Non-geometric fluxes and their back-reaction

Erik Plauschinn
LMU Munich
Bayrischzell Workshop 2017
23.04.2017

This talk is based on work with R. Blumenhagen and M. Fuchs ::

- Partial SUSY breaking for asymmetric Gepner models and non-geometric flux vacua [1608.00595]
- The ACFT landscape in $D=4,6,8$ with extended supersymmetry [1611.04617]

1. introduction
2. partial susy breaking
3. gepner models
4. discussion
5. introduction
a) non-geometry
b) fluxes
c) back-reaction
6. partial susy breaking
7. gepner models
8. discussion
9. introduction
a) non-geometry
b) fluxes
c) back-reaction
10. partial susy breaking
11. gepner models
12. discussion
introduction :: dualities I

Dualities :: two different theories describe the same physics.
introduction :: dualities I

Dualities :: two different theories describe the same physics.

Theory 1 with data $\mathcal{O}_{1} \quad \stackrel{\text { duality transformation }}{\longleftrightarrow} \quad$| Theory 2 with data \mathcal{O}_{2} |
| :---: |

physical system
introduction :: dualities II

Regions in parameter space can have different descriptions.
duality transformation
description 1

introduction :: dualities III

String theory :: can use duality transformations as transition functions.

S-duality

- duality transformation $g_{s} \rightarrow 1 / g_{s}$
- monodromy around (p, q)-branes contains S-duality

T-duality

- duality transformation $R \rightarrow 1 / R$
- monodromy around defects may contain T-duality

introduction :: dualities III

String theory :: can use duality transformations as transition functions.

S-duality

- duality transformation $g_{s} \rightarrow 1 / g_{s}$
- monodromy around (p, q)-branes contains S-duality

T-duality

- duality transformation $R \rightarrow 1 / R$
- monodromy around defects may contain T-duality

\rightarrow non-geometric background

The prime example for a non-geometric background is the T-fold ::

T-duality

$$
\begin{aligned}
& d s^{2}=\frac{1}{1+(N z)^{2}}\left(d x^{2}+d y^{2}\right)+d z^{2} \\
& B_{x y}=\frac{N z}{1+(N z)^{2}} \\
& x \sim x+1, \quad y \sim y+1
\end{aligned}
$$

1. introduction
a) non-geometry
b) fluxes
c) back-reaction
2. partial susy breaking
3. gepner models
4. discussion

Question :: what measures the non-triviality of the fibration? (What is the parameter N?)

Consider the following family of T-dual backgrounds ::

name	metric	B-field	transformation	flux
$\mathbb{T}^{3} \mathrm{~W} / \mathrm{H}$-flux	trivial	non-trivial	gauge transformation	$H_{i j k}$
twisted torus	non-trivial	trivial	diffeomorphism	$F_{i j}^{k}$
T-fold	non-trivial	\ldots	T-duality	$Q_{i}^{j k}$
R-space	\ldots	\ldots	\ldots	$R^{i j k}$

Question :: what measures the non-triviality of the fibration? (What is the parameter N?)

Question :: what measures the non-triviality of the fibration? (What is the parameter N?)

Consider the following family of T-dual backgrounds ::

name	metric	B-field	transformation	flux
$\mathbb{T}^{3} \mathrm{~W} / \mathrm{H}$-flux	trivial	non-trivial	gauge transformation	$H_{i j k}$
twisted torus	non-trivial	trivial	diffeomorphism	$F_{i j}^{k}$
T-fold	non-trivial	\ldots	T-duality	$Q_{i}^{j k}$
R-space	\ldots	\ldots	\ldots	$R^{i j k}$

introduction :: fluxes I

Answer :: fluxes - geometric and non-geometric - measure the non-triviality of the fibration.

These fluxes are related via a T-duality chain ::

introduction :: fluxes II

The fluxes can be interpreted as operators and be combined into a twisted differential

$$
\begin{array}{lllll}
H \wedge & : & p \text {-form } & \rightarrow & (p+3) \text {-form }, \\
F \circ & : & p \text {-form } & \rightarrow & (p+1) \text {-form }, \\
Q \bullet: & p \text {-form } & \rightarrow & (p-1) \text {-form }, \\
R\llcorner: & p \text {-form } & \rightarrow & (p-3) \text {-form },
\end{array}
$$

$$
\mathcal{D}=d-H \wedge-F \circ-Q \bullet-R\llcorner.
$$

When requiring nil-potency $\mathcal{D}^{2}=0$, Bianchi identities for the fluxes can be derived.

For Calabi-Yau three-folds, such fluxes describe $S U(3) x S U(3)$ structure compactifications as

$$
\begin{aligned}
\mathcal{D} \alpha_{\Lambda} & =q_{\Lambda}{ }^{A} \omega_{A}+f_{\Lambda A} \sigma^{A}, \\
\mathcal{D} \beta^{\Lambda} & =\tilde{q}^{\Lambda A} \omega_{A}+\tilde{f}^{\Lambda}{ }_{A} \sigma^{A}, \\
\mathcal{D} \omega_{A} & =\tilde{f}^{\Lambda}{ }_{A} \alpha_{\Lambda}-f_{\Lambda A} \beta^{\Lambda}, \\
\mathcal{D} \sigma^{A} & =-\tilde{q}^{\Lambda A} \alpha_{\Lambda}+q_{\Lambda}{ }^{A} \beta^{\Lambda},
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\alpha_{\Lambda}, \beta^{\Lambda}\right\} \in H^{3}(\mathcal{X}), \\
& \left\{\omega_{\mathrm{A}}\right\} \in H^{1,1}(\mathcal{X}), \quad \omega_{0}=1, \\
& \left\{\sigma^{\mathrm{A}}\right\} \in H^{2,2}(\mathcal{X}), \quad \sigma^{0}=d \mathrm{vol}_{6} .
\end{aligned}
$$

The H - and R-fluxes are contained in $f_{\Lambda 0}=h_{\Lambda}, \tilde{f}^{\Lambda}{ }_{0}=\tilde{h}^{\Lambda}, q_{\Lambda}{ }^{0}=r_{\Lambda}, \quad \tilde{q}^{\Lambda 0}=\tilde{r}^{\Lambda}$.

1. introduction
a) non-geometry
b) fluxes
c) back-reaction
2. partial susy breaking
3. gepner models
4. discussion

A string-theory background has to solve the equations of motion (vanishing β-functionals).

introduction :: back-reaction I

A string-theory background has to solve the equations of motion (vanishing β-functionals).

A string-theory background has to solve the equations of motion (vanishing β-functionals).

A string-theory background has to solve the equations of motion (vanishing β-functionals).

A string-theory background has to solve the equations of motion (vanishing β-functionals).

introduction :: back-reaction II

Question :: What is the back-reaction of non-geometric fluxes?

Question :: What is the back-reaction of non-geometric fluxes?

$$
\begin{aligned}
& \text { Calabi-Yau three-fold } \\
& \quad N=2,1 \text { susy in } d=4
\end{aligned}
$$

> Calabi-Yau three-fold $\quad N=2,1$ susy in $d=4$

non-geometric flux

$$
\begin{aligned}
& \text { back-reacted manifold } \\
& \quad N=1,0 \text { susy in } d=4
\end{aligned}
$$

1. introduction
2. partial susy breaking
3. gepner models
4. discussion

N=1 Minkowski vacuum
 in $d=4$

Ferrara, Girardello, Porrati - 1995


```
N=2 gauged supergravity
    in d=4
```


back-reacted string theory

solution

N=1 Minkowski vacuum
 in $d=4$

The minimal process for spontaneous $\mathcal{N}=2 \rightarrow \mathcal{N}=1$ susy breaking (in the above context) is ::

$$
\mathcal{G}_{(2)}+\mathcal{V}_{(2)}+\mathcal{H}_{(2)} \quad \rightarrow \quad G_{(1)}+\bar{S}_{(1)}+2 \cdot C_{(1)} .
$$

$$
\begin{array}{ll}
\text { gravity } & \mathcal{G}_{(2)}=1 \cdot[2]+2 \cdot\left[\frac{3}{2}\right]+1 \cdot[1] \\
\text { vector } & \mathcal{V}_{(2)}=1 \cdot[1]+2 \cdot\left[\frac{1}{2}\right]+2 \cdot[0] \\
\text { hyper } & \mathcal{H}_{(2)}=2 \cdot\left[\frac{1}{2}\right]+4 \cdot[0]
\end{array}
$$

gravity	$G_{(1)}=1 \cdot[2]+1 \cdot\left[\frac{3}{2}\right]$
chiral	$C_{(1)}=1 \cdot\left[\frac{1}{2}\right]+2 \cdot[0]$
massive spin-3/2	$\bar{S}_{(1)}=1 \cdot\left[\frac{3}{2}\right]+2 \cdot[1]+1 \cdot\left[\left[\frac{1}{2}\right]\right.$

Louis, Smyth, Triendl - 2009 \& 2010

Requirements :: - precisely one gravitino becomes massive,

- two gauge fields become massive \qquad Stückelberg mechanism,

Stückelberg mechanism - gauge field becomes massive by eating an axion.

For type IIB compactifications on Calabi-Yau three-folds ::

$$
\begin{array}{llll}
h^{2,1}+1 & \text { massless vector fields } \\
2\left(h^{1,1}+1\right)+1 & \text { massless axions } & \xrightarrow{\mathcal{N}=2 \rightarrow \mathcal{N}=1} & \begin{array}{l}
h^{2,1}-1
\end{array} \text { massless vector fields } \\
2 h^{1,1}+1 & \text { massless axions }
\end{array}
$$

In general :: - Fluxes gauge (axionic) shift symmetries \longrightarrow vector fields become massive.

- Fluxes induce a scalar potential \longrightarrow scalar fields become massive.

This analysis can be generalized to multiple gaugings.

The following constraints - relating Calabi-Yau data to the $N=1$ spectrum - have been derived ::

$$
\begin{aligned}
& h^{2,1}-h^{1,1}-\Delta \leq N_{V} \leq h^{2,1}-1 \\
& N_{V}-N_{\mathrm{ax}} \leq h^{2,1}-h^{1,1}-\Delta \\
& N_{V}-2 N_{\mathrm{ax}} \geq h^{2,1}-2 h^{1,1}-\Delta \\
& N_{0} \leq h^{2,1}+h^{1,1}
\end{aligned}
$$

$N_{V} \ldots$ massless vector fields,
$N_{\mathrm{ax}} \ldots$ massless complex R-R axions,
$N_{0} \quad \ldots$ massless complex NS-NS scalars,
$\Delta=0,1$ gauged NS-NS axion.

overview II

type II on Calabi-Yau
with flux

$N=2$ gauged supergravity
in $d=4$
back-reacted string theory
solution

N=1 Minkowski vacuum

in $d=4$
only for non-geometric fluxes (and magnetic gaugings)

overview II

type II on Calabi-Yau with flux

$$
\begin{aligned}
& N=2 \text { gauged supergravity } \\
& \text { in } d=4
\end{aligned}
$$

back-reacted string theory
solution

N=1 Minkowski vacuum

in $d=4$
only for non-geometric fluxes (and magnetic gaugings)

1. introduction
2. partial susy breaking
3. gepner models
4. discussion

Setting :: consider asymmetric simple-current extensions of Gepner models.

Setting :: consider asymmetric simple-current extensions of Gepner models.

Setting :: consider asymmetric simple-current extensions of Gepner models.

Setting :: consider asymmetric simple-current extensions of Gepner models.

Setting :: consider asymmetric simple-current extensions of Gepner models.

\rightarrow left-right asymmetric $N=1$ Minkowski vacua in $d=4$.

Geometry of Gepner models ::

massless fields	\longrightarrow	coordinates $x_{i} \in \mathbb{C}$
Yukawa couplings	\longrightarrow	constraints, e.g. $x_{1}^{k_{1}+2}+\ldots+x_{5}^{k_{5}+2}=0$
$U(1)$ charges	\longrightarrow	scaling weights of x_{i}

Example (where $d=\operatorname{Icm}\left\{k_{i}+2\right\}$) ::

$$
\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)
$$

\qquad $\mathbb{P}_{\frac{d}{k_{1}+2}, \frac{d}{k_{2}+2}, \frac{d}{k_{3}+2}, \frac{d}{k_{4}+2}, \frac{d}{k_{5}+2}}[d]$

Example (where $d=\operatorname{Icm}\left\{k_{i}+2\right\}$) ::

$$
\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right) \quad \longrightarrow \quad \mathbb{P}_{\frac{d}{k_{1}+2}, \frac{d}{k_{2}+2}, \frac{d}{k_{3}+2}, \frac{d}{k_{4}+2}, \frac{d}{k_{5}+2}}[d]
$$

Example (where $d=\operatorname{Icm}\left\{k_{i}+2\right\}$) ::

$$
\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right) \quad \longrightarrow \quad \mathbb{P}_{\frac{d}{k_{1}+2}, \frac{d}{k_{2}+2}, \frac{d}{k_{3}+2}, \frac{d}{k_{4}+2}, \frac{d}{k_{5}+2}}[d]
$$

For simple-current extensions of Gepner models, this correspondence does not work.

Proposal :: a Calabi-Yau three-fold underlying the $N=1$ theory can be constructed as

type II on Calabi-Yau
with flux

$N=2$ gauged supergravity
in $d=4$

spontaneous breaking
back-reacted string theory
solution

N=1 Minkowski vacuum

in $d=4$
only for non-geometric fluxes (and magnetic gaugings)

Gepner model ACFT	$\left(N_{V}, N_{\text {ax }}, N_{0}\right)$	conjectured CY_{3}	$\left(h^{2,1}, h^{1,1}\right)$	susy-breaking constraints
(33333)	$(80,0,74)$	$\mathbb{P}_{1,1,1,1,2,2}[44]$	$(83,2)$	$\begin{aligned} N_{V}-N_{\mathrm{ax}} & \leq 81-\Delta \\ N_{V}-2 N_{\mathrm{ax}} & \geq 79-\Delta \end{aligned}$
($55512_{\text {D }}$)	$(86,2,80)$	$\mathbb{P}_{1,1,1,2,3,3}[74]$	$(89,3)$	$\begin{array}{r} N_{V}-N_{\mathrm{ax}} \leq 86-\Delta \\ N_{V}-2 N_{\mathrm{ax}} \geq 83-\Delta \end{array}$
(55512_{A})	$(86,2,80)$	$\mathbb{P}_{1,2,2,4,6,7}[148]$	$(88,4)$	$\begin{array}{r} N_{V}-N_{\mathrm{ax}} \leq 84-\Delta \\ N_{V}-2 N_{\mathrm{ax}} \geq 80-\Delta \end{array}$
(77711)	(74, 2, 70)	$\mathbb{P}_{1,1,2,3,3,4}[95]$	$(75,6)$	$\begin{array}{r} \frac{N_{V}-N_{\mathrm{ax}} \leq 69-\Delta}{N_{V}-2 N_{\mathrm{ax}} \geq 63-\Delta} \end{array}$
$\left(6666_{D}\right)$	$(60,4,64)$	$\begin{aligned} & \mathbb{P}_{1,1,2,3,4} \\ & \mathbb{P}_{1,1} \end{aligned}\left[\begin{array}{ll} 7 & 4 \\ 1 & 1 \end{array}\right]$	$(62,6)$	$\begin{array}{r} N_{V}-N_{\mathrm{ax}} \leq 56-\Delta \\ N_{V}-2 N_{\mathrm{ax}} \geq 50-\Delta \end{array}$
(101044)	$(59,5,68)$	$\mathbb{P}_{1,2,2,3,4,9}[1110]$	$(66,8)$	$\begin{array}{r} N_{V}-N_{\mathrm{ax}} \leq 58-\Delta \\ N_{V}-2 N_{\mathrm{ax}} \geq 50-\Delta \end{array}$

1. introduction
2. partial susy breaking
3. gepner models
4. discussion

Review :: Dualities, non-geometric backgrounds \& non-geometric fluxes.

Question :: What is the back-reaction of non-geometric fluxes on Calabi-Yau three-folds?

Proposal :: Asymmetric simple-current extensions of Gepner models.
\rightarrow Concrete examples for CY_{3} and back-reacted background.
\rightarrow Consistency with partial susy breaking has been checked.

In order to employ a supergravity framework, flux densities have to be small.

In order to employ a supergravity framework, flux densities have to be small ::

$$
\begin{array}{ll}
\operatorname{Tr}\left[\mathcal{M}_{1} \cdot \mathcal{O} \cdot \mathcal{M}_{2}^{-1} \cdot \mathcal{O}^{T}\right] \stackrel{!}{\ll} 1, & \mathcal{O}=\left(\begin{array}{cc}
\tilde{f}_{1}{ }_{A} & \tilde{q}^{\Lambda A} \\
f_{\Lambda A} & q_{\Lambda}^{A}
\end{array}\right), \quad \int_{\mathcal{X}}\left(\begin{array}{ll}
\alpha_{\Lambda} \wedge \star \alpha_{\Sigma} & \alpha_{\Lambda} \wedge \star \beta^{\Sigma} \\
\beta^{\Lambda} \wedge \star \alpha_{\Sigma} & \beta^{\Lambda} \wedge \star \beta^{\Sigma}
\end{array}\right), \\
\mathcal{M}_{2}=\int_{\mathcal{X}}\left(\begin{array}{ll}
\left\langle\omega_{A}, \star_{B} \omega_{B}\right\rangle & \left\langle\omega_{A}, \star_{B} \sigma^{B}\right\rangle \\
\left\langle\sigma^{A}, \star_{B} \omega_{B}\right\rangle & \left\langle\sigma^{A}, \star_{B} \sigma^{B}\right\rangle
\end{array}\right) .
\end{array}
$$

For the example of $\mathbb{T}^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and e.g. $\tilde{q}^{11} \neq 0$, this condition becomes

$$
\left|\tilde{q}^{11}\right|^{2}=\left(\tilde{q}^{11}\right)^{2}\left[\int_{\mathcal{X}} \alpha_{1} \wedge \star \alpha_{1}\right]\left[\int_{\mathcal{X}} \sigma^{1} \wedge \star \sigma^{1}\right]^{-1}=\left(\tilde{q}^{11} \frac{R_{5} R_{6}}{R_{1}}\right)^{2} \stackrel{!}{<} 1
$$

Different types of fluxes on the "same cycle" are forbidden due to Bianchi identities.

