Structure of off-shell covariant higher gauge theory

Satoshi Watamura
Tohoku Univ. Sendai

collaboration with
Ursula Carow-Watamura,
Marc A. Heller,
Noriaki Ikeda,
Yukio Kaneko

INTRODUCTION

- I would like to discuss a problem in a non-abelian theory of 2-form gauge fields appearing in the effective theory of multiple M2/M5-branes.
- This theory is considered to be a 6 -dimensional $N=(2,0)$ supersymmetric theory. And there are two major problems:

1. Selfdual 2-form gauge field
2. Interacting non-abelian 2-form gauge field theory

- Here we want to focus on the second problem.

Our aim is

1. List a wider class of higher gauge theories based on Lie 2-algebras. We find a new class of theory in 5 dimensions.
2. Search for off-shell covariant theories and analyze the properties.

- PHYSICAL BACKGROUND: MULTIPLE M2 AND M5

- Effective theory of multiple (i.e. n) M2-branes is now known as ABJM theory 3-dimensional field theory on M2 world volume:
N=6(8) Supersymmetric Chern-Simons matter theory
- Effective theory of n M5-branes is not known yet

WE EXPECT

-6-dimensional field theory on single M5-brane world volume should be a theory of the following supermultiplet:

- 5 scalar fields for transversal coordinates in 11-dim. spacetime
- 1 fermion field as superpartner: 4-component Weyl spinor (8 d.o.f.)
- We need 3 more bosonic DOF on the world volume
- X Vector field in 6 dim.: massless 4=6-2, massive 5=6-1
- \times-form field in 6 dim.: massless $\binom{4}{2}=6$, massive $\binom{5}{2}=10$
- O Self-dual 2-form field in 6 dim.: $6 / 2=3$

HIGHER GAUGE THEORY

Single M5-brane effective theory: $\quad X^{i}, B=\frac{1}{2} B_{\mu \nu} d x^{\mu} d x^{\nu}, \psi$ with self-duality condition $\quad d B=* d B$

2 MAJOR PROBLEMS
(1) Covariant action problem of self-dual 2-form gauge field:

$$
\begin{aligned}
& F^{(3)}=d B=* d B=* F^{(3)} \\
& \qquad S \propto \int F^{(3)} \wedge * F^{(3)}=\int F^{(3)} \wedge F^{(3)}=0
\end{aligned}
$$

NO ACTION?
(2) Interacting (non-abelian) gauge theory of 2-form field:

HIGHER GAUGE THEORY

- Theory based on crossed module: Strict Lie 2-algebra [Baez-Crans, 2004]
- Semi-strict Lie 2-algebra [Roytenberg, 2007]

TRIALS:
(1) Discard Lorentz covariance [Chu-Ko 2005,Ho-Huang-Matsuo 2007]
(2) Use of deformed higher gauge theory [Ho-Matsuo 2009] NO solution yet

STARTING POINT OF HGT

- Gauge theory based on strict Lie 2-algebra [Baez 2002]

Easy way: Define the Lie 2-algebra by the differential crossed module:

- two Lie algebras: \mathfrak{g} and \mathfrak{h} and the following maps between them:

$$
\underline{\mathrm{t}}: \mathfrak{h} \rightarrow \mathfrak{g} \quad \underline{\alpha}: \mathfrak{g} \rightarrow \operatorname{Der}(\mathfrak{h})
$$

s.t. for $g \in \mathfrak{g}, h, h^{\prime} \in \mathfrak{h}$

- \mathfrak{g}-invariance: $\underline{t}(\underline{\alpha}(g) \triangleright h)=[g, \underline{t}(h)]$
- Peiffer identity: $\underline{\alpha}(\underline{t}(h)) \triangleright h^{\prime}=\left[h, h^{\prime}\right]$
- Correspondingly, we introduce two gauge fields:
- \mathfrak{g}-valued 1-form: A^{a}
- \mathfrak{h}-valued 2-form: B^{I}
- Field strengths are given by

$$
\begin{aligned}
F & =d A+\frac{1}{2} A \wedge A-\underline{t}(B) \\
H & =d B+\underline{\alpha}(A) \wedge B
\end{aligned}
$$

THEN Bianchi identity and closure of gauge transformations are analyzed

Crossed Module:

- Since the (differential) Crossed Module is a basic object in our construction, we introduce a little more detailed expressions:
- Crossed module: A pair of Lie algebras, $(\mathfrak{g}, \mathfrak{h})$ with homomorphisms t, α

$$
t: \mathfrak{h} \rightarrow \mathfrak{g} \quad \alpha: \mathfrak{g} \rightarrow \operatorname{Der}(\mathfrak{h})
$$

- To write down the field theory, we introduce a local basis:

$$
g_{a} \in \mathfrak{g}, h_{A} \in \mathfrak{h}, \quad\left[g_{a}, g_{b}\right]=f_{a b}^{c} g_{c},\left[h_{A}, h_{B}\right]=\tilde{f}_{A B}^{C} h_{C}
$$

then the maps are

$$
\alpha\left(g_{a}\right) \triangleright h_{A}=\alpha_{a A}^{B} h_{B}, \quad t\left(h_{A}\right)=t_{A}^{a} g_{a}
$$

- There are now 4 structure constants

$$
\alpha_{a B}^{A} \quad t_{A}^{a} \quad f_{a b}^{c} \quad \tilde{f}_{A B}^{C}
$$

Among them there are some relations required by consistency

- To construct gauge field theories, we use a so-called QP-manifold. For our purpose, we take the graded manifold with a pair of vector spaces V and W

$$
\mathcal{M}_{n}=T^{*}[n](W[1] \oplus V[2]) \quad W \sim \mathfrak{g}^{*}, V \sim \mathfrak{h}^{*}
$$

where $[n]$ shifts the degree n of the coordinates, thus the local coordinates are for $\quad W \oplus V \oplus W^{*} \oplus V^{*}$

$$
\left(q^{a}, Q^{A}, p_{a}, P_{A}\right) \quad \text { with degree }(1,2, n-1, n-2)
$$

- QP-structure
- P-structure $\omega=(-1)^{n} d q^{a} \wedge d p_{a}+d Q^{A} \wedge d P_{A}$ then we have a corresponding graded Poisson bracket of degree $-\mathrm{n},\{-,-\}$
- Q-structure is given by a Hamiltonian Θ :
- Hamiltonian in the local coordinates is a polynomial of degree $n+1$
- Master equation $\{\Theta, \Theta\}=0$
- Homological vector field of degree 1: $Q=\{\Theta,-\} \quad Q^{2}=0$
- For example, a Hamiltonian: Each term contains a SINGLE momentum variable.

On our supermanifold $\mathcal{M}_{n}=T^{*}[n](W[1] \oplus V[2])$

$$
\Theta^{(1)}=t_{A}^{a} Q^{A} p_{a}-\frac{1}{2} f_{b c}^{a} q^{b} q^{c} p_{a}-\alpha_{a B}^{a} q^{a} Q^{B} P_{A}+\frac{1}{6} T_{a b c}^{A} q^{a} q^{b} q^{c} P_{A}
$$

- Here, the structure constants of crossed module appears.

The master eq. $\left\{\Theta^{(1)}, \Theta^{(1)}\right\}=0$ gives the relations among the structure constants. Extra structure constants

$$
\begin{array}{lll}
T_{a b c}^{A}=0 & \longrightarrow & \text { Strict Lie 2-algebra } \\
T_{a b c}^{A} \neq 0 & \longrightarrow & \text { Semi-strict Lie 2-algebra }
\end{array}
$$

Gauge Field and Field Strength

- To construct the gauge tr. rules and field strength, we follow AKSZ-Strobl:
- Taking a d-dimensional spacetime Σ with coordinates: $\left(\sigma^{\mu}, \theta^{\mu}\right) \in T[1] \Sigma$
- Fields are defined in the mapping space
- Consider the map $a: T[1] \Sigma \rightarrow T^{*}[n](W[1] \oplus V[2])$
- (super)gauge fields are defined by pullback: $a^{*}\left(q^{a}\right)=\mathbf{A}^{a}, \quad a^{*}\left(Q^{A}\right)=\mathbf{B}^{A}$
- (super)Field strength: $\quad \mathbf{F}_{z}=\mathbf{d} a^{*}(z)-a^{*}(Q z)$
- Usual field corresponding to the coordinate z is the degree $|z|$ component the of superfield $a^{*}(z)$
- We define a degree preserving map with identification of the degree 1 coordinate of $T[1] \Sigma$ with a form $d \sigma^{\mu}$

$$
\tilde{a}: T[1] \Sigma \rightarrow \mathcal{M}_{n} \quad \tilde{a}^{*}\left(q^{a}\right)=A_{\mu}^{a} d \sigma^{\mu} \quad \tilde{a}^{*}\left(Q^{A}\right)=\frac{1}{2} B_{\mu \nu}^{A} d \sigma^{\mu} d \sigma^{\nu}
$$

- From degree $|z|+1$ part of \mathbf{F}_{z} we get $F_{z}=d \tilde{a}^{*}(z)-\tilde{a}^{*}(Q z)$
- From degree Izl part, we get the gauge transformation

$$
\delta \tilde{a}^{*}(z)=d \tilde{a}_{-1}^{*}(z)-\tilde{a}_{-1}^{*}(Q z)
$$

Classification of Hamiltonians

Now we classify the possible Hamiltonians for spacetime dimensions $\mathrm{d}=\mathrm{n}+1$

- We expand the Hamiltonian in the number of conjugate momenta (p_{a}, P_{A})

$$
\Theta=\sum_{k} \Theta^{(k)}
$$

- We find that there is a limited number of types available, depending on the spacetime dimension $\mathrm{d}=\mathrm{n}+1$

1) dimension larger than 6
$n \geq 6$
$\Theta=\Theta^{(0)}+\Theta^{(1)}$
2) dimension 5 and 6
$n=4,5$
$\Theta=\Theta^{(0)}+\Theta^{(1)}+\Theta^{(2)}$
3) dimension 4 and less

- We see that case 1) is essentially the same as the semi-strict case:

$$
\begin{aligned}
& \Theta^{(0)}=\frac{1}{d!} m_{a b \cdots d e} q^{a} q^{b} \cdots q^{d} q^{e}+\frac{1}{(d-2)!} m_{a \cdots c A} q^{a} q^{b} \cdots Q^{A}+\cdots, \\
&\left\{\Theta^{(1)}, \Theta^{(1)}\right\}=0 \longleftarrow \text { Same relations as semi-strict Lie 2-algebra } \\
&\left\{\Theta^{(0)}, \Theta^{(1)}\right\}+\left\{\Theta^{(1)}, \Theta^{(0)}\right\}=0 \\
&\left\{\Theta^{(0)}, \Theta^{(0)}\right\}=0 \quad \text { Automatic, no new relations }
\end{aligned}
$$

Dimensions 5 and 6 provide interesting possibilities. We consider the case $d=5$.

- The Hamiltonian is $\Theta=\Theta^{(0)}+\Theta^{(1)}+\Theta^{(2)}$

$$
\begin{aligned}
& \Theta^{(0)}=\frac{1}{5!} m_{a b c d e} q^{a} q^{b} q^{c} q^{d} q^{e}+\frac{1}{3!} m_{a b c A} q^{a} q^{b} q^{c} Q^{A}+\frac{1}{2} m_{a A B} q^{a} Q^{A} Q^{B} \\
& \Theta^{(1)}=\frac{1}{2} f_{a b}^{c} q^{a} q^{b} p_{c}+t_{A}^{a} Q^{A} p_{a}+\alpha_{a A}^{B} q^{a} Q^{A} P_{B}+\frac{1}{3!} T_{a b c}^{A} q^{a} q^{b} q^{c} P_{A} \\
& \Theta^{(2)}=s^{a A} p_{a} P_{A}+\frac{1}{2} n_{a}^{A B} q^{a} P_{A} P_{B}
\end{aligned}
$$

- The master equation is decomposed by

$$
\begin{aligned}
& \left\{\Theta^{(0)}, \Theta^{(0)}\right\}=0, \\
& \left\{\Theta^{(0)}, \Theta^{(1)}\right\}+\left\{\Theta^{(1)}, \Theta^{(0)}\right\}=0 \\
& \left\{\Theta^{(1)}, \Theta^{(1)}\right\}+\left\{\Theta^{(0)}, \Theta^{(2)}\right\}+\left\{\Theta^{(2)}, \Theta^{(0)}\right\}=0, \\
& \left\{\Theta^{(1)}, \Theta^{(2)}\right\}+\left\{\Theta^{(2)}, \Theta^{(1)}\right\}=0, \\
& \left\{\Theta^{(2)}, \Theta^{(2)}\right\}=0 .
\end{aligned}
$$

Now we have some possibilities to extend the semi-strict Lie 2-algebra

NOTE: WHY 5 DIM

5-dimensional theory is also interesting since one can think of it as a KK compactification of the 6-dimensional theory, and the 6-dimensional theory itself is believed not to exhibit a covariant action.

Now we have some possibilities to extend the semi-strict Lie 2-algebra

1) $\Theta^{(0)} \neq 0$ and $\Theta^{(2)}=0$

- It does not change the gauge transformation and field strength, since

$$
\left\{\Theta^{(0)}, q^{a}\right\}=0 \quad\left\{\Theta^{(0)}, Q^{A}\right\}=0
$$

- It does not change the semi-strict Lie 2-algebra structure since $\left\{\Theta^{(1)}, \Theta^{(1)}\right\}=0$

2) $\Theta^{(0)}=0$ and $\Theta^{(2)} \neq 0$

- It changes the gauge transformation and field strength.
- It does not change the semi-strict Lie 2-algebra structure.

3) Both $\Theta^{(0)}, \Theta^{(2)} \neq 0$

- It changes the gauge transformation and field strength, and it also changes the semi-strict Lie 2-algebra structure, since $\left\{\Theta^{(0)}, \Theta^{(2)}\right\}$ term changes the relations given by $\left\{\Theta^{(1)}, \Theta^{(1)}\right\}$
- This deforms the constraints on the structure constants: $t_{A}^{a} \alpha_{a B}^{A} f_{a b}^{c} T_{a b c}^{A}$ and gives a new type of 2-form gauge field theory.

We focus on case 2), which already exhibits a very interesting structure from the covariantization point of view.

$$
\begin{aligned}
& \Theta^{(0)}=0 \text { and } \Theta^{(2)} \neq 0 \\
& \Theta^{(1)}=\frac{1}{2} f_{a b}^{c} q^{a} q^{b} p_{c}+t_{A}^{a} Q^{A} p_{a}+\alpha_{a A}^{B} q^{a} Q^{A} P_{B}+\frac{1}{3!} T_{a b c}^{A} q^{a} q^{b} q^{c} P_{A}, \\
& \Theta^{(2)}=s^{a A} p_{a} P_{A}+\frac{1}{2} n_{a}^{A B} q^{a} P_{A} P_{B} \\
& \frac{1}{2} f_{e[a}^{d} f_{b c]}^{e}-\frac{1}{3!} t_{A}^{d} T_{a b c}^{A}=0, \\
& t_{A}^{c} f_{c b}^{a}-t_{B}^{a} \alpha_{b A}^{B}=0, \\
& s^{a(A} n_{a}^{B C)}=0, \\
& s^{c A} f_{c a}^{b}+\alpha_{a B}^{A} s^{b B}-t_{B}^{b} n_{a}^{A B}=0, \\
& \frac{1}{2} \alpha_{c A}^{B} f_{a b}^{c}+\alpha_{[a|C|}^{B} \alpha_{b] A}^{C}+\frac{1}{2} t_{A}^{c} T_{c a b}^{B}=0, \quad \frac{1}{2} s^{c(A} T_{a b c}^{B)}+\frac{1}{4} n_{c}^{A B} f_{a b}^{c}+\alpha_{[a|C|}^{(A} n_{b]}^{B) C}=0, \\
& \frac{3}{2} f_{[a b}^{e} T_{c d] e}^{A}+\alpha_{[a|B|}^{A} T_{b c d]}^{B}=0, \\
& \alpha_{a(A}^{C} t_{B)}^{a}=0 . \\
& s^{a(A} \alpha_{a C}^{B)}+\frac{1}{2} t_{C}^{a} n_{a}^{A B}=0, \\
& t_{A}^{[a} s^{b] A}=0 .
\end{aligned}
$$

2') set $T_{a b c}^{A}=0 \longrightarrow$ strict Lie 2-algebra

We focus on case 2), which already exhibits a very interesting structure from the covariantization point of view.

$$
\begin{aligned}
& \Theta^{(0)}=0 \text { and } \Theta^{(2)} \neq 0 \\
& \Theta^{(1)}=\frac{1}{2} f_{a b}^{c} q^{a} q^{b} p_{c}+t_{A}^{a} Q^{A} p_{a}+\alpha_{a A}^{B} q^{a} Q^{A} P_{B} \\
& \Theta^{(2)}=s^{a A} p_{a} P_{A}+\frac{1}{2} n_{a}^{A B} q^{a} P_{A} P_{B} \\
& \frac{1}{2} f_{e[a}^{d} f_{b c]}^{e} \\
& \quad t_{A}^{c} f_{c b}^{a}-t_{B}^{a} \alpha_{b A}^{B}=0,
\end{aligned} s^{a\left(A n_{a}^{B C)}=0,\right.} \begin{array}{ll}
\frac{1}{2} \alpha_{c A}^{B} f_{a b}^{c}+\alpha_{[a|C|}^{B} \alpha_{b] A}^{C} & s^{c A} f_{c a}^{b}+\alpha_{a B}^{A} s^{b B}-t_{B}^{b} n_{a}^{A B}=0, \\
& =0, \\
s^{a(A} \alpha_{a C}^{B)}+\frac{1}{2} t_{C}^{a} n_{a}^{A B}=0, \\
\alpha_{a(A}^{C} t_{B)}^{a}=0 . & t_{A}^{[a} s^{b] A}=0 .
\end{array}
$$

2') set $T_{a b c}^{A}=0 \longrightarrow$ strict Lie 2-algebra
Now we have two new structure constants: $s^{a A}, n_{a}^{A B}$

- Structure of the maps,

$$
\left.\begin{array}{rlrl}
{[-,-]:} & W \times W & \rightarrow W & {\left[p_{a}, p_{b}\right]}
\end{array}=f_{a b}^{c} p_{c}, \quad \begin{array}{l}
\underline{t}\left(P_{A}\right)
\end{array} t_{A}^{a} p_{a}, \quad \begin{array}{l}
\text { differential } \\
\underline{t}: \\
\underline{\alpha}: \\
\end{array}\right\}
$$

- Other important maps
- $\underline{\alpha} \circ \underline{t}: V \times V \rightarrow V$, since $\alpha_{a(A}^{C} t_{B)}^{a}=0$ this map is a bracket $[-,-]_{V}$ with structure constant $\quad \tilde{f}_{A B}^{C}=\alpha_{a[A}^{C} t_{B]}^{a}$
- $\underline{s}^{\prime}: W \rightarrow V$, since $t_{A}^{[a} s^{b] A}=0, G^{a b}=t_{A}^{a} s^{b A}$ is a symmetric tensor. We can write $G^{a b}=\mathcal{P}_{c}^{a} g^{c b} \quad$ where g is an invertible metric on W. Then

$$
s_{a}^{A}=g_{a b} s^{b A} \text { defines the map } \underline{s}^{\prime}
$$

($g_{a b}$ has some ambiguity)

Field strength and gauge transformation

$$
\begin{aligned}
F^{a} & =d A^{a}-\frac{1}{2} f_{b c}^{a} A^{b} \wedge A^{c}-t_{A}^{a} B^{A}-s^{a A} D_{A}, \\
H^{A} & =d B^{A}+\alpha_{a B}^{A} A^{a} \wedge B^{B}+s^{b A} C_{b}+n_{a}^{A B} A^{a} \wedge D_{B}+\frac{1}{3!} T_{a b c}^{A} A^{a} \wedge A^{b} \wedge A^{c} . \\
F_{a}^{(C)} & =d C_{a}-f_{a b}^{c} A^{b} \wedge C_{c}-\alpha_{a B}^{A} B^{B} \wedge D_{A}-\frac{1}{2} n_{a}^{A B} D_{A} \wedge D_{B}-\frac{1}{2} T_{a b c}^{A} A^{b} \wedge A^{c} \wedge D_{A}, \\
F_{A}^{(D)} & =d D_{A}-t_{A}^{a} C_{a}-\alpha_{a B}^{A} A^{a} \wedge D_{B} . \\
\delta A^{a} & =d \epsilon^{a}-f_{b c}^{a} A^{b} \epsilon^{c}-t_{A}^{a} \mu^{A}-s^{a A} \mu_{A}^{\prime}, \\
\delta B^{A} & =d \mu^{A}+\alpha_{a B}^{A}\left(A^{a} \wedge \mu^{B}+\epsilon^{a} B^{B}\right)+s^{b A} \epsilon_{b}^{\prime}+n_{a}^{A B}\left(A^{a} \wedge \mu_{B}^{\prime}+\epsilon^{a} \wedge D_{B}\right) \\
& +\frac{1}{2} T_{a b c}^{A} A^{a} \wedge A^{b} \epsilon^{c} \\
\delta C_{a} & =d \epsilon_{a}^{\prime}-f_{a b}^{c}\left(A^{b} \wedge \epsilon_{c}^{\prime}+\epsilon^{b} \wedge C_{c}\right)-\alpha_{a B}^{A}\left(B^{B} \wedge \mu_{A}^{\prime}+\mu^{B} \wedge D_{A}\right)-n_{a}^{A B} D_{A} \wedge \mu_{B}^{\prime} \\
& -\frac{1}{2} T_{a b c}^{A}\left(2 A^{b} \wedge D_{A} \epsilon^{c}+A^{b} \wedge A^{c} \wedge \mu_{A}^{\prime}\right), \\
\delta D_{A} & =d \mu_{A}^{\prime}-t_{A}^{a} \epsilon_{a}^{\prime}-\alpha_{a A}^{B}\left(A^{a} \wedge \mu_{B}^{\prime}+\epsilon^{a} D_{B}\right) . \\
\delta F^{a} & =f_{b c}^{a} F^{b} \epsilon^{c}, \\
\delta H^{A} & =\alpha_{a B}^{A} H^{B} \epsilon^{a}-\alpha_{a B}^{A} F^{a} \wedge \mu^{B}-n_{a}^{A B} F^{a} \wedge \mu_{B}^{\prime} .+n_{a}^{A B} F_{B}^{(D)} \epsilon^{a}+T_{a b c}^{A} A^{a} \wedge F^{c} \epsilon^{b}
\end{aligned}
$$

Field strength and gauge transformation, $\mathrm{T}=0$

$$
\begin{aligned}
& F^{a}=d A^{a}-\frac{1}{2} f_{b c}^{a} A^{b} \wedge A^{c}-t_{A}^{a} B^{A}-s^{a A} D_{A}, \\
& H^{A}=d B^{A}+\alpha_{a B}^{A} A^{a} \wedge B^{B}+s^{b A} C_{b}+n_{a}^{A B} A^{a} \wedge D_{B} \\
& F_{a}^{(C)}=d C_{a}-f_{a b}^{c} A^{b} \wedge C_{c}-\alpha_{a B}^{A} B^{B} \wedge D_{A}-\frac{1}{2} n_{a}^{A B} D_{A} \wedge D_{B} \\
& F_{A}^{(D)}=d D_{A}-t_{A}^{a} C_{a}-\alpha_{a B}^{A} A^{a} \wedge D_{B} . \\
& \delta A^{a}=d \epsilon^{a}-f_{b c}^{a} A^{b} \epsilon^{c}-t_{A}^{a} \mu^{A}-s^{a A} \mu_{A}^{\prime}, \\
& \delta B^{A}=d \mu^{A}+\alpha_{a B}^{A}\left(A^{a} \wedge \mu^{B}+\epsilon^{a} B^{B}\right)+s^{b A} \epsilon_{b}^{\prime}+n_{a}^{A B}\left(A^{a} \wedge \mu_{B}^{\prime}+\epsilon^{a} \wedge D_{B}\right) \\
& \delta C_{a}=d \epsilon_{a}^{\prime}-f_{a b}^{c}\left(A^{b} \wedge \epsilon_{c}^{\prime}+\epsilon^{b} \wedge C_{c}\right)-\alpha_{a B}^{A}\left(B^{B} \wedge \mu_{A}^{\prime}+\mu^{B} \wedge D_{A}\right)-n_{a}^{A B} D_{A} \wedge \mu_{B}^{\prime} \\
& \delta D_{A}=d \mu_{A}^{\prime}-t_{A}^{a} \epsilon_{a}^{\prime}-\alpha_{a A}^{B}\left(A^{a} \wedge \mu_{B}^{\prime}+\epsilon^{a} D_{B}\right) . \\
& \delta F^{a}=f_{b c}^{a} F^{b} \epsilon^{c}, \\
& \delta H^{A}=\alpha_{a B}^{A} H^{B} \epsilon^{a}-\alpha_{a B}^{A} F^{a} \wedge \mu^{B}-n_{a}^{A B} F^{a} \wedge \mu_{B}^{\prime} .+n_{a}^{A B} F_{B}^{(D)} \epsilon^{a}
\end{aligned}
$$

$\mathrm{F}=0$ is necessary for covariance: fake curvature condition

Reduction to 2-form gauge theory

- The theory constructed so far contains auxiliary gauge fields C, D

They are the auxiliary gauge fields of BF theory.
Since we are interested in the theory only with A, B, which is non-topological, we drop the auxiliary gauge fields by imposing constraint conditions:

- Trivial example: $\mathrm{C}=0, \mathrm{D}=0$
- We look for a case in which the gauge transformation of the field strengths H, F is deformed/canceled in $\delta \mathrm{H}$,

For this, we shift $\delta \mathrm{B}$ by a term F
We do this by adjusting the gauge freedom of the auxiliary gauge fields C, D
In general, we also analyze canonical transformations on the QP-manifold to identify equivalent theories.
One possibility is to take constraints:

$$
s^{a A} C_{a}=\Gamma_{a b}^{A} A^{a} \wedge F^{b} \quad D_{A}=0
$$

Reduction to 2-form gauge theory

- With constraints on the auxiliary gauge fields, a smaller class of gauge symmetries remains.
- Identify the residual gauge symmetry, and the transformation of the field strengths (F, H) under this residual symmetry.
- Identify also the conditions for the transformation of the 3-form field strength, $\delta \mathrm{H}$, to be covariant.
The results are summarized in the end, with residual gauge transformation $\hat{\delta}$ and parameters $\hat{\mu}, \hat{\epsilon}$ as:

$$
\begin{aligned}
F^{a} & =d A^{a}-\frac{1}{2} f_{b c}^{a} A^{b} \wedge A^{c}-t_{A}^{a} B^{A} \\
H^{A} & =d B^{A}+\alpha_{a B}^{A} A^{a} \wedge B^{B}-\alpha_{a B}^{A} s_{c}^{B} F^{a} \wedge A^{c} \\
\hat{\delta} A^{a} & =d \hat{\epsilon}^{a}-f_{b c}^{a} A^{b} \hat{\epsilon}^{c}-t_{A}^{a} \hat{\mu}^{A} \\
\hat{\delta} B^{A} & =d \hat{\mu}^{A}+\alpha_{j B}^{A}\left(A^{j} \wedge \hat{\mu}^{B}+\hat{\epsilon}^{j} B^{B}\right)-\alpha_{j B}^{A} s_{c}^{B} \hat{\epsilon}^{c} F^{j} \\
\hat{\delta} F^{a} & =f_{b c}^{a} F^{b}\left(\hat{\epsilon}^{c}-(\mathcal{P} \hat{\epsilon})^{c}\right) \\
\hat{\delta} H^{A} & =\alpha_{a B}^{A} H^{B}\left(\hat{\epsilon}^{a}-(\mathcal{P} \hat{\epsilon})^{a}\right)
\end{aligned}
$$

Discussion

- Systematic reduction from Lie n-algebra gauge theory to Lie 2-algebra gauge theory is proposed
- 5-dim. case is analyzed carefully, and an example of a covariantized theory is constructed.
- The algebroid version can be a natural generalization

We have anyway scalar field in M5 effective theory.

- Other possibility: inclusion of $\Theta^{(0)}$

In this case, we modify the (semi)strict Lie 2-algebra structure.

- 4-dimensional case: $n=3$

