L-infinity (non)formality and a generalization of T. Voronov's higher brackets

Martin Bordemann

Laboratoire de Mathématiques I.A., Université de Haute Alsace, Mulhouse

Bayrischzell, April 2018

- M.B., A.Makhlouf, Int.J.Theor Phys (2008) 47: 311-332
- O.Elchinger, thèse de doctorat UHA Mulhouse, 2012
- M.B., O.Elchinger, S.Gutt, A.Makhlouf: L-infinity-Formality check for the Hochschild Complex of certain Universal Enveloping Algebras, preprint 2018
- M.B.: An unabelian version of the Voronov higher bracket construction, Georgian Math.J. 22 (2015), 189-204.

Plan of the talk

Motivation

Differential graded Lie algebras L_{∞} -algebras

Some Graded Structures

Graded K-modules Categorical Remarks Graded (co)algebras Vive la convolution!! Cofree Coalgebras L_{∞} -structures: shifted version

Formality check w.r.t. universal enveloping algebras

Universal Enveloping Algebra Results Cartan-3-regular quadratic Methods of proof

Coderivational actions of DG Lie algebras

Voronov I: Unabelian constructions

DG Lie algebra inclusions The CCCC coalgebra $\ensuremath{\mathcal{M}}$

Voronov II: Extension by the Lie algebra

(日) (同) (三) (三)

э

Some Graded Structures Formality check w.r.t. universal enveloping algebras Coderivational actions of DG Lie algebras Voronov I: Unabelian constructions Voronov II: Extension by the Lie algebra

MOTIVATION

• differential graded Lie algebra $(\mathfrak{g}, \delta, [,] = c_2)$:

- graded antisymmetry: $[y, x] = -(-1)^{|x||y|}[x, y]$,
- $\begin{array}{l} \bullet \quad \delta^2 = 0 \text{ and } \delta \text{ graded derivation of degree } 1 \\ [\delta, c_2]_{SNR}(x,y) := \delta[x,y] [\delta(x),y] (-1)^{|x|}[x,\delta(y)] = 0, \end{array}$
- graded Jacobi identity

$$\begin{split} [[x,y],z] + (-1)^{|x|(|y|+|z|)}[[y,z],x] + (-1)^{|z|(|x|+|y|)}[[z,x],y] \\ &=: [c_2,c_2]_{SNR}(x,y,z) \stackrel{!}{=} 0. \end{split}$$

- Example: Hochschild cohomology complex (CH(A, A), b, [,]_G) of an associative algebra A equipped with the Gerstenhaber bracket
- Example: Polyvectorfields Γ[∞](M, ΛTM) with the Schouten bracket and Poisson structure [P, P]_S = 0, δ = [P,]_S.

Some Graded Structures Formality check w.r.t. universal enveloping algebras Coderivational actions of DG Lie algebras Voronov I: Unabelian constructions Voronov II: Extension by the Lie algebra

(differential graded Lie algebra)

- Morphisms: linear maps φ₁ : g → h of degree 0 preserving graded Lie brackets and differentials
- Maurer-Cartan elements: $\mu' \in \lambda \mathfrak{g}[[\lambda]]$ of degree 1 with $\delta(\mu') + \frac{1}{2}[\mu', \mu'] = 0.$
- quasi-isomorphisms induce isomorphisms on the cohomology Lie algebras, BUT do not have quasi-inverses
- weak equivalence: zig-zag of quasi-isomorpisms g → g₁ ← g₂ → · · · → g_N → g'
- ► L_∞ quasi-isomorphism: embed dgLas in bigger category where weak equivalences are quis with quasi-inverse

イロト イポト イヨト イヨト 二日

Some Graded Structures Formality check w.r.t. universal enveloping algebras Coderivational actions of DG Lie algebras Voronov I: Unabelian constructions Voronov II: Extension by the Lie algebra

- ► L_{∞} -algebra ($\mathfrak{g}, \delta =: c_1, [,] =: c_2, c_3, c_4, ...$) (Lada, Stasheff 1993)
 - graded antisymmetry, $\delta^2 = 0$, and δ graded derivation, BUT
 - graded Jacobi identity up to a coboundary

 $[c_2, c_2]_{SNR} + 2[\delta, c_3]_{SNR} = 0$

- c_n is graded antisymmetric *n*-linear map of degree 2 n
- higher order identities for all integers $n \ge 1$

$$\sum_{r=1}^{n-1} [c_r, c_{n-r}]_{SNR} = 0$$

• Morphisms: sequence of graded antisymmetric *n*-linear maps $(\phi_n)_{n \in \mathbb{N} \setminus \{0\}}$ of degree 1 - n satisfying a series of identities 'Lie algebra morphism up to a coboundary'

Some Graded Structures Formality check w.r.t. universal enveloping algebras Coderivational actions of DG Lie algebras Voronov I: Unabelian constructions Voronov II: Extension by the Lie algebra

• $(L_{\infty}$ -algebra)

- Maurer-Cartan elements: $\mu' \in \lambda \mathfrak{g}^1[[\lambda]]$ of degree 1 with $\delta(\mu') + \sum_{r=2}^{\infty} \frac{1}{r!} c_r(\mu', \dots, \mu') = 0.$
- Construction of L_{∞} .structures difficult, but
 - Homotopy transfer $(A, d_A) \stackrel{\leftarrow}{\rightarrow} (B, d_B)$ with

$$ip = id_A$$
, $pi = id_B - [h, d_B]$

T.Voronov constructions (to later)

- Significance of L_{∞} -structures
 - ► M. Kontsevich's ingenious trick (1997): phrase the *deformation quantization problem* of Poisson manifolds as L_∞-morphism U between dg-Lie algebras

 $\Gamma^{\infty}(M, \Lambda^{\bullet}TM) - - > \operatorname{CH}^{\bullet}_{\operatorname{diff,nc}}(\mathbb{C}^{\infty}(M, \mathbb{R}), \mathbb{C}^{\infty}(M, \mathbb{R}))$

in general NO morphism of differential graded Lie algebras !! *Maurer-Cartan elements*: Poisson structures (left) and deformations of associative multiplications (right).

- ► Formulation of algebraic identities of polynomial degree higher than quadratic in terms of Maurer-Cartan elements of L_∞-structures:
 - Bialgebras (M.Markl)
 - Complex of simultaneous formal deformation of (associative) algebras and their morphisms (Y.Frégier, M.Zambon, 2013). Maurer-Cartan elements: deformations of two associative structures and a deformation of a morphism between them.

SOME GRADED STRUCTURES

э

► Graded *K*-modules

- *K* associative commutative unital ring, $K \supset \mathbb{Q}$,
- For graded K-module V = ⊕_{i∈Z} Vⁱ, each Vⁱ is a K-module. Notation for homogeneous elements: x ∈ Vⁱ then i =: |x|.
- ▶ tensor product: $(V \otimes_{K} W)^{i} = \bigoplus_{j \in \mathbb{Z}} V^{j} \otimes_{K} W^{i-j}$
- graded transposition: $\tau_{V,W}(x \otimes_{\mathcal{K}} y) = (-1)^{|x||y|} y \otimes_{\mathcal{K}} x$
- ► graded homs: $\operatorname{Hom}_{K}^{i}(V, W) := \{K-\text{linear maps of degree } i\},$ $\operatorname{Homgr}_{K}(V, W) := \oplus_{i \in \mathbb{Z}} \operatorname{Hom}_{K}^{i}(V, W)$
- Sign rule: for any homogeneous φ ∈ Homgr_K(V, W), ψ ∈ Homgr_K(V', W'), x ∈ V, and x' ∈ V'

 $(\phi \otimes_{\kappa} \psi)(x \otimes x') = (-1)^{|\psi||x|} (\phi(x)) \otimes_{\kappa} (\psi(x')).$

イロト イポト イヨト イヨト 二日

Suspension

- ► V[i]^j := V^{i+j}: new graded K-module V[i], same underlying K-module
- ▶ $s_V^i = s^i : V[i] \rightarrow V$ suspension is identity map of underlying *K*-module, BUT: of degree *i*
- $s^1 =: s : V[1] \rightarrow V$
- ▶ shifting n-multilinear maps $\phi : V \otimes_K \cdots \otimes_K V \to W$ by $\phi[i] : V[i] \otimes_K \cdots \otimes_K V[i] \to W[i]$ defined by

$$\phi[i] := \mathsf{s}_W^{-i} \circ \phi \circ (\mathsf{s}_V^i \otimes_{\mathcal{K}} \cdots \otimes_{\mathcal{K}} \mathsf{s}_V^i)$$

- ► $|\phi[i]| = |\phi| + (n-1)i$.
- Sign rule generates sign differences between ϕ and $\phi[i]$.
- Graded symmetry changes to graded antisymmetry if i is odd.

Sign rule and suspension help to hide signs.

Categorical Remarks

- C := K-modgr: category of all graded K-modules, morphisms: Hom_C(V, W) = Hom⁰_K(V, W), DEGREE 0!! What about K-linear maps of other degrees??
- (C, ⊗_K, K, τ) symmetric monoidal category, and closed
 i.e. Homgr_K(W,?) adjoint functor to ? ⊗_K W

 $\operatorname{Hom}_{K}^{0}(V \otimes_{K} W, X) \cong \operatorname{Hom}_{K}^{0}(V, \operatorname{Homgr}_{K}(W, X))$

- Problem: Homgr_K(W, X) is **object** of C, how can it **act**? There is abstract evaluation Homgr_K(W, X) ⊗_K W → X, as in any *closed monoidal category*, but suspension?
- ▶ Family $(K[i])_{i \in \mathbb{Z}}$ with $K[i] \otimes_{\kappa} K(j] \cong K[i+j]$ in \mathbb{C} , define

 $V^{i} := \operatorname{Hom}_{\mathcal{C}}(K[-i], V) \text{ (sets)}, \quad V[j] := K[j] \otimes_{K} V \text{ (objects)},$

 $s^i \in \operatorname{Hom}_{\mathbb{C}}(K[-i], \operatorname{Homgr}_{K}(K[i] \otimes_{K} V, V))$ (natural tr.),

and all ends well (*enriched categories*).

- ► Graded (co)algebras (e.g. D.Quillen, 1969)
 - Graded coassociative counital connected (CCC) coalgebra (C, Δ_C, ε_C, 1_C): all K-linear maps of degree 0
 - ▶ connected: 1_C grouplike and $\epsilon_C(1_C) = 1$; the ascending subcoalgebra filtration $(C_{(r)})_{r \in \mathbb{N}}$ of C with $C_{(0)} = K 1_C$ and for all $r \in \mathbb{N}$

 $C_{(r+1)} = \{ x \in C \mid \Delta_C(x) - x \otimes_{\mathcal{K}} 1_C - 1_C \otimes_{\mathcal{K}} x \in C_{(r)} \otimes_{\mathcal{K}} C_{(r)} \}$

is exhaustive; $\Rightarrow (C/(K1_C), \Delta')$ is conilpotent.

- graded cocommutative (CCCC) coalgebra: $\tau \circ \Delta_C = \Delta_C$
- ► Example: graded symmetric coalgebra: $S(V) = \bigoplus_{r \in \mathbb{N}} S^r(V)$
 - graded commutative and cocommutative bialgebra:
 - : $S(V) \otimes_{\kappa} S(V) \rightarrow S(V)$ graded commutative multiplication, $\Delta : S(V) \rightarrow S(V) \otimes_{\kappa} S(V)$ algebra morphism,

$$\Delta(x_1 \bullet \cdots \bullet x_n) := \sum_{I \cup J = \{1, \dots, n\}} \epsilon_{I,J}(x) x_I \otimes_K x_J$$

determined by $\Delta(x) = x \otimes_{\kappa} 1 + 1 \otimes_{\kappa} x$ for all $x \in V$

- (graded (co)algebras)
 - Coalgebra morphisms: $\phi : C \to C'$ K-linear of degree 0 s.t.

 $\Delta_{\mathcal{C}'} \circ \phi = (\phi \otimes_{\mathcal{K}} \phi) \circ \Delta_{\mathcal{C}}, \quad \epsilon_{\mathcal{C}'} \circ \phi = \epsilon_{\mathcal{C}}, \quad \phi(1_{\mathcal{C}}) = 1_{\mathcal{C}'}.$

graded coderivations along a morphism φ
 : C → C' K-linear of any degree, s.t.

 $\Delta_{C'} \circ d = (d \otimes_{\mathcal{K}} \phi + \phi \otimes_{\mathcal{K}} d) \circ \Delta_{C} \quad \Rightarrow \quad \epsilon_{C'} \circ d = 0$

- d is called flat iff $d(1_C) = 0$.
- If C = C', φ = id_C: (Coder(C), [,]) is a graded Lie algebra.

イロト イポト イヨト イヨト 二日

- (graded (co)algebras)
 - Graded bialgebra (B, µ_B, 1_B, Δ_B, ϵ_B): (B, µ_B, 1_B) graded associative unital algebra (B, Δ_B, ϵ_B) graded coassociative counital coalgebra such that

 $\Delta_B \circ \mu_B = (\mu_B \otimes_{\mathsf{K}} \mu_B) \circ (\mathrm{id}_B \otimes_{\mathsf{K}} \tau_{B,B} \otimes_{\mathsf{K}} \mathrm{id}_B) \circ (\Delta_B \otimes_{\mathsf{K}} \Delta_B)$

and *ϵ*_B morphism of graded unital algebras, 1_B grouplike. *primitive elements*:

 $\mathfrak{b} := \{ b \in B \mid \Delta_B(x) = x \otimes_K \mathbb{1}_B + \mathbb{1}_B \otimes_K b \}.$

 \Rightarrow : b is a graded *sub-Lie algebra* of (B, μ_B^-) .

- $\Rightarrow:$ left or right multiplications with primitive elements are coderivations
- Example: universal envelopping algebra U(g) of a graded Lie algebra (g, [,]) over K

Vive la convolution!!

 (C, Δ_C, ε_C) graded coassociative counital coalgebra, (A, μ_A, 1_A) graded associative unital algebra φ, ψ ∈ Homgr_K(C, A) then define the convolution

 $\phi * \psi := \mu_{\mathsf{A}} \circ (\phi \otimes_{\mathsf{K}} \psi) \circ \Delta_{\mathsf{C}}$

hence

 $(\operatorname{Homgr}_{\kappa}(C, A), *, 1_{A} \epsilon_{C})$ graded associative unital algebra

- In case (C, ∆_C, ε_C, 1_C) connected, then Homgr_K(C, A) carries a complete descending filtration:
- If $\phi \in \operatorname{Homgr}_{\mathcal{K}}(\mathcal{C}, \mathcal{A})$ with $\phi(1_{\mathcal{C}}) = 0$, and $|\phi| = 0$ then

$$a_0 1_A \epsilon_C + \sum_{r=1}^{\infty} a_r \phi^{*r}$$
 converges for all $a_0, a_1, a_2, \ldots \in K$.

▶ In case $C = S(K) = K[\lambda]$ then $(\operatorname{Homgr}_K(C, K), *) \cong K[[\lambda]]$.

(Convolution)

- ► Theorem: let (C, Δ_C, ε_C, 1_C) a graded CCCC coalgebra. Let (B, μ_B, 1_B, Δ_B, ε_B) graded bialgebra, b its Lie algebra of primitive elements. Then
 - ▶ (J.Helmstetter,1989) If $\varphi : C \to \mathfrak{b}$ is *K*-linear, of degree 0, and $\varphi(1_C) = 0$ then

$$\overline{\varphi} := e^{*\varphi} := 1_B \epsilon_C + \sum_{r=1}^{\infty} \frac{1}{r!} \varphi^{*r}$$

is a morphism of graded augmented counital coalgebras $C \rightarrow B$ with $\overline{\varphi}(1_C) = 1_B$, and any such morphism is of this form.

▶ If $d \in \operatorname{Homgr}_{\mathrm{K}}(\mathrm{C}, \mathfrak{b})$ of any degree, and φ as above then

$$\overline{d} = d * e^{*\varphi}$$

is a graded coderivation along $\overline{\varphi} := e^{*\varphi}$, and any such coderivation is of that form.

(Convolution)

(Theorem)

• If $\Phi, \Psi : C \to B$ are morphisms of counital coalgebras, then

$\Phi\ast \Psi$

is a morphism of counital coalgebras.

▶ If $D : C \to B$ is a graded coderivation along the morphism $\exists : C \to B$ then

 $\Phi \ast d \ast \Psi \quad \text{is a graded coderivation along } \Phi \ast \Xi \ast \Psi.$

Coalgebraic structures and convolution help to hide combinatorics.

イロト イポト イヨト イヨト 二日

Cofree coalgebras

Graded symmetric bialgebra S(W) cofree in the category of graded CCCC coalgebras:

• $\varphi: \mathcal{C} \to \mathcal{W}$ *K*-linear map of degree 0 with $\varphi(1_{\mathcal{C}}) = 0$

where $\overline{\phi} : C \to S(W)$ morphism of connected coalgebras. *V* is the submodule of primitive elements of S(W).

- Any such morphism Φ : C → W is uniquely determined by its Taylor coefficients pr_W ◦ Φ : C → W.
- Any CCCC coalgebra C can be embedded in S(Ker ϵ_C) as a graded CCCC subcoalgebra.

イロト 不得 とうせい かほとう ほ

- (Cofree coalgebras)
 - *d* : *C* → *V K*-linear map of any degree, Φ : *C* → S(*W*) morphism of graded CCCC coalgebras:

$$\begin{array}{cccc} \mathsf{S}(W) & \stackrel{\overline{d}}{\longleftarrow} & C \\ & \stackrel{\mathrm{pr}_W}{\searrow} & \stackrel{d}{\swarrow} & \text{with } \overline{d} = d * \Phi \\ & & V \end{array}$$

where $\overline{d} : C \to S(W)$ graded **coderivation** of CCCC coalgebras along Φ .

Any such derivation D : C → W along Φ is uniquely determined by its projection to W, pr_W ∘ D : C → W.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

- L_{∞} -structures on V: Stasheff's shifted version:
 - $(S(V[1]), \Delta, \epsilon, 1, \overline{d})$ differential graded CCCC coalgebra

 $\overline{d} \in \operatorname{Coder}^1(S(V[1])) \ s.t. \ \overline{d}^2 = 0, \ \overline{d}(1) = 0.$

and

$$d = \operatorname{pr}_{V[1]} \circ \overline{d} = \sum_{r=1}^{\infty} d_r$$
, and $c_r = d_r[-1]$

 d_r : graded symmetric; c_r : graded antisymmetric !

• L_{∞} -morphism V - - > V': morphism of dg CCCC coalgebras

 $\overline{\mathcal{U}} = e^{*\mathcal{U}} : \mathsf{S}(V[1]) \to \mathsf{S}(V'[1]) \ \text{with} \ \overline{\mathcal{U}} \circ \overline{d} = \overline{d'} \circ \overline{\mathcal{U}}$

with Taylor coefficients $\mathcal{U}: S(V[1]) \rightarrow V'[1], \mathcal{U}(1) = 0.$

• Maurer-Cartan elements: $\nu' = s^{-1}(\mu') \in \operatorname{Hom}_{\mathcal{K}}^{0}(\lambda \mathcal{K}[\lambda], \mathcal{V}[1])$

$$e^{*\nu'}: \mathsf{S}(\mathcal{K}) = \mathcal{K}[\lambda] \to \mathsf{S}(\mathcal{V}[1]) \ \text{with} \ \overline{d} \circ e^{*\nu'} = 0$$

(morphisms of dg CCCC coalgebras).

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

FORMALITY CHECK FOR THE HOCHSCHILD COMPLEX OF UNIVERSAL ENVELOPING ALGEBRAS OF LIE ALGEBRAS

Martin Bordemann L-infinity (non)formality and a generalization of T. Voronov's hig

(日) (同) (三) (三)

- Let $(\mathfrak{g}, [,])$ be a (graded) Lie algebra over K.
 - Universal Enveloping Algebra:
 - Definition: let T(g) be the tensor algebra generated by the K-module g, set

 $U(\mathfrak{g}) := T(\mathfrak{g})/I,$

where I is the two-sided ideal in the tensor algebra $T(\mathfrak{g})$ generated by (for any $\xi, \eta \in \mathfrak{g}$)

$$\xi \otimes \eta - (-1)^{|\xi||\eta|} \eta \otimes \xi - [\xi, \eta].$$

► Universal property: A graded associative algebra, φ : g → A⁻ morphism of graded Lie algebras of degree 0, then there is a unique morphism of graded associative algebras

$$\overline{\varphi}: \mathsf{U}(\mathfrak{g}) \to A \text{ with } \overline{\varphi} \circ \iota_{\mathfrak{g}} = \varphi.$$

イロト イポト イヨト イヨト 二日

- (Universal Enveloping Algebras)
 - ► U(𝔅) is a graded bialgebra such that (U(𝔅), Δ, ϵ, 1) is a graded CCCC coalgebra:

PBW: $\iota_{\mathfrak{g}} : \mathfrak{g} \to U(\mathfrak{g})$ injection; graded symmetrization map

 $\omega_{\mathfrak{g}} = e^{*\iota_{\mathfrak{g}} \circ \mathrm{pr}_{\mathfrak{g}}} : \mathsf{S}(\mathfrak{g})
ightarrow \mathsf{U}(\mathfrak{g})$

is an isomorphism of graded CCCC coalgebras (Quillen, 1969).

 Eulerian idempotent: (e.g. Barr '65,...,Helmstetter '89, Loday '92,...)

$$e_{\mathfrak{g}}^{(1)} = \iota_{\mathfrak{g}} \circ \mathrm{pr}_{\mathfrak{g}} \circ \omega_{\mathfrak{g}}^{-1} = \mathrm{ln}_{*} \big(\mathrm{id}_{\mathsf{U}(\mathfrak{g})} \big) := \mathrm{ln}_{*} \big(1\epsilon + (\mathrm{id}_{\mathsf{U}(\mathfrak{g})} - 1\epsilon) \big)$$

universal property reads (where φ : g → A[−])

$$\overline{\varphi} = e^{*(\varphi \circ \operatorname{pr}_{\mathfrak{g}} \circ \omega_{\mathfrak{g}}^{-1})}$$

イロト イポト イヨト イヨト 二日

- (Universal Enveloping Algebras)
 - BCH formula:
 - for any nonnegative integer n define

$$\mathfrak{G}^{\langle n \rangle} := \mathrm{Homgr}^{\mathsf{0}}_{\kappa} \Big(\big(\mathsf{S}(\mathfrak{g}) \big)^{\otimes n}, \mathfrak{g} \Big)$$

Equipped with the obvious **convolution Lie bracket** this is a rational Lie algebra equipped with a complete descending filtration: $\left(\mathfrak{G}_{(k)}^{(n)}\right)_{k\in\mathbb{N}}$

Take the usual Baker-Campbell-Hausdorff formal group law

$$\mathrm{BCH}:\mathfrak{G}_{(1)}^{\langle 2\rangle}\times\mathfrak{G}_{(1)}^{\langle 2\rangle}\to\mathfrak{G}_{(1)}^{\langle 2\rangle}$$

and define on the graded K-module $\mathsf{S}(\mathfrak{g})$

$$\mu_{\mathsf{U}(\mathfrak{g})} = e^{*\mathrm{BCH}(\mathrm{pr}_{\mathfrak{g}}\otimes_{K}\epsilon \ , \ \epsilon\otimes_{K}\mathrm{pr}_{\mathfrak{g}})}$$

graded *K*-bialgebra version of star-product formulas by S.Gutt (1983) and V.G.Drinfel'd (1983)

- **4 同 6 4 日 6 4 日 6**

PROBLEM: L_{∞} -formality of the Hochschild complex of U(g) ??

Slight generalization of Kontsevich's formality for S(V), V finite-dimensional; V seen as abelian Lie algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Results (MB, O.Elchinger, S.Gutt, A.Makhlouf 2018)
 - g abelian: FORMALITY,
 - $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}) \oplus \mathbb{K}^n$: FORMALITY,
 - \Rightarrow $\mathfrak{g} =$ "ax + b": FORMALITY,
 - ▶ g Cartan-3-regular quadratic : NO FORMALITY,
 - $\blacktriangleright \Rightarrow g \text{ semisimple} : NO FORMALITY,$
 - $\blacktriangleright \ \Rightarrow \ \mathfrak{g} \ \text{nonabelian reductive}: \ \text{NO FORMALITY},$
 - ▶ g 3-dim Heisenberg: NO FORMALITY,
 - \mathfrak{g} free Lie algebra over V, dim $(V) \ge 2$: NO FORMALITY.
- Cartan-3-regular quadratic Lie algebra g
 - ∃ B: g × g → K nondegenerate symmetric invariant bilinear form, i.e. B([x, y], z) = B(x, [y, z]), see e.g. MB 1997,
 - And Cartan 3-cocycle Ω(x, y, z) = B([x, y], z) defines nontrivial cohomology class.

イロト イポト イヨト イヨト 二日

Methods of proof

- ▶ for any dgLA (𝔅, [,], T) with cohomology (𝔅, [,]) its characteristic 3-class c₃ in H³_{CE}(𝔅, 𝔅): computation of c₃ for 𝔅 the Hochschild complex of U(𝔅): first obstruction to L_∞-formality.
- ▶ for finite-dimensional g: replace the inhuman Hochschild complex by the Chevalley-Eilenberg complex C_{CE}(g, S(g)) with the Schouten bracket.
- for Cartan-3-regular \mathfrak{g} : $z_3(B^{-1}, B^{-1}, \Omega) = 8B^{-1} \neq 0$.
- Free Lie algebra: HH(T(V), T(V)) ≅ K ⊕ outdet(T(V)), first finite-dimensional case, elementary, but long.

イロト イポト イヨト イヨト 二日

CODERIVATIONAL ACTIONS OF DG LIE ALGEBRAS

э

- Let $(\mathfrak{g}, [,], T)$ be a **DG Lie algebra**,
 - i.e. T graded derivation of \mathfrak{g} of degree 1 and $T^2 = 0$.
- Let C = (S(W), Δ, ε, 1) be the cofree graded CCCC coalgebra cogenerated by the graded K-module W.
- ► Suppose that there is a representation *ρ* of the dg Lie algebra g in C by coderivations, i.e. a K-linear map

$$\rho: \mathfrak{g} \to \operatorname{Coder}(\mathsf{S}(W)): \xi \mapsto \rho_{\xi}$$

of degree 0, and a coderivation ρ_T of degree 1 of C satisfying for all $\xi,\eta\in\mathfrak{g}$

$$\begin{split} \rho_{[\xi,\eta]} &= \rho_{\xi} \circ \rho_{\eta} - (-1)^{|\xi||\eta|} \rho_{\eta} \circ \rho_{\xi}, \\ \rho_{\mathcal{T}(\xi)} &= \rho_{\mathcal{T}} \circ \rho_{\xi} - (-1)^{|\xi|} \rho_{\xi} \circ \rho_{\mathcal{T}}, \\ \rho_{\mathcal{T}}^2 &= 0. \end{split}$$

・ロト ・同ト ・ヨト ・ヨト - ヨ

▶ Important particular case: $(\mathfrak{g}, [,])$ graded Lie algebra $\xi_0 \in \mathfrak{g}$ such that $|\xi_0| = 1$, and $[\xi_0, \xi_0] = 0$. Then with

 $\mathcal{T} := \operatorname{ad}_{\xi_0}$ inner derivation

the triple $(\mathfrak{g}, [,], \mathcal{T})$ is a dg Lie algebra. If $\rho : \mathfrak{g} \to \operatorname{Coder}(S(W))$ is a graded representation, then with $\rho_{\mathcal{T}} := \rho_{\xi_0}$ there is a coderivational dg Lie algebra action on *C*.

► Easy consequence: if there is a coderivational action of the DG Lie algebra (g, [,], T) on S(W) then

(S(W), T)

is a dg coalgebra, hence defines an L_∞ -structure on V:=W[-1].

- ▶ Two natural questions: given a DG Lie algebra (g, [,], T),
 - T.Voronov I: What are appropriate graded CCCC cofree coalgebras S(W) associated to g and its subalgebras on which g acts by coderivations ?
 - T.Voronov II: How can Voronov I be *extended by* g in order to get L_∞-structures on g ⊕ W[-1] ?
 - T.Voronov, 2005 I and T.Voronov, 2005 II

・ロッ ・雪 ・ ・ ヨ ・ ・

VORONOV I: UNABELIAN CONSTRUCTION

イロト イポト イヨト イヨト

э

- DG Lie algebra inclusions
 - ▶ Let (g, [,], T) be a DG Lie algebra, and $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra.
 - $(\mathfrak{g}, [,], T, \mathfrak{h})$ DG Lie algebra inclusion iff $T(\mathfrak{h}) \subset \mathfrak{h}$.
 - ▶ Example: $(\mathfrak{g}, [,], \mathrm{ad}_{\eta_0}, \mathfrak{h})$ where $\mathfrak{h} \subset \mathfrak{g}$ subalgebra, and $\eta_0 \in \mathfrak{h}$ with $|\eta_0| = 1$ and $[\eta_0, \eta_0] = 0$.

► The CCCC coalgebra 𝔐:

▶ Define for any DG Lie algebra inclusion (g, [,], T, ħ)

 $\mathfrak{M}:=\frac{\mathsf{U}(\mathfrak{g})}{\mathsf{U}(\mathfrak{g})\mathfrak{h}},\quad \Pi:\mathsf{U}(\mathfrak{g})\to \mathfrak{M} \ \, \textit{natural projection}.$

Theorem Ia

- M is a graded CCCC coalgebra over K: since U(g)h is a graded coideal of U(g)
- ► The DG Lie algebra (g, [,], T) acts by coderivations on M via

 $\rho_{\xi}(\Pi(u)) := \Pi(\xi u), \quad \rho_{T}(\Pi(u)) := \Pi(\hat{T}(u))$

where $\hat{T} : U(\mathfrak{g}) \to U(\mathfrak{g})$ natural extension of T to graded biderivation of $U(\mathfrak{g})$

• (The CCCC coalgebra \mathcal{M})

Let G Lie group with Lie algebra g, H ⊂ G closed subgroup with Lie algebra h, consider the homogeneous space

 $M := G/H, \quad \pi: G \to M$ natural projection

then H acts on $\mathcal{M} = U(\mathfrak{g})/(U(\mathfrak{g})\mathfrak{h})$ via the induced adjoint representation, and the associated bundle

$$G \times_H \left(\frac{\mathsf{U}(\mathfrak{g})}{\mathsf{U}(\mathfrak{g})\mathfrak{h}} \right)$$

is a filtered vector bundle over M whose (filtered) smooth sections are differential operators on $\mathcal{C}^{\infty}(M, \mathbb{R})$. Fibre \mathcal{M} : distributions on M supported in $\{\pi(e)\}$. (Alekseev-Lakhowska, 2005; Calaque-Caldararu-Tu 2011; MB 2012)

・ロト ・同ト ・ヨト ・ヨト - ヨ

- ► (The CCCC coalgebra 𝔐)
 - ▶ Cofreeness of M:
 - Let $V \subset \mathfrak{g}$ be a graded K-submodule complement to \mathfrak{h} :

 $\mathfrak{g} = V \oplus \mathfrak{h};$ decomposition : $\xi = \xi_V + \xi_{\mathfrak{h}}$

(always possible if K is a field). Projections $\pi_V : \mathfrak{g} \to V$, $\pi_{\mathfrak{h}} : \mathfrak{g} \to \mathfrak{h}$; Inclusions $i_V : V \to \mathfrak{g}$, $i_{\mathfrak{h}} : \mathfrak{h} \to \mathfrak{g}$.

▶ Define the *projections* $p_V, p_{\mathfrak{h}} : \mathsf{S}(\mathfrak{g}) \to \mathfrak{g}$ by

$$p_V(f) := (\operatorname{pr}_{\mathfrak{g}}(f))_V, \quad p_{\mathfrak{h}}(f) := (\operatorname{pr}_{\mathfrak{g}}(f))_{\mathfrak{h}}$$

• define the coalgebra isomorphism $\tilde{\Phi} : S(\mathfrak{g}) \to U(\mathfrak{g})$

$$ilde{\Phi} := e^{*{}^\iota \mathfrak{g} \, \circ \mathrm{p}_V} * e^{*{}^\iota \mathfrak{g} \, \circ \mathrm{p}_\mathfrak{h}} =: ilde{\Phi}_V * ilde{\Phi}_\mathfrak{h} \
eq \omega_\mathfrak{g}$$

・ロト ・同ト ・ヨト ・ヨト

► (The CCCC coalgebra 𝔐)

Theorem Ib

- $\tilde{\Phi}(S(\mathfrak{g}) \bullet \mathfrak{h}) = (U(\mathfrak{g}))\mathfrak{h}.$
- the K-linear map Φ defined by

$$\Phi := \Pi \circ \tilde{\Phi} \circ \iota_{\mathsf{S}(V)} = \Pi \circ \tilde{\Phi}_V \circ \iota_{\mathsf{S}(V)} : \mathsf{S}(V) \to \mathfrak{M}$$

is an isomorphism of graded CCCC coalgebras, whence $\ensuremath{\mathcal{M}}$ is cofree.

 There is the pulled-back coderivational (g, [,], T)-action ρ' on S(V) given by

$$\rho'_{\xi} := \Phi^{-1} \circ \rho_{\xi} \circ \Phi \text{ and } \rho'_{\mathcal{T}} := \Phi^{-1} \circ \rho_{\mathcal{T}} \circ \Phi$$

- 4 同 6 4 日 6 4 日 6

►

(The CCCC coalgebra
$$\mathcal{M}$$
): Computation of ρ'
• for any $\xi \in \mathfrak{g}$ define the **T.Voronov map** $v_{\xi} : S(V) \to V$ by
 $v_{\xi}(1) := \xi_V$, and for any $f = x_1 \bullet \cdots \bullet x_k \in S^k(V)$
 $v_{\xi}(f) := \left((\pi_V \epsilon_{S(V)}) *' e^{-*' \operatorname{ad}_{\mathbb{P}_V}} *' (\xi \epsilon_{S(V)}) \right)(f) =$
 $\frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sign}(|x_1|, \ldots, |x_r|, \sigma) \left([\cdots [\xi, x_{\sigma(1)}], \ldots, x_{\sigma(k)}] \right)_V$

▶ let E_{VV} : S(V) → Homgr(V, V), $E_{V\mathfrak{h}}$: S(V) → Homgr(\mathfrak{h} , V)

$$E_{VV} := (\pi_V \epsilon_{\mathsf{S}(V)}) *' \frac{\mathrm{id}_{\mathfrak{g}} \epsilon_{\mathsf{S}(V)} - e^{-*' \mathrm{ad}_{\mathsf{P}_V}}}{*' \mathrm{ad}_{\mathsf{P}_V}} *' (i_V \epsilon_{\mathsf{S}(V)})$$
$$E_{V\mathfrak{h}} := (\pi_V \epsilon_{\mathsf{S}(V)}) *' \frac{\mathrm{id}_{\mathfrak{g}} \epsilon_{\mathsf{S}(V)} - e^{-*' \mathrm{ad}_{\mathsf{P}_V}}}{*' \mathrm{ad}_{\mathsf{P}_V}} *' (i_{\mathfrak{h}} \epsilon_{\mathsf{S}(V)})$$

< ロ > < 同 > < 回 > < 回 > < □ > <

3

- ▶ (The CCCC coalgebra \mathcal{M}):
 - where
 - ► $\operatorname{ad}_{\operatorname{p}_{V}} : \mathsf{S}(V) \to \operatorname{Homgr}_{K}(\mathfrak{g}, \mathfrak{g}) : f \mapsto (\xi \mapsto [\operatorname{p}_{V}(f), \xi]),$
 - ▶ for all homogeneous *K*-linear maps

$$\begin{array}{lll} \varphi: \mathsf{S}(V) & \to & \mathrm{Homgr}_{K}(W, W'), \\ \psi: \mathsf{S}(V) & \to & \mathrm{Homgr}_{K}(W', W''), \\ \chi: \mathsf{S}(V) & \to & W \end{array}$$

define composition/evaluation convolution *' by

$$\begin{aligned} (\psi *' \varphi)(f) &= \sum_{(f)} (-1)^{|\varphi||f^{(1)}|} \psi(f^{(1)}) \circ \varphi(f^{(2)}) \\ (\varphi *' \chi)(f) &= \sum_{(f)} (-1)^{|\chi||f^{(1)}|} (\varphi(f^{(1)})) (\chi(f^{(2)})) \end{aligned}$$

for all $f \in S(V)$.

イロト イポト イヨト イヨト

(The CCCC coalgebra
$$\mathcal{M}$$
):
• Theorem Ic:
• Let $d'_{\xi} := \operatorname{pr}_{V} \circ \rho'_{\xi}$. Then
 $d'_{\xi} = E_{VV}^{*'-1} *' v_{\xi}$.
• If $\xi_0 \in \mathfrak{g}, |\xi_0| = 1, [\xi_0, \xi_0] = 0$.
 d'_{ξ} flat $\Leftrightarrow \xi_0 \in \mathfrak{h}$.
• Let $d'_{T} := \operatorname{pr}_{V} \circ \rho'_{T}$. Then
 $d'_{T} = \pi_{V} \circ T \circ \operatorname{p}_{V} + E_{VV}^{*'-1} *' E_{V\mathfrak{h}} *' (\pi_{\mathfrak{h}} \circ T \circ \operatorname{p}_{V})$.

æ

(The CCCC coalgebra M): (Theorem Ic) For any ξ ∈ g, x, y ∈ V: d'_ξ(1) = ξ_V, d'_ξ(x) = ¹/₂[ξ_V, x]_V + [ξ_b, x]_V, d'_ξ(x • y) = ¹/₂[[ξ, x]_b, y]_V + (-1)^{|x||y|} ¹/₂[[ξ, y]_b, x]_V + ¹/₁₂[[ξ_V, x], y]_V + (-1)^{|x||y|} ¹/₁₂[[ξ_V, y], x]_V.

伺い イラト イラト

- (Theorem Ic)
 - ▶ For any $\xi \in \mathfrak{g}$, $x, y \in V$:

$$\begin{aligned} & d'_{T}(1) &= 0, \\ & d'_{T}(x) &= ((T(x))_{V}, \\ & d'_{T}(x \bullet y) &= \frac{1}{2} [(T(x))_{\mathfrak{h}}, y]_{V} + (-1)^{|x||y|} \frac{1}{2} [(T(y))_{\mathfrak{h}}, x]_{V}. \end{aligned}$$

э

- ► (The CCCC coalgebra 𝔐):
 - Geometric analogy: let g, h, V real, finite-dimensional, trivially graded, associated to G ⊃ H Lie groups, H closed subgroup.

Consider the smooth maps (local diffeomorphisms around e and $\pi(e)$)

$$\begin{split} & ilde{\psi}:\mathfrak{g}
ightarrow G & : \quad \xi\mapsto \exp(\xi_V)\exp(\xi_\mathfrak{h}) \ \psi:V
ightarrow M=G/H & : \quad x\mapsto \piig(\exp(x)ig) \end{split}$$

Tangent maps of $\tilde{\psi}$ and ψ lead to above formulas. Recall

$$(T_X \exp)(Y) = e^X \frac{I - e^{-\operatorname{ad}_X}}{\operatorname{ad}_X}(Y)$$

Inverse contains Bernoulli numbers.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- ► (The CCCC coalgebra 𝔐):
 - Theorem Id

If $T = ad_{\eta_0}$ is inner, $\eta_0 \in \mathfrak{h}$, and if the Nguyen-Van Hai class of the Lie algebra inclusion $\mathfrak{g} \supset \mathfrak{h}$ vanishes then d' is reduced to its linear component.

 Nguyen-Van Hai class (1965) (or Atiyah class): cohomological obstruction against the extension of the natural η-action

 $\mathsf{ad}'_\eta:\mathfrak{g}/\mathfrak{h}
ightarrow\mathfrak{g}/\mathfrak{h}:arpi(\xi)\mapstoarpi([\eta,\xi])$

to an \mathfrak{h} -invariant bilinear map

 $\gamma:\mathfrak{g}\times\mathfrak{g}/\mathfrak{h}\to\mathfrak{g}/\mathfrak{h},$

(*G*-invariant linear connection on G/H). Calaque-Caldararu-Tu 2011; MB 2012)

イロト イポト イヨト イヨト 二日

► (The CCCC coalgebra 𝔐):

Abelian Case: suppose that V is an abelian Lie subalgebra of g. Then

$$E_{VV} = id_V \epsilon_{\mathsf{S}(V)}$$
$$d'_{\xi} = v_{\xi}$$

where v_{ξ} simplifies (no more sum over permutations), and $d'_{T}(1) = 0$, $d'_{T}(x) = ((T(x))_{V})$, and

$$d'_T(x_1 \bullet \cdots \bullet x_k) = \left([\dots [T(x_1), x_2], \dots, x_k] \right)_V$$

for all $x, x_1, \ldots, x_k \in V$. **T.Voronov, 2005**

イロト 不得 とくほ とくほ とうほう

- ▶ (The CCCC coalgebra \mathcal{M}):
 - Nonabelian Case: suppose that V is an Lie subalgebra of g. (also obtained by other methods by R.Bandiera, 2013)
 - Consider universal envelopping algebra U(V)
 - right U(V)-action on g:

 $\xi \dashv 1_{\mathsf{U}(V)} := \xi, \quad \xi \dashv (x_1 \cdots x_k) := [\cdots [\xi, x_1], \ldots, x_k].$

▶ g right U(V)-module Lie algebra: $\forall u \in U(V), \xi, \xi' \in \mathfrak{g}$ $[\xi, \xi'] \dashv u = \sum_{(u)} (-1)^{|u^{(1)}||\xi'|} [\xi \dashv u^{(1)}, \xi' \dashv u^{(2)}].$

▶ Nonabelian Voronov map $w_{\xi} : U(V) \rightarrow V$ $w_{\xi}(u) := (\xi \dashv u)_V$

► graded dressing action of \mathfrak{g} on U(V) by coderivations $\overline{w_{\xi}}^{R} = \mathrm{id}_{U(V)} * w_{\xi}$, and $[\overline{w_{\xi}}^{R}, \overline{w_{\xi'}}^{R}] = \overline{w_{[\xi,\xi']}}^{R}$.

ロト (同) (三) (三) (○) (○)

► (The CCCC coalgebra 𝔐):

- (Nonabelian Case):
 - ▶ Dressing action: analogy G = 𝔅H where 𝔅 Lie subgroup whose Lie algebra is V, whence

$$M = G/H \cong \mathcal{V}$$

 $\overline{w_\xi}^{\mathcal{R}}$ corresponds to infinitesimal generator of natural left G-action on $\mathcal{V}.$

Main result:

$$d'_{\xi} = e_V^{(1)} \circ \overline{w_{\xi}}^R \circ \omega_V$$

• If V abelian: $w_{\xi} = v_{\xi}$.

- 4 同 2 4 回 2 4 U

VORONOV II: EXTENSION BY THE LIE ALGEBRA

イロト イポト イヨト イヨト

э

Fix the following data:

- $(\mathfrak{g}, [,], T)$ a DG Lie algebra.
- $(C := S(W), \Delta, \epsilon, 1)$ a graded CCCC coalgebra.
- $\rho : (\mathfrak{g}, [,], T) \rightarrow S(W)$ an action by coderivations.

► Form the graded Lie homology complex of g with values in the g-module S(W)

 $\mathsf{S}(\mathfrak{g}[1] \oplus W) \cong \mathsf{S}(\mathfrak{g}[1]) \otimes_{\mathcal{K}} \mathsf{S}(W) \cong " \bigwedge \mathfrak{g} \otimes_{\mathcal{K}} \mathsf{S}(W)''$

with the 'usual graded Chevalley-Eilenberg differential D' • Define $\kappa : S^2(\mathfrak{g}[1]) \to \mathfrak{g}[1]$ by the shifted Lie bracket [,][1].

イロト 不得 トイヨト イヨト 二日

> Theorem IIa: Under the above hypotheses, defining

- $\blacktriangleright D_{[,]} = \left(\left(\kappa \circ \operatorname{pr}_{\mathsf{S}^2(\mathfrak{g}[1])} \right) \, \tilde{*} \, \operatorname{id}_{\mathsf{S}(\mathfrak{g}[1])} \right) \otimes \operatorname{id}_{\mathsf{C}},$
- $\begin{array}{l} \triangleright \ D_{\rho} := \\ (\mathrm{id}_{\mathsf{S}(\mathfrak{g}[1])} \otimes \rho) \circ (\mathrm{id}_{\mathsf{S}(\mathfrak{g}[1])} \otimes (\mathfrak{s}_{\mathfrak{g}} \circ \mathrm{pr}_{\mathfrak{g}[1]})) \otimes \mathrm{id}_{\mathcal{C}}) \circ (\Delta_{\mathsf{S}(\mathfrak{g}[1])} \otimes \mathrm{id}_{\mathcal{C}}), \end{array}$
- $D_{\mathcal{T}} := -\hat{\mathcal{T}} \otimes \mathrm{id}_{\mathcal{C}} + \mathrm{id}_{\mathsf{S}(\mathfrak{g}[1])} \otimes \rho_{\mathcal{T}}.$

it follows that

• $D = -D_{[,]} + D_{\rho} + D_{T}$ is a coderivation of degree 1 s.t.

 $D^2 = 0$ and $D(1 \otimes_K 1) = 0$

whence defines a flat L_{∞} -structure on $\mathfrak{g} \oplus W[-1]$.

Linear component d₁ of D is the differential of the mapping cone of the map g[1] → W : a ↦ ρ_{s_g(a)}(1),

 $d_1:\mathfrak{g}[1]\oplus W\to \mathfrak{g}[1]\oplus W:(a,x)\mapsto \big(-T[1](a),\rho_{\mathfrak{s}_\mathfrak{g}(a)}(1)+\rho_T(x)\big).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

FUNERAL OF A ZOMBIE ?

- M.B., G.Ginot, G.Halbout, H.-C.Herbig, S.Waldmann: Star-représentations sur des sous-variétés coïsotropes. arXiv.math/0309321v1, 2003 the good
- ► M.B., G.Ginot, G.Halbout, H.-C.Herbig, S.Waldmann: Formalité G_∞ adaptée et star-représentations sur des sous-variétés coïsotropes. arXiv.math/0504276, 2005 the zombie: main result wrong!!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Coisotropic: geometry
 - Let (M, Λ) be a Poisson manifold, $C \subset M$ be a submanifold.
 - C coisotropic iff

 $\forall c \in C : \Lambda_c^{\sharp}(T_c C^{\operatorname{ann}}) \subset T_c C$

Coisotropic: algebra

• Let $A = \mathbb{C}^{\infty}(M)$, $B = \mathbb{C}^{\infty}(C)$, and

 $I:=\{g\in A\mid \forall\ c\in C:\ g(c)=0\}\quad \text{vanishing ideal of }C.$

• Hence $B \cong A/I$, and C coisotropic iff

 $\{I,I\}_{\Lambda} \subset I$:

イロト イポト イヨト イヨト 二日

Coisotropic: quantization = representation (e.g. MB 2005)

- Recall star-product * on M:
 * is an associative K[[λ]] bilinear (bidifferential) unital multiplication on A[[λ]] which is a formal associative deformation of the pointwise multiplication on A = C[∞](M) having Λ as first-order commutator
- Find star-product * on M such that

```
I[[\lambda]] is a left ideal of (A[[\lambda]], *)
```

- ▶ Then $B[[\lambda]] \cong A[[\lambda]]/I[[\lambda]]$ is a left $(A[[\lambda]], *)$ -module.
- NOT ALWAYS POSSIBLE! as opposed to main statement in the zombie paper:

Counterexample by T.Willwacher, 2007.