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The classical Gysin sequence for circle bundles

Let V — X a Hemitian vector bundle, S(V) its sphere bundle.

Gysin sequence in K-theory: six-term exact sequence

KO(X) —% % KO%X) — & KO9(S(V))

] oo

KYS(V)) ¢— KYX) +— KNX)

T «

where « is the multiplication by the Euler class of the vector bundle.

For a line bundle L, S(V') is a circle bundle and

x(L) =1-[L].
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Going quantum

In view of the Serre-Swan theorem, noncommutative vector bundles are finitely

generated projective modules.
Hermitian vector bundles are finitely generated projective Hilbert modules.

What about sphere bundles?

m Circle bundles —> complete answer

m General sphere bundles —> work in progress
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F Pimsner algebras, circle bundles, and Gysin sequences




Noncommutative line bundles

Definition
A self-Morita equivalence bimodule (SMEB) over B consist of a full right Hilbert

C*-module E over B and an isomorphism

¢: B — K(E).

Example: B = C(X) and E = I'(L) the module of sections of a Hermitian £ — X.
Self Morita equivalences over B form a group: the Picard group of B, denoted Pic(B).
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Toeplitz and Cuntz—Pimsner algebras

Out of internal tensor products, construct

Fr ::B@@E‘X’"

n>1
On Fg define the shift operators by
Th(1® &) =1R&® &, Tha=na.
The Toeplitz algebra Ty as the C*-subalgebra of £L(Fg) generated by the shifts.
The Cuntz—Pimsner algebra of FE is the quotient
J ™

0 — K(Fg) TE Og 0. (2)

Examples: Cuntz and Cuntz—Krieger algebras, graph algebras, crossed products by Z...
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Toeplitz and Cuntz—Pimsner algebras

For any f.g.p. module: realisation in terms of generators and relations.

Let {n;}}" ; be a finite frame for E, i.e.

€= nin;&)p,  VEEE.
j=1

Then OgF is the universal C*-algebra generated by B together with n operators
S1,...,Sn, satisfying

SrS; = (mi,mi)B Z SjS; =1, and bS; :Z‘Si<niv¢)(b)77j>3

forbe B,and j=1,...,n
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The gauge action

We have a circle action v on O called the gauge action.

This is defined on generators by
V8 =28;, Vi=1,...,n.

We denote by OE the fixed point for this action.

Proposition

E is a self~Morita equivalence bimodule if and only if O% = /8.
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Pimsner algebras from circle actions

Let A be a C*-algebra with an action {0.},cgq1.

For each n € Z, one can define the spectral subspaces
Ay ={6€A0.(§)=2""¢ forall zeS'}.

Then A(O) = A", Azn) = A(—'n) and that A(n)A(m) - A(n+m)'

Theorem (A.—Kaad-Landi)

Suppose that the circle action {o.} satisfies

A*

WA = A0 = A4

1)

Then the Pimsner algebra O 4 @ is isomorphic to A.
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Connection with commutative principal circle bundes

Proposition (Gabriel-Grensing)
Let A be a unital, commutative C*-algebra. Suppose that the first spectral subspace
E = A(1) generates A as a C*-algebra, and that it is finitely generated projective over
Then the following facts hold

B = C(X) for some compact space X;

B E =T(L) for some line bundle L — X;

B A= C(P), where P — X is the principal circle bundle over X associated to the
line bundle L.

MPI MiS Leipzig



Pimsner's exact sequences

Pimsner 1997: The defining extension is semi-split. Hence it induces six term
exact sequences in KK-theory.

These simplify by using:
m The class of the correspondence E € KK (B, B);
m The class of the Morita equivalence [Fg] € KK(Kp(FE), B);
m The class of the inclusion j : K(Fg) = Tg.

m The class of the KK-equivalence [a]~! € KK (Tg, B), which is the inverse to the

class of the inclusion o : B < Tg.

m The classes satisfy:

[Fel®5 (1= [E]) = [1] @75 [a] 7}
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Pimsner's exact sequences

Let [ext] be the class of the defining extension and
[0] := [ext] ®x(Fy) [FE] € KK1(Op, B) the class of the product.
For C = C we get exact sequences in KK-theory. In K-theory:

Ko(B) LN Ko(B) =, Ko(Og)

[8]T l{a : 3)

Kl(OE) — Kl(B) ﬁ K1 B)
Jx

MPI MiS Leipzig



Weighted lens spaces

2n+1
Sq

The C*-algebra of the odd-dimensional quantum sphere C/( ) is the universal

C*-algebra generated by n + 1 elements {z;};—0,....» and relations:

zizj =q ‘2z 0<i<j<mn,
sia =gz it
n
(20, 2n] = 0, [zf,zi]:(l—q2) E ij; i=0,...,n—1,
j=i+1

and a sphere relation:

2020 + 2127 + ...+ znzy =1.

This C*-algebra can be realised as a graph C*-algebra.
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Weighted lens spaces

Let m = (mo, ..., mn) any weight vector.
Weighted circle action on C(Sg"Jrl), whose fixed point algebra is the algebra of
functions on the weighted projective spaces C'(WP"(m)):

Ug“(z,-) =EMizn ceTh (4)

Brzezinski-Szymanski (BS16): let m be a weight vector such that there exists
0 <j <n— 1 with m; coprime with m,. Denote by m,, the weight vector

(mo,...,mp—1). Then there exists an exact sequence of C*-algebras

0 &M C(WP"(m)) — C(WP2~Y(m,)) —=0,  (5)
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Weighted lens spaces

Proposition (Brzezinski-Szymaniski 2016)

Let m be a weight vector with the property that for each j > 1 there exists i < j such
that ged(m;,mj;) = 1. Let M = E?:l m;. Then the K-theory groups of the

quantum weighted projective spaces are given by

Ko(C(WPZ(m)) = 2™ Ky (C(WP?(m)) = 0.

Proposition (A. 2016)

Let m be a weight vector satisfying the previous assumptions. Then the C*-algebra
C(WP"(m)) is KK-equivalent to C1+M .
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Weighted lens spaces

Let E denote the Hilbert C*-module given by the first spectral subspace for the

weighted circle action on C(Sg”+1).
The Pimsner algebra over B = C(WP") for the module E®? is the C*-algebra of a

quantum lens space, i.e.
Opog ™ C(L?I"'*'l(d - Npm;m)) ~ C(827+1)2r,

Free action (principal circle bundle) for Ny, = H?:o m;.
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K-theory of weighted lens spaces

Idea: use the KK-equivalence and Pimsner's exact sequences.

The exact sequence in K-theory becomes of the form

0 —— Ko (C(Lq(d)) —7ZM+1 1-A4 ZM+1 KO(C(Lq(d)> — >0,

where A is a matrix of pairings.

Proposition

Let m be a weight vector as above. Then for any d € N we have

Ko(C(Lq(d))) ~ Coker(1 — A%), K1 (C(Lq(d))) ~ Ker(1 — A%)
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Summing up

m In the case of SMEBs, Pimsner's construction can be thought of as a

noncommutative associated circle bundle construction.

m The corresponding six-term exact can be interpreted as a Gysin sequence in
K-theory and K-homology for the ‘line bundle’ E over the ‘noncommutative base
space’ B.

m Multiplication by the Euler class is replaced with the Kasparov product with
1—[E].

m Applications include computations of K-theory groups (e.g. of weighted lens

spaces).
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Towards noncommutative sphere bundles: subproduct systems
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Product systems

Arveson (1989) considered collections {H¢}+cr of Hilbert spaces such that

Hi ® Hs ~ Hyqs.

Definition (Fowler 2002)

A product system over a semigroup P is a collection {X},cp of C*-correspondences

over B with multiplication
Xp ®p Xq = Xpt+q, VP,qEP.
Given a single C*-correspondence (E, ¢) over B, the collection
{E®*"}en

is a product system over the semigroup N.
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Universal C* -algebras

One can construct two universal C*-algebras Tx and Ox, called the Nica—Toeplitz
and Cuntz—Nica—Pimsner algebra of the product system X.
Tx and Ox generalise Tg and O and are universal for Toeplitz and Cuntz—Pimsner

representations.

Theorem (Fletcher, 2016)

Cuntz—Nica—Pimsner algebras of compactly aligned product systems over N* are

k-fold iterated Cuntz—Pimsner algebras.

Torus bundles can be modelled using Cuntz—Nica—Pimsner algebras for product

systems over N¥ .
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Subproduct sytems over N

Definition (Shalit—Solel 2009)

A standard subproduct system over N is a collection { X, },en of C*-correspondences

over B such that
Xo = B;

H Xp4+m is a complemented submodule of X,, ® g Xy, for all n,m € N.

Given a single C*-correspondence (E, ¢) over B, the collection
{E®¢n}n€N

is a product system over the semigroup N and trivially a standard subproduct system.
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Fock modules

Let {Xn}nen be a standard subproduct system and take E = X (1).

Then X(n) is a complemented submodule of E®™, with orthogonal projection

pn s E®™ = X (n).

Fx = @Xn

The module

is a submodule of the full Fock module

FE = ®E®n

n>0

Example

Let B =C, E = C% and consider the symmetric tensor product X,, = ((Cd)@".
Then Fg is the full Fock space and Fx is the symmetric Fock space.
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The Toeplitz algebra of a subproduct system

Let £ € X,,. The X-shift operator associated to & is given by

Tn (5)(77) = anrm(f ® "7):

for all n € Xy,

Definition (Viselter 2011)

The C*-subalgebra of L(Fx ) generated by the X-shifts is the Toeplitz algebra of the
subproduct system X.

It agrees with the usual notion of Toeplitz algebra for a single correspondence.

Canonical U(1)-gauge action.
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The Cuntz—Pimsner algebra of a subproduct system

Inside Tx one can find a gauge invariant ideal Zx, which agress with K(Fg) for the
case of a single correspondence.
The Cuntz—Pimsner algebra of the subproduct system X is the quotient

e

0 ITx Tx Ox 0. (6)

For the symmetric subproduct system we get back the odd spheres:

00— K(H?(S%171)) ——= T; —> C(8%4-1) ——0.
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Quantum Spheres and and Balls

Let again E = C? with orthonormal basis e;.

Consider the g-deformed symmetric subproduct system, i.e.
X1=E, Xo=E®E/span{e; ®e; —qe; Qe;},
Then Tx is the C*-algebra C(B;;L), a.k.a. the quantum ball of Hong & Szymanski.

Extension involving the Vaksman—Soibelman spheres:

00— K ——> C(B;;}) — s C(Sgdil) — 0.
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m Cuntz—Pimsner algebras are a model for circle bundles.

m Cuntz—Nica—Pimsner algebras of product systems can model torus bundles.

m There is evidence that Cuntz—Pimsner algebas of subproduct systems are suitable
to encode spherical symmetries.

m Open questions:

m How to go from spheres to sphere bundles (work in progress).
m KK-equivalences and exact sequences
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