q-Virasoro constraints, matrix models and exact partition functions

Maxim Zabzine (with Anton Nedelin and Fabrizio Nieri) arXiv:1511.03471 and arXiv:1605.????
Uppsala University

May 2, 2016

Outline

1. Motivation, toy model
2. Virasoro constraints for Hermitian matrix model
3. q-calculus and matrix models
4. 3D partition functions
5. Summary

Motivation, toy model

toy model for path integral

$$
\int_{-\infty}^{+\infty} f(x) d x
$$

and the Ward identities are

$$
\int_{-\infty}^{+\infty} \frac{d}{d x} f(x) d x=0
$$

Not much use!!!

Motivation, toy model

the generating function:

$$
\int_{-\infty}^{+\infty} f(x) d x \Rightarrow Z(g,\{t\})=\int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2 g}} e^{\sum_{s=0}^{\infty} \frac{t_{s}}{s!} x^{s}} d x
$$

the Ward identities:

$$
\int_{-\infty}^{+\infty} \frac{d}{d x}\left(x^{n+1} e^{-\frac{x^{2}}{2 g}} e^{\sum_{s=0}^{\infty} \frac{t_{s}}{s!} x^{s}}\right) d x=0, \quad n \geq-1
$$

formal Diff on \mathbb{R} and operators $I_{n}=-\frac{d}{d x}\left(x^{n+1} \ldots\right)$:

$$
\left[I_{n}, I_{m}\right]=(n-m) I_{n+m}
$$

Motivation, toy model

Virasoro constraints:

$$
L_{n} Z(g,\{t\})=0, \quad n \geq-1
$$

with

$$
\begin{gathered}
L_{n}=(n+1)!\frac{\partial}{\partial t_{n}}-\frac{1}{g}(n+2)!\frac{\partial}{\partial t_{n+2}}+\sum_{s=1}^{\infty} \frac{(n+s)!}{(s-1)!} t_{s} \frac{\partial}{\partial t_{s+n}}, n \geq 1 \\
L_{0}=1-\frac{2}{g} \frac{\partial}{\partial t_{2}}+\sum_{s=1}^{\infty} s t_{s} \frac{\partial}{\partial t_{s}} \\
L_{-1}=t_{1}-\frac{1}{g} \frac{\partial}{\partial t_{1}}+\sum_{s=2}^{\infty} t_{s} \frac{\partial}{\partial t_{s-1}}
\end{gathered}
$$

Infinity many PDE's!!!

Motivation, toy model

Answer:

$$
Z(g,\{t\})=e^{t_{0}} \sqrt{2 \pi g} \sum_{p=0}^{\infty} \frac{1}{2^{p} p!} B_{2 p}\left(t_{1}, \ldots, t_{2 p}\right) g^{p}
$$

here B_{n} are Bell's polynomials.

We can get this answer either by direct calculation of the integrals or by using the Virasoro constrains.

Idea is to do the same for more complicated integrals and find more complicated symmetries

Virasoro constraints for Hermitian matrix model

the Hermitian matrix model:

$$
Z(\{t\})=\int_{u(N)} d M e^{\sum_{s=0}^{\infty} \frac{t_{s}}{s!} \operatorname{Tr}\left(M^{s}\right)}
$$

where $M^{\dagger}=M$ and the measure is invariant under $M \rightarrow U^{\dagger} M U$ with $U \in U(N)$.

In terms of eigenvalues of M :

$$
Z(\{t\})=\int_{\mathbb{R}^{N}} \prod_{i=1}^{N} d \lambda_{i} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{\sum_{s=0}^{\infty} \frac{t_{s}}{s!} \sum_{i=1}^{N} \lambda_{i}^{s}}
$$

Virasoro constraints for Hermitian matrix model

Ward identities:

$$
\int_{\mathbb{R}^{N}} \prod_{i=1}^{N} d \lambda_{i} \sum_{I=1}^{N} \frac{\partial}{\partial \lambda_{I}}\left(\lambda_{I}^{n+1} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{\sum_{s=0}^{\infty} \frac{t_{s}}{s!} \sum_{i=1}^{N} \lambda_{i}^{s}}\right)=0
$$

where

$$
I_{n}=-\sum_{I=1}^{N} \frac{\partial}{\partial \lambda_{l}}\left(\lambda_{l}^{n+1} \cdots\right)
$$

satisfy

$$
\left[I_{n}, I_{m}\right]=(n-m) I_{n+m}
$$

Virasoro constraints for Hermitian matrix model

After some rewriting we get the Virasoro constraints:

$$
L_{n} Z(\{t\})=0, \quad n \geq-1
$$

where

$$
\begin{gathered}
L_{-1}=\sum_{k=0}^{\infty} t_{k} \frac{\partial}{\partial t_{k-1}}, \\
L_{0}=\sum_{k=1}^{\infty} k t_{k} \frac{\partial}{\partial t_{k}}+N^{2}, \\
L_{n}=\sum_{k=0}^{n}(n-k)!k!\frac{\partial^{2}}{\partial t_{k} \partial t_{n-k}}+\sum_{k=0}^{\infty} \frac{k(k+n)!}{k!} t_{k} \frac{\partial}{\partial t_{k+n}}, \quad n \geq 1
\end{gathered}
$$

Virasoro constraints for Hermitian matrix model

Let us think for the moment, we naturally have the representation of Heisenberg algebra:
creation operator: $\quad \alpha_{-n}=\frac{\sqrt{2}}{(n-1)!} t_{n}$,
annihilation operator: $\quad \alpha_{n}=\frac{n!}{\sqrt{2}} \frac{\partial}{\partial t_{n}}$,
and we can check that

$$
L_{n}=\frac{1}{2} \sum_{m=-\infty}^{+\infty}: \alpha_{n-m} \alpha_{m}:, \quad n \geq-1
$$

but it can be extended to all n's and we get the full Virasoro algebra with the central charge $c=1$.

Virasoro constraints for Hermitian matrix model

Thus we deal with the free boson $\phi(x)=\sum_{n} a_{n} x^{-n}$ Looking for an operator $S(x)$ such that

$$
\left[L_{n}, S(x)\right]=\frac{d}{d x} \mathrm{O}(x)
$$

we can get easily the solution of Virasoro constraints

$$
Z(\{t\})=Q^{N}, \quad \mathrm{Q}=\int d x S(x)
$$

we immediately get

$$
L_{n} Q^{N}|0\rangle=L_{n}\left(\left\{t_{k}\right\}\right) Z\left(\left\{t_{k}\right\}\right)=0
$$

This is indeed the Hermitian matrix model, in this argument only contour of integration is not specified. explain the details on the blackboard

q-calculus and matrix models

One can keep playing this game. The symmetries of integrals are not only differential operators, but also the difference operators, e.g. q-derivative

$$
D_{q} f(x)=\frac{f(q x)-f(x)}{x(q-1)}
$$

such that

$$
\lim _{q \rightarrow 1} D_{q} f(x)=\frac{d f}{d x}(x)
$$

We have

$$
\int_{-\infty}^{\infty} D_{q} f(x) d x=\frac{1}{q-1} \int_{-\infty}^{\infty} f(q x) \frac{d x}{x}-\frac{1}{q-1} \int_{-\infty}^{\infty} f(x) \frac{d x}{x}=0
$$

q-calculus and matrix models

Thus we can start to insert the following operators

$$
T_{n}^{q}=-D_{q}\left(x^{n+1} \ldots\right)
$$

which satisfy the following algebra

$$
q^{n} T_{n}^{q} T_{m}^{q}-q^{m} T_{m}^{q} T_{n}^{q}=\left([n]_{q}-[m]_{q}\right) T_{n+m}^{q}
$$

or

$$
\left[T_{n}^{q}, T_{m}^{q}\right]=q^{-n-m}\left([n]_{q}-[m]_{q}\right)\left([2]_{q} T_{n+m}^{q^{2}}-T_{n+m}^{q}\right)
$$

This is the deformation of the Virasoro algebra.

q-calculus and matrix models

Comment on the symmetries of the integral:

$$
\begin{gathered}
Z(\{t\})=\int d^{N} x f\left(x_{1}, \ldots, x_{N}\right) e^{\sum_{k=0}^{\infty} \frac{t_{k}}{k!} \sum_{i=1}^{N} x_{i}^{k}}, \\
D Z(\{t\})=\int d^{N} x f\left(x_{1}, \ldots, x_{N}\right) \sigma_{D}\left(x_{1}, \ldots, x_{N}\right) e^{\sum_{k=0}^{\infty} \frac{t_{k}}{k!} \sum_{i=1}^{N} x_{i}^{k}}=0
\end{gathered}
$$

there can be ideal generated by the operators

$$
(D-\tilde{D}) e^{\sum_{k=0}^{\infty} \frac{t_{k}}{k!} \sum_{i=1}^{N} x_{i}^{k}}=0
$$

It gets more complicated when we look at higher order differential operators (e.g., $\partial^{k} x^{n}$) etc.

q-calculus and matrix models

the symmetry problem is complicated even for finite dimensional integral, we do not know how to solve

We take a different path, we will use the representation of the Heisenberg algebra or its deformations

3D partition functions

Deformations of Heisenberg $\left(p=q t^{-1}, t=q^{\beta}\right)$:

$$
\begin{gathered}
{\left[a_{n}, a_{m}\right]=\frac{1}{n}\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right)\left(t^{\frac{n}{2}}-t^{-\frac{n}{2}}\right)\left(p^{\frac{n}{2}}+p^{-\frac{n}{2}}\right) \delta_{n+m, 0}, \quad n, m \in \mathbb{Z} \backslash\{0\},} \\
{[P, Q]=2}
\end{gathered}
$$

the deformed Virasoro

$$
\begin{gathered}
{\left[T_{n}, T_{m}\right]=-\sum_{\ell} f_{\ell}\left(T_{n-\ell} T_{m+\ell}-T_{m-\ell} T_{n+\ell}\right)} \\
-\frac{(1-q)\left(1-t^{-1}\right)}{(1-p)}\left(p^{n}-p^{-n}\right) \delta_{n+m, 0}
\end{gathered}
$$

$q=e^{\hbar}$, we have the small \hbar expansion

$$
T_{n}=2 \delta_{n, 0}+\hbar^{2} \beta\left(L_{n}+\frac{Q_{\beta}^{2}}{4} \delta_{n, 0}\right)+O\left(\hbar^{4}\right)
$$

3D partition functions

the representation of deformed Heisenberg

$$
\begin{gathered}
a_{-n}=\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right) t_{n}, \quad a_{n}=\frac{1}{n}\left(t^{\frac{n}{2}}-t^{-\frac{n}{2}}\right)\left(p^{\frac{n}{2}}+p^{-\frac{n}{2}}\right) \frac{\partial}{\partial t_{n}}, \quad n \in \mathbb{Z}_{>0} \\
\sqrt{\beta} Q=t_{0}, \quad P=2 \sqrt{\beta} \frac{\partial}{\partial t_{0}}, \quad \mid 0>=1
\end{gathered}
$$

So we do the similar thing, construct the operators S such that

$$
\left[T_{n}, \int d x S(x)\right]=0
$$

3D partition functions

$$
Z(\{t\})=\oint \prod_{i=1}^{N} \frac{d w_{i}}{2 \pi i w_{i}} \prod_{i \neq j} \frac{\left(w_{i} w_{j}^{-1} ; q\right)_{\infty}}{\left(t w_{i} w_{j}^{-1} ; q\right)_{\infty}} e^{\sum_{k=0}^{\infty} t_{k} \sum_{j} w_{j}^{k}}
$$

such that

$$
T_{n} Z(\{t\})=0, \quad n>0
$$

3D gauge theory on $D^{2} \times S^{1}$,
$N=2 U(N)$ vector with adjoint chiral

3D partition functions

q-Virasoror modulo double (a'la Faddeev):

$$
\begin{array}{cl}
q_{1}=e^{2 \pi i \tau}, & t_{1}=e^{2 \pi i \tau \beta} \\
q_{2}=e^{2 \pi i \frac{\tau}{\tau-1}}, & t_{2}=e^{2 \pi i \beta \frac{\tau}{\tau-1}}
\end{array}
$$

the gauge theory interpretation

$$
\begin{gathered}
\tau=\frac{\omega}{\omega_{1}}, \quad \omega=\omega_{1}+\omega_{2} \\
S^{3}, \quad \omega_{1}\left|z_{1}\right|^{2}+\omega_{2}\left|z_{2}\right|=1
\end{gathered}
$$

3D $U(N)$ vector with adjoint scalar on S^{3}

$$
Z(\{t\},\{\tilde{t}\})
$$

3D partition functions

two commuting q-Virasoro constraints:

$$
\begin{array}{ll}
T_{n} Z(\{t\},\{\tilde{t}\})=0, & n>0 \\
\tilde{T}_{n} Z(\{t\},\{\tilde{t}\})=0, & n>0
\end{array}
$$

- there are many generalizations (including elliptic deformations)
- BPS/CFT correspondence (magic)
- it would be nice to understand the symmetries of the integrals from the first principles

