Non-geometric fluxes and their back-reaction

Erik Plauschinn

LMU Munich

Bayrischzell Workshop 2017 23.04.2017

This talk is based on work with R. Blumenhagen and M. Fuchs ::

- vacua [1608.00595]

• Partial SUSY breaking for asymmetric Gepner models and non-geometric flux

■ The ACFT landscape in D=4,6,8 with extended supersymmetry [1611.04617]

- 2. partial susy breaking
- 3. gepner models
- 4. discussion

1. introduction

1. introduction

- a) non-geometry
- b) fluxes
- c) back-reaction
- 2. partial susy breaking
- 3. gepner models
- 4. discussion

- 1. introduction
 - a) non-geometry
 - b) fluxes
 - c) back-reaction
- 2. partial susy breaking
- 3. gepner models
- 4. discussion

Dualities :: two **different** theories describe the **same** physics.

Dualities :: two different theories describe the same physics.

Theory 1 with data \mathcal{O}_1

Regions in parameter space can have different descriptions.

duality transformation

description 1

parameter space

String theory :: can use duality transformations as transition functions.

S-duality

- duality transformation $g_s \rightarrow 1/g_s$
- monodromy around (p,q)-branes
 contains S-duality

T-duality

- duality transformation $R \rightarrow 1/R$
- monodromy around defects may contain T-duality

Hellerman, McGreevy, Williams - 2003

)3

String theory :: can use duality transformations as transition functions.

S-duality

- duality transformation $g_s \rightarrow 1/g_s$
- monodromy around (p,q)-branes contains **S-duality**

T-duality

- duality transformation $R \rightarrow 1/R$
- monodromy around defects may contain **T-duality**

→ non-geometric background

Hellerman, McGreevy, Williams - 2003 Hull - 2004

The prime example for a non-geometric background is the T-fold ::

$$ds^{2} = \frac{1}{1 + (Nz)^{2}} (dx^{2} + dy^{2}) + dz^{2},$$

$$B_{xy} = \frac{Nz}{1 + (Nz)^2} \,,$$

 $x \sim x+1$, $y \sim y+1$.

1. introduction

- a) non-geometry
- b) fluxes
- c) back-reaction
- 2. partial susy breaking
- 3. gepner models
- 4. discussion

Question :: what measures the non-triviality of the fibration? (What is the parameter *N*?)

Consider the following **family** of T-dual **backgrounds** ::

name	metric	<i>B</i> -field	transformation	flux
\mathbb{T}^3 w/ H -flux	trivial	non-trivial	gauge transformation	H_{ijk}
twisted torus	non-trivial	trivial	diffeomorphism	$F_{ij}{}^k$
T-fold	non-trivial	non-trivial	T-duality	$Q_i{}^{jk}$
R-space				R^{ijk}

Question :: what measures the non-triviality of the fibration? (What is the parameter *N*?)

Consider the following **family** of T-dual **backgrounds** ::

name	metric	<i>B</i> -field	transformation	flux
\mathbb{T}^3 w/ H -flux	trivial	non-trivial	gauge transformation	H_{ijk}
twisted torus	non-trivial	trivial	diffeomorphism	$F_{ij}{}^k$
T-fold	non-trivial	non-trivial	T-duality	$Q_i{}^{jk}$
R-space				R^{ijk}

Answer :: **fluxes** — geometric and non-geometric — measure the non-triviality of the fibration.

These fluxes are related via a T-duality chain ::

torus with *H*-flux twisted torus

Shelton, Taylor, Wecht - 2005

The fluxes can be interpreted as operators and be combined into a twisted differential

$H \wedge$	•	p-form	\rightarrow	(p+3)-form ,
$F \circ$	•	p-form	\rightarrow	(p+1)-form ,
$Q \bullet$	•	p-form	\rightarrow	(p-1)-form ,
R L	•	p-form	\rightarrow	(p-3)-form ,

When requiring nil-potency $\mathcal{D}^2 = 0$, Bianchi identities for the fluxes can be derived.

$\mathcal{D} = d - H \wedge -F \circ -Q \bullet -R \llcorner .$

Aldazabal, Camara, Font, Ibanez - 2006 Villadoro, Zwirner - 2006 Shelton, Taylor, Wecht - 2006

Shelton, Taylor, Wecht - 2006 Robins, Wrase - 2007

For Calabi-Yau three-folds, such fluxes describe SU(3)xSU(3) structure compactifications as

$$\mathcal{D}\alpha_{\Lambda} = q_{\Lambda}{}^{A}\omega_{A} + f_{\Lambda}{}_{A}\sigma^{A},$$

$$\mathcal{D}\beta^{\Lambda} = \tilde{q}^{\Lambda A}\omega_{A} + \tilde{f}^{\Lambda}{}_{A}\sigma^{A},$$

$$\mathcal{D}\omega_{A} = \tilde{f}^{\Lambda}{}_{A}\alpha_{\Lambda} - f_{\Lambda A}\beta^{\Lambda},$$

$$\mathcal{D}\sigma^{A} = -\tilde{q}^{\Lambda A}\alpha_{\Lambda} + q_{\Lambda}{}^{A}\beta^{\Lambda},$$

The H- and R-fluxes are contained in $f_{\Lambda 0} = h_{\Lambda}$, \tilde{f}^{Λ}

$$\{\alpha_{\Lambda}, \beta^{\Lambda}\} \in H^{3}(\mathcal{X}),$$
$$\{\omega_{\Lambda}\} \in H^{1,1}(\mathcal{X}), \qquad \omega_{0} = 1,$$
$$\{\sigma^{\Lambda}\} \in H^{2,2}(\mathcal{X}), \qquad \sigma^{0} = d \operatorname{vol}_{6}.$$

$${}^{\Lambda}{}_{0} = \tilde{h}^{\Lambda}$$
, $q_{\Lambda}{}^{0} = r_{\Lambda}$, $\tilde{q}^{\Lambda 0} = \tilde{r}^{\Lambda}$.

Grana, Louis, Waldram - 2006

- 1. introduction
 - a) non-geometry
 - b) fluxes
 - c) back-reaction
- 2. partial susy breaking
- 3. gepner models
- 4. discussion

Question :: What is the back-reaction of non-geometric fluxes?

Question :: What is the back-reaction of non-geometric fluxes?

Calabi-Yau three-fold

N=2,1 susy in d=4

H-flux

back-reacted manifold

N=1,0 susy in d=4

Calabi-Yau three-fold

N=2,1 susy in d=4

. . .

non-geometric flux

Giddings, Kachru, Polchinski - 2001

. . .

- 2. partial susy breaking
- 3. gepner models
- 4. discussion

1. introduction

N=2 gauged supergravity

in *d=4*

N=1 Minkowski vacuum in *d=4*

spontaneous breaking

> Ferrara, Girardello, Porrati - 1995 Adrianopoli, D'Auria, Ferrara, Lledo - 2002 Cassani, Ferrara, Marrani, Morales, Samtleben - 2009

> > Louis, Smyth, Triendl - 2009 & 2010

type II on Calabi-Yau with **flux**

N=2 gauged supergravity

in d=4

only for non-geometric fluxes (and magnetic gaugings)

back-reacted string theory solution

N=1 Minkowski vacuum in d=4

spontaneous breaking

> Ferrara, Girardello, Porrati - 1995 Adrianopoli, D'Auria, Ferrara, Lledo - 2002 Cassani, Ferrara, Marrani, Morales, Samtleben - 2009

> > Louis, Smyth, Triendl - 2009 & 2010

The minimal process for spontaneous $\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$ susy breaking (in the above context) is ::

$$G_{(2)} + V_{(2)} + H_{(2)}$$

gravity
$$\mathcal{G}_{(2)} = 1 \cdot [2] + 2 \cdot [\frac{3}{2}] + 1 \cdot [1]$$

vector $\mathcal{V}_{(2)} = 1 \cdot [1] + 2 \cdot [\frac{1}{2}] + 2 \cdot [0]$
hyper $\mathcal{H}_{(2)} = 2 \cdot [\frac{1}{2}] + 4 \cdot [0]$

Requirements ::

- precisely one gravitino becomes massive,
- two gauge fields become massive
- one fermion becomes massive.

$$\rightarrow G_{(1)} + \overline{S}_{(1)} + 2 \cdot C_{(1)}.$$

gravity

$$G_{(1)} = 1 \cdot [2] + 1 \cdot [\frac{3}{2}]$$
chiral

$$C_{(1)} = 1 \cdot [\frac{1}{2}] + 2 \cdot [0]$$
massive spin-3/2

$$\overline{S}_{(1)} = 1 \cdot [\frac{3}{2}] + 2 \cdot [1] + 1 \cdot [\frac{1}{2}]$$

Louis, Smyth, Triendl - 2009 & 2010

Stückelberg mechanism,

Stückelberg mechanism — gauge field becomes massive by eating an axion.

For type IIB compactifications on Calabi-Yau three-folds ::

 $h^{2,1} + 1$ massless vector fields $2(h^{1,1}+1)+1$ massless axions

- In general ::
 - Fluxes induce a scalar potential

$$\mathcal{N} = 2 \rightarrow \mathcal{N} = 1$$

 $h^{2,1} - 1$ massless vector fields $2h^{1,1} + 1$ massless axions

• Fluxes gauge (axionic) shift symmetries \longrightarrow vector fields become massive.

scalar fields become massive.

D'Auria, Ferrara, Trigiante - 2007 Cassani - 2008

This analysis can be generalized to multiple gaugings.

The following constraints — relating Calabi-Yau data to the N=1 spectrum — have been derived ::

$$\begin{aligned} h^{2,1} - h^{1,1} - \Delta &\leq N_V \leq h^{2,1} - 1 \,, \\ N_V - N_{\mathsf{ax}} \leq h^{2,1} - h^{1,1} - \Delta \,, \\ N_V - 2N_{\mathsf{ax}} \geq h^{2,1} - 2h^{1,1} - \Delta \,, \\ N_0 &\leq h^{2,1} + h^{1,1} \,, \end{aligned}$$

- N_V ... massless vector fields,
- N_{ax} ... massless complex R-R axions,
- N_0 ... massless complex NS-NS scalars,
- $\Delta = 0, 1$ gauged NS-NS axion.

type II on Calabi-Yau with **flux**

N=2 gauged supergravity

in *d=4*

only for non-geometric fluxes (and magnetic gaugings)

back-reacted string theory solution

N=1 Minkowski vacuum in d=4

spontaneous breaking

type II on Calabi-Yau with flux

N=2 gauged supergravity in d=4

only for non-geometric fluxes (and magnetic gaugings) back-reacted string theory solution

N=1 Minkowski vacuum in *d*=4

spontaneous breaking

- 2. partial susy breaking
- 3. gepner models
- 4. discussion

1. introduction

Setting :: consider asymmetric simple-current extensions of Gepner models.

> Gepner - 1987 & 1988 Schellekens, Yankielowicz - 1989 & 1990 Israël, Thiéry - 2013 Israël - 2015

Setting :: consider asymmetric simple-current extensions of Gepner models.

product of minimal models

$$9 = c = \sum_{i} \frac{3k_i}{k_i + 2}$$
(N=2 Minkowski vacua)

Gepner - 1987 & 1988 Schellekens, Yankielowicz - 1989 & 1990 Israël, Thiéry - 2013 Israël - 2015

Setting ::

certain primary fields (project to N=1)

product of minimal models

$$9 = c = \sum_{i} \frac{3k_i}{k_i + 2}$$

(N=2 Minkowski vacua)

Gepner - 1987 & 1988 Schellekens, Yankielowicz - 1989 & 1990 Israël, Thiéry - 2013 lsraël - 2015

product of minimal models

$$9 = c = \sum_{i} \frac{3k_i}{k_i + 2}$$

(N=2 Minkowski vacua)

Gepner - 1987 & 1988 Schellekens, Yankielowicz - 1989 & 1990 Israël, Thiéry - 2013 lsraël - 2015

 \rightarrow left-right asymmetric N=1 Minkowski vacua in d=4.

Gepner - 1987 & 1988 Schellekens, Yankielowicz - 1989 & 1990 Israël, Thiéry - 2013

Israël - 2015

Geometry of Gepner models ::

massless fields

Yukawa couplings

U(1) charges

Example (where $d = \operatorname{lcm}\{k_i + 2\}$) ::

 $(k_1, k_2, k_3, k_4, k_5)$

coordinates $x_i \in \mathbb{C}$ constraints, e.g. $x_1^{k_1+2} + \ldots + x_5^{k_5+2} = 0$ scaling weights of x_i

$$\mathbb{P}_{\frac{d}{k_{1}+2},\frac{d}{k_{2}+2},\frac{d}{k_{3}+2},\frac{d}{k_{4}+2},\frac{d}{k_{5}+2}}[d]$$

Gepner - 1987 Witten - 1993

Example (where $d = \operatorname{lcm}\{k_i + 2\}$) ::

$$(k_1, k_2, k_3, k_4, k_5)$$

 $\mathbb{P}_{\frac{d}{k_1+2},\frac{d}{k_2+2},\frac{d}{k_3+2},\frac{d}{k_4+2},\frac{d}{k_5+2}}[d]$

Example (where $d = \operatorname{Icm}\{k_i + 2\}$) ::

$$(k_1, k_2, k_3, k_4, k_5)$$

For simple-current extensions of Gepner models, this correspondence does not work.

Proposal :: a Calabi-Yau three-fold underlying the N=1 theory can be constructed as

$$(2l-1, k_2, k_3, k_4, k_5)$$

+ simple current

$$\mathbb{P}_{\frac{d}{k_1+2},\frac{d}{k_2+2},\frac{d}{k_3+2},\frac{d}{k_4+2},\frac{d}{k_5+2}}[d]$$

$$\mathbb{P}_{\frac{2d}{(2l+1)},\frac{ld}{(2l+1)},\frac{d}{k_2+2},\frac{d}{k_3+2},\frac{d}{k_4+2},\frac{d}{k_5+2}} \left| d \frac{d(l+1)}{(2l+1)} \right|$$

Blumenhagen, Schimmrigk, Wißkirchen - 1995 & 1996 Blumenhagen, Fuchs, EP - 2016

type II on Calabi-Yau with flux

N=2 gauged supergravity in d=4

only for non-geometric fluxes (and magnetic gaugings) back-reacted string theory solution

N=1 Minkowski vacuum in *d*=4

spontaneous breaking

type II on Calabi-Yau with flux

N=2 gauged supergravity in d=4

only for non-geometric fluxes (and magnetic gaugings) back-reacted string theory solution

N=1 Minkowski vacuum in *d*=4

spontaneous breaking

gepner models :: examples

Gepner model ACFT	(N_V, N_{ax}, N_0)	conjectured CY ₃	$(h^{2,1}, h^{1,1})$	susy-breaking constraints
(33333)	(80, 0, 74)	$\mathbb{P}_{1,1,1,1,2,2}[4\ 4]$	(83, 2)	$N_V - N_{\sf ax} \le 81 - \Delta$ $N_V - 2N_{\sf ax} \ge 79 - \Delta$
(55512_D)	(86, 2, 80)	$\mathbb{P}_{1,1,1,2,3,3}[7\ 4]$	(89,3)	$N_V - N_{\sf ax} \le 86 - \Delta$ $N_V - 2N_{\sf ax} \ge 83 - \Delta$
(55512_A)	(86, 2, 80)	$\mathbb{P}_{1,2,2,4,6,7}[14\ 8]$	(88, 4)	$N_V - N_{ax} \le 84 - \Delta$ $N_V - 2N_{ax} \ge 80 - \Delta$
(77711)	(74, 2, 70)	$\mathbb{P}_{1,1,2,3,3,4}[9\ 5]$	(75, 6)	$\frac{N_V - N_{ax} \le 69 - \Delta}{N_V - 2N_{ax} \ge 63 - \Delta}$
(6666_D)	(60, 4, 64)	$ \mathbb{P}_{1,1,2,3,4} \begin{bmatrix} 7 & 4 \\ 1 & 1 \end{bmatrix} $	(62, 6)	$N_V - N_{\sf ax} \le 56 - \Delta$ $N_V - 2N_{\sf ax} \ge 50 - \Delta$
(101044)	(59, 5, 68)	$\mathbb{P}_{1,2,2,3,4,9}[11\ 10]$	(66, 8)	$N_V - N_{\sf ax} \le 58 - \Delta$ $N_V - 2N_{\sf ax} \ge 50 - \Delta$

- 1. introduction
- 2. partial susy breaking
- 3. gepner models
- 4. discussion

Review :: Dualities, non-geometric backgrounds & non-geometric fluxes.

Question ::

What is the **back-reaction** of non-geometric fluxes on Calabi-Yau three-folds?

Proposal :: Asymmetric simple-current extensions of Gepner models.

→ Concrete examples for CY_3 and back-reacted background.

→ Consistency with partial susy breaking has been checked.

In order to employ a supergravity framework, flux densities have to be small.

In order to employ a supergravity framework, flux densities have to be small ::

$$\mathsf{Tr}\left[\mathcal{M}_{1}\cdot\mathcal{O}\cdot\mathcal{M}_{2}^{-1}\cdot\mathcal{O}^{T}\right]\overset{!}{\ll}1,\qquad \mathcal{O}=\left(\begin{array}{cc}\tilde{f}^{\Lambda}{}_{A} & \tilde{q}^{\Lambda}{}^{A} \\ f_{\Lambda}{}_{A} & q_{\Lambda}{}^{A}\end{array}\right),\qquad \qquad \mathcal{M}_{1}=\int_{\mathcal{X}}\begin{pmatrix}\alpha_{\Lambda}\wedge\star\alpha_{\Sigma} & \alpha_{\Lambda}\wedge\star\beta^{\Sigma} \\ \beta^{\Lambda}\wedge\star\alpha_{\Sigma} & \beta^{\Lambda}\wedge\star\beta^{\Sigma}\end{array}\right),\\ \mathcal{M}_{2}=\int_{\mathcal{X}}\begin{pmatrix}\langle\omega_{A},\star_{B}\omega_{B}\rangle & \langle\omega_{A},\star_{B}\sigma^{B}\rangle \\ \langle\sigma^{A},\star_{B}\omega_{B}\rangle & \langle\sigma^{A},\star_{B}\sigma^{B}\rangle\end{array}\right)$$

For the example of $\mathbb{T}^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ and e.g. $\tilde{q}^{11} \neq 0$, this condition becomes

$$\left|\tilde{q}^{11}\right|^2 = \left(\tilde{q}^{11}\right)^2 \left[\int_{\mathcal{X}} \alpha_1 \wedge \star \alpha_1\right] \left[\int_{\mathcal{X}} \sigma^1 \wedge \star \sigma^1\right]^{-1} = \left(\tilde{q}^{11} \frac{R_5 R_6}{R_1}\right)^2 \stackrel{!}{\ll} 1.$$

Different types of fluxes on the "same cycle" are forbidden due to Bianchi identities.