltonian in the local coordinates is a polynomial of degree n+1

! = (�1)ndqa ^ dpa + dQA ^ dPA

{�,�}

⇥

Homological vector field of degree 1:   Q = {⇥,�}

with degree

W � V �W ⇤ � V ⇤for

{⇥,⇥} = 0Master equation

Q2 = 0

W ⇠ g⇤, V ⇠ h⇤



⇥(1) = taAQ
Apa �

1

2
fa
bcq

bqcpa � ↵a
aBq

aQBPA +
1

6
TA
abcq

aqbqcPA

Here, the structure constants of crossed module appears. 

{⇥(1),⇥(1)} = 0The master eq.                                    gives the relations among the structure  
constants. Extra structure constants  

Strict Lie 2-algebraTA
abc = 0

TA
abc 6= 0

�!
�! Semi-strict Lie 2-algebra

For example, a Hamiltonian: Each term contains a SINGLE momentum variable.

On our supermanifold Mn = T ⇤[n](W [1]� V [2])



Gauge Field and Field Strength
To construct the gauge tr. rules and field strength, we follow AKSZ-Strobl:

Taking a d-dimensional spacetime       with coordinates:⌃

a : T [1]⌃ ! T ⇤[n](W [1]� V [2])Consider the map 

(super)gauge fields are defined by pullback:                           ,a⇤(qa) = Aa a⇤(QA) = BA

(super)Field strength:

We define a degree preserving map with identification of the degree 1 
coordinate of                with a form 

ã : T [1]⌃ ! Mn

T [1]⌃ d�µ

ã⇤(qa) = Aa
µd�

µ

Usual field corresponding to the coordinate z is the degree |z| component 
the of superfield  a⇤(z)

From degree |z|+1 part of            we get  Fz

From degree |z| part, we get the gauge transformation  

�ã⇤(z) = dã⇤�1(z)� ã⇤�1(Qz)

(�µ, ✓µ) 2 T [1]⌃

Fields are defined in the mapping space

Fz = da⇤(z)� a⇤(Qz)

Fz = dã⇤(z)� ã⇤(Qz)

ã⇤(QA) =
1

2
BA

µ⌫d�
µd�⌫



Now we classify the possible Hamiltonians for spacetime dimensions d=n+1

We expand the Hamiltonian in the number of conjugate momenta (pa, PA)

⇥ =
X

k

⇥(k)

1) dimension larger than 6  n � 6

n = 4, 52) dimension 5 and 6  

⇥ = ⇥(0) +⇥(1)

⇥ = ⇥(0) +⇥(1) +⇥(2)

3) dimension 4 and less  

Classification of Hamiltonians 

We find that there is a limited number of types available, depending on the 
spacetime dimension d=n+1

We see that case 1) is essentially the same as the semi-strict case:

{⇥(1),⇥(1)} = 0

{⇥(0),⇥(1)}+ {⇥(1),⇥(0)} = 0

{⇥(0),⇥(0)} = 0

⇥(0) =
1

d!
mab···deq

aqb · · · qdqe + 1

(d� 2)!
ma···cAq

aqb · · ·QA + · · · ,

Same relations as semi-strict Lie 2-algebra  

Automatic,  no new relations



⇥(0) =
1

5!
mabcdeq

aqbqcqdqe +
1

3!
mabcAq

aqbqcQA +
1

2
maABq

aQAQB ,

⇥(2) = saApaPA +
1

2
nAB
a qaPAPB

⇥(1) =
1

2
f c
abq

aqbpc + taAQ
Apa + ↵B

aAq
aQAPB +

1

3!
TA
abcq

aqbqcPA,

Dimensions 5 and 6 provide interesting possibilities. We consider the case d=5. 

The Hamiltonian is ⇥ = ⇥(0) +⇥(1) +⇥(2)

 The master equation is decomposed by

{⇥(0),⇥(0)} = 0,

{⇥(0),⇥(1)}+ {⇥(1),⇥(0)} = 0

{⇥(1),⇥(1)}+ {⇥(0),⇥(2)}+ {⇥(2),⇥(0)} = 0,

{⇥(1),⇥(2)}+ {⇥(2),⇥(1)} = 0,

{⇥(2),⇥(2)} = 0.

Now we have some possibilities to extend the semi-strict Lie 2-algebra

5-dimensional theory is also interesting since one can think of it as a KK 
compactification of the 6-dimensional theory, and the 6-dimensional 
theory itself is believed not to exhibit a covariant action.  

NOTE: WHY 5 DIM



Now we have some possibilities to extend the semi-strict Lie 2-algebra

It does not change the gauge transformation and field strength, since 

{⇥(0), qa} = 0 {⇥(0), QA} = 0

It changes the gauge transformation and field strength.

{⇥(0),⇥(2)} term changes the relations given by  {⇥(1),⇥(1)}

 This deforms the constraints on the structure constants:   taA ↵A
aB f c

ab TA
abc

 and gives a new type of 2-form gauge field theory.

⇥(0) 6= 0

⇥(2) 6= 0

⇥(0) ⇥(2) Both           ,          6= 0

= 0⇥(2)and

and

It does not change the semi-strict Lie 2-algebra structure since {⇥(1),⇥(1)}= 0

⇥(0)= 0

1)

2)

3)

It does not change the semi-strict Lie 2-algebra structure. 

It changes the gauge transformation and field strength,

and it also changes the semi-strict Lie 2-algebra structure, since 



We focus on case 2), which already exhibits a very interesting structure from 
the covariantization point of view.

⇥(2) 6= 0and⇥(0)= 0

⇥(2) = saApaPA +
1

2
nAB
a qaPAPB

⇥(1) =
1

2
f c
abq

aqbpc + taAQ
Apa + ↵B

aAq
aQAPB +

1

3!
TA
abcq

aqbqcPA,

1

2
fd
e[af

e
bc] �

1

3!
tdAT

A
abc = 0,

tcAf
a
cb � taB↵

B
bA = 0,

1

2
↵B
cAf

c
ab + ↵B

[a|C|↵
C
b]A +

1

2
tcAT

B
cab = 0,

3

2
fe
[abT

A
cd]e + ↵A

[a|B|T
B
bcd] = 0,

↵C
a(At

a
B) = 0.

sa(AnBC)
a = 0,

scAf b
ca + ↵A

aBs
bB � tbBn

AB
a = 0,

1

2
sc(ATB)

abc +
1

4
nAB
c f c

ab + ↵(A
[a|C|n

B)C
b] = 0,

sa(A↵B)
aC +

1

2
taCn

AB
a = 0,

t[aAs
b]A = 0.

2’)  set                                 strict Lie 2-algebraTA
abc = 0



⇥(2) 6= 0and⇥(0)= 0

⇥(2) = saApaPA +
1

2
nAB
a qaPAPB

⇥(1) =
1

2
f c
abq

aqbpc + taAQ
Apa + ↵B

aAq
aQAPB +

1

3!
TA
abcq

aqbqcPA,

1

2
fd
e[af

e
bc] �

1

3!
tdAT

A
abc = 0,

tcAf
a
cb � taB↵

B
bA = 0,

1

2
↵B
cAf

c
ab + ↵B

[a|C|↵
C
b]A +

1

2
tcAT

B
cab = 0,

3

2
fe
[abT

A
cd]e + ↵A

[a|B|T
B
bcd] = 0,

↵C
a(At

a
B) = 0.

sa(AnBC)
a = 0,

scAf b
ca + ↵A

aBs
bB � tbBn

AB
a = 0,

1

2
sc(ATB)

abc +
1

4
nAB
c f c

ab + ↵(A
[a|C|n

B)C
b] = 0,

sa(A↵B)
aC +

1

2
taCn

AB
a = 0,

t[aAs
b]A = 0.

2’)  set                                 strict Lie 2-algebraTA
abc = 0

Now we have two new structure constants:              , saA nAB
a

We focus on case 2), which already exhibits a very interesting structure from 
the covariantization point of view.



[pa, pb] = f c
abpc,

t(PA) = taApa,

↵(pa)PA = ↵B
aAPB ,

[pa, pb, pc] = TA
abcPA,

s(qa) = saAPA,

n(pa)(Q
A) = nAB

a PB .

⇥ !
!

⇥ !⇥
!
!

[�,�]

t
↵

s
n

[�,�,�]

⇥ !

⇥

:

:

:

:

:

:

Structure of the maps, 

↵C
a(At

a
B) = 0↵ � t :

Other important maps             

                                                ,   since                             this map is a bracket 

       with structure constant                          

W

W W W

V

V W

W

V ⇤
W ⇤

W

V V

⇥ !V VV

f̃C
AB = ↵C

a[At
a
B]

W W W W

differential 
crossed 
module

t[aAs
b]A = 0W ! Vs0 :                           ,   since                         ,                          is a symmetric tensor.Gab = taAs

bA

Gab = Pa
c g

cb
     We can write                             where g is an invertible metric on       .  Then                    

sAa = gabs
bA                                   defines the map                    (         has some ambiguity)s0

[�,�]V

W

)

gab



F a = dAa � 1

2
fa
bcA

b ^Ac � taAB
A � saADA,

HA = dBA + ↵A
aBA

a ^BB + sbACb + nAB
a Aa ^DB +

1

3!
TA
abcA

a ^Ab ^Ac.

Field strength and gauge transformation           

F (C)
a = dCa � f c

abA
b ^ Cc � ↵A

aBB
B ^DA � 1

2
nAB
a DA ^DB � 1

2
TA
abcA

b ^Ac ^DA,

F (D)
A = dDA � taACa � ↵A

aBA
a ^DB .

�Aa = d✏a � fa
bcA

b✏c � taAµ
A � saAµ0

A,

�BA = dµA + ↵A
aB(A

a ^ µB + ✏aBB) + sbA✏0b + nAB
a (Aa ^ µ0

B + ✏a ^DB)

+
1

2
TA
abcA

a ^Ab✏c

�Ca = d✏0a � f c
ab(A

b ^ ✏0c + ✏b ^ Cc)� ↵A
aB(B

B ^ µ0
A + µB ^DA)� nAB

a DA ^ µ0
B

� 1

2
TA
abc(2A

b ^DA✏
c +Ab ^Ac ^ µ0

A),

�DA = dµ0
A � taA✏

0
a � ↵B

aA(A
a ^ µ0

B + ✏aDB).

�F a = fa
bcF

b✏c,

�HA = ↵A
aBH

B✏a � ↵A
aBF

a ^ µB � nAB
a F a ^ µ0

B .+ nAB
a F

(D)
B ✏a + TA

abcA
a ^ F c✏b



F a = dAa � 1

2
fa
bcA

b ^Ac � taAB
A � saADA,

HA = dBA + ↵A
aBA

a ^BB + sbACb + nAB
a Aa ^DB +

1

3!
TA
abcA

a ^Ab ^Ac.

Field strength and gauge transformation,  T=0           

F (C)
a = dCa � f c

abA
b ^ Cc � ↵A

aBB
B ^DA � 1

2
nAB
a DA ^DB � 1

2
TA
abcA

b ^Ac ^DA,

F (D)
A = dDA � taACa � ↵A

aBA
a ^DB .

�Aa = d✏a � fa
bcA

b✏c � taAµ
A � saAµ0

A,

�BA = dµA + ↵A
aB(A

a ^ µB + ✏aBB) + sbA✏0b + nAB
a (Aa ^ µ0

B + ✏a ^DB)

+
1

2
TA
abcA

a ^Ab✏c

�Ca = d✏0a � f c
ab(A

b ^ ✏0c + ✏b ^ Cc)� ↵A
aB(B

B ^ µ0
A + µB ^DA)� nAB

a DA ^ µ0
B

� 1

2
TA
abc(2A

b ^DA✏
c +Ab ^Ac ^ µ0

A),

�DA = dµ0
A � taA✏

0
a � ↵B

aA(A
a ^ µ0

B + ✏aDB).

�F a = fa
bcF

b✏c,

�HA = ↵A
aBH

B✏a � ↵A
aBF

a ^ µB � nAB
a F a ^ µ0

B .+ nAB
a F

(D)
B ✏a + TA

abcA
a ^ F c✏b

F=0 is necessary for covariance:   fake curvature condition          



We look for a case in which the gauge transformation of the field strengths H, F 
is deformed/canceled in δH,           

For this, we shift δB by a term F          

We do this by adjusting the gauge freedom of the auxiliary gauge fields C, D     

Reduction to 2-form gauge theory 

The theory constructed so far contains auxiliary gauge fields C, D

They are the auxiliary gauge fields of BF theory. 
Since we are interested in the theory only with A, B, which is non-topological, 
we drop the auxiliary gauge fields by imposing constraint conditions:

Trivial example:  C=0, D=0

In general, we also analyze canonical transformations on the QP-manifold to 
identify equivalent theories. 
One possibility is to take constraints:

saACa = �A
abA

a ^ F b DA = 0



Reduction to 2-form gauge theory 

Identify also the conditions for the transformation of the 3-form field strength, 
δH, to be covariant.           

With constraints on the auxiliary gauge fields, a smaller class of gauge 
symmetries remains.  

Identify the residual gauge symmetry, and the transformation of the field 
strengths (F, H) under this residual symmetry.

F a = dAa � 1

2
fa
bcA

b ^Ac � taAB
A,

HA = dBA + ↵A
aBA

a ^BB � ↵A
aBs

B
c F

a ^Ac,

�̂Aa = d✏̂a � fa
bcA

b✏̂c � taAµ̂
A,

�̂BA = dµ̂A + ↵A
jB(A

j ^ µ̂B + ✏̂jBB)� ↵A
jBs

B
c ✏̂

cF j ,

�̂F a = fa
bcF

b(✏̂c � (P ✏̂)c),

�̂HA = ↵A
aBH

B(✏̂a � (P ✏̂)a),

The results are summarized in the end, with residual gauge transformation     
and  parameters           as:

�̂
µ̂, ✏̂



Discussion 

Systematic reduction from Lie n-algebra gauge theory to Lie 2-algebra 
gauge theory is proposed 

The algebroid version can be a natural generalization

We have anyway scalar field in M5 effective theory.

Other possibility:  inclusion of ⇥(0)

In this case, we modify the (semi)strict Lie 2-algebra 
structure. 

4-dimensional case:   n=3

5-dim. case is analyzed carefully, and an example of a covariantized theory 
is constructed.


