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The classical Gysin sequence for circle bundles

Let V → X a Hemitian vector bundle, S(V ) its sphere bundle.

Gysin sequence in K-theory: six-term exact sequence

K0(X) α−−−−−→ K0(X) π∗
−−−−−→ K0(S(V ))

δ1,0

x yδ0,1 ,

K1(S(V )) ←−−−−−
π∗

K1(X) ←−−−−−
α

K1(X)

(1)

where α is the multiplication by the Euler class of the vector bundle.

Example

For a line bundle L, S(V ) is a circle bundle and

χ(L) = 1− [L].
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Going quantum

In view of the Serre–Swan theorem, noncommutative vector bundles are finitely
generated projective modules.
Hermitian vector bundles are finitely generated projective Hilbert modules.

What about sphere bundles?

Circle bundles –> complete answer

General sphere bundles –> work in progress
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Noncommutative line bundles

Definition

A self-Morita equivalence bimodule (SMEB) over B consist of a full right Hilbert
C∗-module E over B and an isomorphism

φ : B → K(E).

Example: B = C(X) and E = Γ(L) the module of sections of a Hermitian L → X.
Self Morita equivalences over B form a group: the Picard group of B, denoted Pic(B).
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Toeplitz and Cuntz–Pimsner algebras

Out of internal tensor products, construct

FE := B ⊕
⊕
n≥1

E⊗n

On FE define the shift operators by

Tη(ξ1 ⊗ · · · ξn) = η ⊗ ξ1 ⊗ · · · ξn, Tηa = ηa.

The Toeplitz algebra TE as the C∗-subalgebra of L(FE) generated by the shifts.

The Cuntz–Pimsner algebra of E is the quotient

0 // K(FE)
j // TE

π // OE // 0. (2)

Examples: Cuntz and Cuntz–Krieger algebras, graph algebras, crossed products by Z...
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Toeplitz and Cuntz–Pimsner algebras

For any f.g.p. module: realisation in terms of generators and relations.
Let {ηi}ni=1 be a finite frame for E, i.e.

ξ =
n∑
j=1

ηj〈ηj , ξ〉B , ∀ξ ∈ E.

Then OE is the universal C∗-algebra generated by B together with n operators
S1, . . . , Sn, satisfying

S∗i Sj = 〈ηi, ηj〉B ,
∑

j
SjS

∗
j = 1, and bSj =

∑
i
Si〈ηi, φ(b)ηj〉B ,

for b ∈ B, and j = 1, . . . , n.
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The gauge action

We have a circle action γ on OE called the gauge action.
This is defined on generators by

γzSi = zSi, ∀i = 1, . . . , n.

We denote by OγE the fixed point for this action.

Proposition

E is a self-Morita equivalence bimodule if and only if OγE ' B.
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Pimsner algebras from circle actions

Let A be a C∗-algebra with an action {σz}z∈S1 .
For each n ∈ Z, one can define the spectral subspaces

A(n) :=
{
ξ ∈ A | σz(ξ) = z−n ξ for all z ∈ S1

}
.

Then A(0) = Aγ , A∗(n) = A(−n) and that A(n)A(m) ⊆ A(n+m).

Theorem (A.–Kaad–Landi)

Suppose that the circle action {σz} satisfies

A∗(1)A(1) = A(0) = A(1)A
∗
(1).

Then the Pimsner algebra OA(1) is isomorphic to A.
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Connection with commutative principal circle bundes

Proposition (Gabriel–Grensing)

Let A be a unital, commutative C∗-algebra. Suppose that the first spectral subspace
E = A(1) generates A as a C∗-algebra, and that it is finitely generated projective over
B = A(0).
Then the following facts hold

1 B = C(X) for some compact space X;

2 E = Γ(L) for some line bundle L → X;

3 A = C(P ), where P → X is the principal circle bundle over X associated to the
line bundle L.
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Pimsner’s exact sequences

Pimsner 1997: The defining extension is semi-split. Hence it induces six term
exact sequences in KK-theory.
These simplify by using:

The class of the correspondence E ∈ KK(B,B);

The class of the Morita equivalence [FE ] ∈ KK(KB(FE), B);

The class of the inclusion j : K(FE)→ TE .

The class of the KK-equivalence [α]−1 ∈ KK(TE , B), which is the inverse to the
class of the inclusion α : B ↪→ TE .

The classes satisfy:

[FE ]⊗B (1− [E]) = [j]⊗TE [α]−1

.

Francesca Arici MPI MiS Leipzig
From quantum circle bundles to quantum sphere bundles 9 / 24



Motivation Pimsner algebras and circle bundles Towards noncommutative sphere bundles: subproduct systems

Pimsner’s exact sequences

Let [ext] be the class of the defining extension and
[∂] := [ext]⊗K(FE) [FE ] ∈ KK1(OE , B) the class of the product.
For C = C we get exact sequences in KK-theory. In K-theory:

K0(B)
1−[E]
−−−−−→ K0(B) j∗−−−−−→ K0(OE)

[∂]

x y[∂] ,

K1(OE) ←−−−−−
j∗

K1(B) ←−−−−−
1−[E]

K1(B)

(3)
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Weighted lens spaces

The C∗-algebra of the odd-dimensional quantum sphere C(S2n+1
q ) is the universal

C∗-algebra generated by n+ 1 elements {zi}i=0,...,n and relations:

zizj = q−1zjzi 0 ≤ i < j ≤ n ,

z∗i zj = qzjz
∗
i i 6= j ,

[z∗n, zn] = 0, [z∗i , zi] = (1− q2)
n∑

j=i+1

zjz
∗
j i = 0, . . . , n− 1 ,

and a sphere relation:
z0z
∗
0 + z1z

∗
1 + . . .+ znz

∗
n = 1 .

This C∗-algebra can be realised as a graph C∗-algebra.
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Weighted lens spaces

Let m = (m0, . . . ,mn) any weight vector.
Weighted circle action on C(S2n+1

q ), whose fixed point algebra is the algebra of
functions on the weighted projective spaces C(WPn(m)):

σm
ξ (zi) = ξmiz1 ξ ∈ T1. (4)

Brzeziński-Szymański (BS16): let m be a weight vector such that there exists
0 ≤ j ≤ n− 1 with mj coprime with mn. Denote by mn the weight vector
(m0, . . . ,mn−1). Then there exists an exact sequence of C∗-algebras

0 // K⊕mn // C(WPn(m)) // C(WPn−1
q (mn)) // 0, (5)
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Weighted lens spaces

Proposition (Brzeziński–Szymański 2016)

Let m be a weight vector with the property that for each j ≥ 1 there exists i < j such
that gcd(mi,mj) = 1. Let M =

∑n

i=1 mi. Then the K-theory groups of the
quantum weighted projective spaces are given by

K0(C(WPnq (m)) = Z1+M , K1(C(WPnq (m)) = 0.

Proposition (A. 2016)

Let m be a weight vector satisfying the previous assumptions. Then the C∗-algebra
C(WPn(m)) is KK-equivalent to C1+M .
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Weighted lens spaces

Let E denote the Hilbert C∗-module given by the first spectral subspace for the
weighted circle action on C(S2n+1

q ).
The Pimsner algebra over B = C(WPn) for the module E⊗d is the C∗-algebra of a
quantum lens space, i.e.

OE⊗d ' C(L2n+1
q (d ·Nm; m)) ' C(S2n+1)Zr .

Free action (principal circle bundle) for Nm =
∏n

i=0 mi.
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K-theory of weighted lens spaces

Idea: use the KK-equivalence and Pimsner’s exact sequences.
The exact sequence in K-theory becomes of the form

0 // K0
(
C(Lq(d)

)
// ZM+1 1−Ad // ZM+1 // K0

(
C(Lq(d)

)
// 0 ,

where A is a matrix of pairings.

Proposition
Let m be a weight vector as above. Then for any d ∈ N we have

K0
(
C(Lq(d))

)
' Coker(1−Ad), K1

(
C(Lq(d))

)
' Ker(1−Ad)
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Summing up

In the case of SMEBs, Pimsner’s construction can be thought of as a
noncommutative associated circle bundle construction.

The corresponding six-term exact can be interpreted as a Gysin sequence in
K-theory and K-homology for the ‘line bundle’ E over the ‘noncommutative base
space’ B.

Multiplication by the Euler class is replaced with the Kasparov product with
1− [E].

Applications include computations of K-theory groups (e.g. of weighted lens
spaces).
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Product systems

Arveson (1989) considered collections {Ht}t∈R of Hilbert spaces such that

Ht ⊗Hs ' Ht+s.

Definition (Fowler 2002)

A product system over a semigroup P is a collection {Xp}p∈P of C∗-correspondences
over B with multiplication

Xp ⊗B Xq = Xp+q , ∀p, q ∈ P.

Given a single C∗-correspondence (E, φ) over B, the collection

{E⊗φn}n∈N

is a product system over the semigroup N.
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Universal C∗-algebras

One can construct two universal C∗-algebras TX and OX , called the Nica–Toeplitz
and Cuntz–Nica–Pimsner algebra of the product system X.
TX and OX generalise TE and OE and are universal for Toeplitz and Cuntz–Pimsner
representations.

Theorem (Fletcher, 2016)

Cuntz–Nica–Pimsner algebras of compactly aligned product systems over Nk are
k-fold iterated Cuntz–Pimsner algebras.

Torus bundles can be modelled using Cuntz–Nica–Pimsner algebras for product
systems over Nk.
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Subproduct sytems over N

Definition (Shalit–Solel 2009)

A standard subproduct system over N is a collection {Xn}n∈N of C∗-correspondences
over B such that

1 X0 = B;

2 Xn+m is a complemented submodule of Xn ⊗B Xm for all n,m ∈ N.

Given a single C∗-correspondence (E, φ) over B, the collection

{E⊗φn}n∈N

is a product system over the semigroup N and trivially a standard subproduct system.

Francesca Arici MPI MiS Leipzig
From quantum circle bundles to quantum sphere bundles 19 / 24



Motivation Pimsner algebras and circle bundles Towards noncommutative sphere bundles: subproduct systems

Fock modules

Let {Xn}n∈N be a standard subproduct system and take E = X(1).
Then X(n) is a complemented submodule of E⊗n, with orthogonal projection

pn : E⊗n → X(n).

The module
FX :=

⊕
n≥0

Xn

is a submodule of the full Fock module

FE :=
⊕
n≥0

E⊗n

Example

Let B = C, E = Cd and consider the symmetric tensor product Xn = (Cd)�n .
Then FE is the full Fock space and FX is the symmetric Fock space.
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The Toeplitz algebra of a subproduct system

Let ξ ∈ Xn. The X-shift operator associated to ξ is given by

Tn(ξ)(η) = pn+m(ξ ⊗ η),

for all η ∈ Xm.

Definition (Viselter 2011)

The C∗-subalgebra of L(FX) generated by the X-shifts is the Toeplitz algebra of the
subproduct system X.

It agrees with the usual notion of Toeplitz algebra for a single correspondence.

Canonical U(1)-gauge action.
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The Cuntz–Pimsner algebra of a subproduct system

Inside TX one can find a gauge invariant ideal IX , which agress with K(FE) for the
case of a single correspondence.

Definition
The Cuntz–Pimsner algebra of the subproduct system X is the quotient

0 // IX // TX
π // OX // 0. (6)

Example
For the symmetric subproduct system we get back the odd spheres:

0 // K(H2(S2d−1)) // Td
π // C(S2d−1) // 0.
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Quantum Spheres and and Balls

Let again E = Cd with orthonormal basis ei.
Consider the q-deformed symmetric subproduct system, i.e.

X1 = E, X2 = E ⊗ E/span{ei ⊗ ej − qej ⊗ ei}, · · ·

Then TX is the C∗-algebra C(B2n
q2 ), a.k.a. the quantum ball of Hong & Szymański.

Extension involving the Vaksman–Soibelman spheres:

0 // K // C(B2n
q2 ) π // C(S2d−1

q ) // 0.
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Outlook

Cuntz–Pimsner algebras are a model for circle bundles.

Cuntz–Nica–Pimsner algebras of product systems can model torus bundles.

There is evidence that Cuntz–Pimsner algebas of subproduct systems are suitable
to encode spherical symmetries.
Open questions:

How to go from spheres to sphere bundles (work in progress).
KK-equivalences and exact sequences
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