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NOTE: All rings are unital. All objects are modules over
commutative (background) ring or field K. All maps are K- linear.
® = R if not stated otherwise.



CCR algebra = Weyl-Heisenberg algebra=quantum phase
space

[P, x"] = =i 1, [x*,x"] =0 [Pu, P,] = 0.

where p,v =0,...n—1.

Hilbert space realization (K = C)
Providing the algebra of differential operator on K”

Generating some abstract associative unital algebra (Weyl
algebra) = smash product construction



Smash product algebras

o A X H - is an extension of a (left) module algebra
(A, x, H>>,14) by the corresponding bialgebra H to create a
new algebra

o by determining on the K-module A®Q H = A x H the
multiplication (L > 14 = €(L)14):

(ax L)x(bxJ)=ax(Lxy>b)xLpd.

o the initial algebras are canonically embedded, A> f - f ® 14
and H> L - 14 ® L as subalgebras in A x H.

Example: Trivial action L1 a = €(L)a makes A x H isomorphic to
the ordinary tensor product algebra A® H:
(feL)(g®M)=1fgLM.



Weyl-Heisenberg algebra as a smash product

Weyl-Heisenberg algebra contains two Abelian subalgebras which
can be considered as a universal enveloping algebras of two Abelian

Lie algebras:
Algebra of translations 7 > P,,.
Algebra of coordinates X > x*.
X ={ClxO,... . x" 1 [x*,x] =0} T =AClPo,.... Ps1] : [Py, P,] = 0}

X is T-(Hopf) module algebra. T is Hopf algebra with :
AP,)=P,®1+1®P,
The action is implemented by a duality map

Pubx’ = —i(Py,x") = —id4,  P,p1=0

and can be extended to whole algebra X due to the Leibniz rule,
e.g., P> (x'x") = —idy, A iéﬁ‘x”.



From X x7 =W  —— standard set of Heisenberg commutation
relations:

[Pu,x"], = —idz 1, [x*,x"], =0 [Pu,P.], =0.

X

as generating relations.

o Note that W = X x T cannot be equipped in Hopf algebra
structure for two reasons:

evaluation of the counit € on commutator [P, x"] = —id} 1
leads to a contradiction since €(1) = 1.



Lie-algebraic formula for the coproduct
No(y) =y®14+1®y for ye{xt.. x"YU{P1...P,}

is incompatible with [Py, x"] = —d}; 1.
o Instead the structure of unital non-counital bialgebra
equipped with left or right "half-primitive’ coproducts:

Af(x") =xt @1, AS(xH) =1 @ x*

and the standard: Ag(P,) = P, ® 1+ 1® P, turns out to be
compatible.

o In contrast to primitive coproduct which is valid only on
generators, the above 'half-primitive’ coproducts preserve their
form for all elements of the algebra X'. It provides a (trivial)
comodule algebra structure.
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On the other hand one can show that X x 7 = W has the
structure of

Hopf algebroid. S. Meljanac+Zagreb group]



Covariant quantum phase space
Consider a Lie algebra g:

[Lav Lb] = 7§bLC
and its finite dimensional representation
p:g—EndgV & pig®V -V

Lox = p(L)(x) = [Ex¥ .

This action can be uniquely extended to the action of the entire
universal enveloping algebra > : Uy ® C®(V) — C>(V) if we
define the Lie algebra generators

pL) = —L3x"0p

in terms of first-order differential operators, which are in fact
coordinate independent objects (9, = 8%). This realization leads
to the Weyl-Heisenberg extension of the initial algebra g.



Resulting (abstract) algebra can be represented by the following
set of commutation relations

[L37 Lb] = ’ngLca [Lba pu] = (Zb)gpou [pua pu] =0

[La,XH] = _([a)gxav [pl/axu] = 1657 [XM’XV] =0

The first line represents a Lie subalgebra which can be recognized
as a inhomogeneous extension ig, of the initial Lie algebra g with
respect to the representation p.

Thus a unital associative algebra generated by the above
commutation relations can be presented as a double smash
product:

X X Uigp =Wx Ug

since Uy, =T x U,.



Bi-/Hopf algebroids

J.H. Lu, Intern. Journ. Math. 7, 47 (1996);

P. Xu, Comm. Math. Phys. 216, 539 (2001);
T. Brzezinski, G. Militaru, J. Alg. 251, (2002);
G. Bohm, K. Szlachanyi, J. Algebra 274 (2004).

Hopf algebroids are Hopf algebras over noncommutative rings.

A left Hopf algebroid M = (M, A,s,t, A €) is a left bialgebroid
together with an antipode A: M — M .
The bialgebroid M consists of the following data

Q a total algebra M and a base algebra A

Q@ two mappings providing A- bimodule or A®-ring structure on M:

o an algebra homomorphism s : A - M - a source map
o an algebra anti-homomorphism t : A - M - a target map
o such that: s(a)t(b) = t(b)s(a), for all a,b € A and

a.m.b = s(a)t(b)m



@ coproduct and counit maps, with analogous axioms of a coalgebra
but all mappings are A-bimodule homomorphisms and ® = ®4.

o Since M ®4 M is not an algebra one assumes a coring structure,
i.e. the bialgebroid coproduct map A: M — M ®4 M is a
coassociative A-bimodule map :

A(s(a)t (b) m) = s(a)m@) ®a t(b)m(y)

Notice: (t(a) ®al—1®as(a))A(m)=0
o Moreover, the image IMAC M xa M C M®a M, ie.

A(m)(t(a) ®al—1®as(a)) =0
and we can require that A : M — M x4 M is an algebra map, i.e.
A(mn) = A(m)A(n) = mayna) @a Me)ne)

Note: M x4 M is known as a Takeuchi product.



o The counit map € : M — A has to satisfy:
6(1[\/]) = 1A7
e(mn) = e(ms(e(n))) = e(mt(e(n))),
s(e(m(n)))m) = t(e(m(z)))may = m
enables to introduce the anchor map M > m— m »< EndA
by m » a = e(ms(a)) = e(mt(a))

o In the case of Hopf algebroid one requires, in addition, an
antipode as antialgebra map A: M - M
Aot=s
A(mz))ma) = t(e(A(m)))
there exists a section y: M ®@a M - M ® M s.t.

upmo(id@N)oyoA=soe



Yetter - Drinfeld modules (left-right)

(Yang-Baxter modules, crossed modules, Hopf modules)
A Yetter - Drinfeld (YD) module over a bialgebra H(u,n, A ¢€), is
a H-module which is simultaneously a H-comodule

o a left H-module with the action H A — A, L®a— L>a
o a right H-comodule with the coaction p: A— A® H;
p(a) = aco> ® a<1>

Compatibility condition between action and coaction
is required in the form:

p(l_ > a) = L(2) > a<o> ® L(3) > a<1>L(1)
or

L1y > a<o> ® Lgya<i> = (L) > a)<o> @ (L2) > a)<1> L)



Algebras in Yetter-Drinfeld category

o VDM - denotes the category of all (left-right)
Yetter-Drinfeld modules (braided monoidal category).

L> (a®a’) = L(l) >a® L(2) > a
(a®a)<o> ®(a®d)<1> = aco> ®algs ®alysacis
ARA - AQA: awd —ad g, ®(dys >a)
o A module-comodule algebra A = (A, x,14, H>, p)

L (a*b) = (L(l) > a)*(L(z) > b)

(axb)<o> ® (ax b)c1> = (a<o> * b<o>) ® beisacis

is an algebra in ;9D if and only if it is a braided
commutative, i.e. :

ax b= bco> x (b1 > a)



Drinfeld twist deformation
Deformation- 'quantization’ procedure
o The twist F - invertible element of H ® H
@ the two-cocycle condition

(FDN(A®id)F =(1® F)(id @ A)F

@ normalization (id ® €)F = (e® id)F =1® 1,
o Twisted bi/Hopf algebra

H(p,m,Ae,S) — HF(u,m, AF €, SF)
AF() = Fa()F!
S()—=SF() = FS(R)S()S(Fv)Fx

Notation:
F=F®F cH®H, Fl=F @FcH®H

L(l) &® L(2) — L(lF) ® L(2F) =F L(l)'El’ X F2L(2) ,:_2’



Twisted braided commutativity

o (Left-right) Yetter-Drinfeld module over H with the right
coaction

p(a) = aco> ® ac1>

becomes automatically a YD module over H if the action
remains unchanged and the coaction is modified by the
twist

p/:(a) = F]_[>(ﬁ2/\>3)<0>®F2(ﬁ2/\>a)<1>ﬁ1/ = a<0F>®a<1F>

for all a € A.

o Particularly, a module-comodule algebra A = (A, %, 14, H>>, p)
is an algebra in ;9D if and only if its twisted counterpart
FAF = (A, xg, 14, H >, pg) is braided commutative:

axp b= b_grs *xF (boirs > a),

where axf b = (Fy > a) * (F2 > b) denotes modified product.



Twisted smash product

Proposition
[D. Bulacu, F. Panaite, F. M. J. Van Oystaeyen, Comm. Alg. 28 (2000),631]

For any Drinfeld twist F:
Ax HZrA X HF

even though A 2rA and H 2 HF (as bialgebras).

o Both algebras are determined on the same K-module A® H
but differ by the multiplications:

(axL)x(bxJ) = ax(Lay>b)x Ly
(axL)*xp(bxJ) = axp(Lyry>b)x Liryt

o where AF(L) = FA(L)F~! = Lary ® LioFy - twisted
coproduct of the bialgebra HF .



o Both algebras are generated by elements:
axly,aecAandlagxL, LeH

o The isomorphism ¢ :r A x HF — A x H can be defined by
the formula B B
paxl)=(Fra)xFL

such that:
e(ax)yxp(bxJ))=p(axL)xp(bxJ)
foralla,be Aand L,J € H.
o Due to the normaliz_ation conc_iition: Y(laxL)y=1axL,
but gp(a X ]-H) = (Fl l>a) x Fp.

o The inverse map ¢ ™1 : Ax H — Ar x HF is given by
(p_l (a X L) = (Fl l>a) X Fol.



II.Cross product algebras as bialgebroids
Theorem [T. Brzezinski, G. Militaru, J. Alg. 251, (2002)]:
Let H=(H, A, ¢) be a bialgebra, A= (A, x, H>) is a left H-module
algebra and (A, p) a right H-comodule. Then (A, %, H>, p) is a braided
commutative algebra in D" if and only if (A % H,s, t,A,g) is an
A-bialgebroid with

@ The source, target, coproduct and the counit given by:

s(a) = axly, t(a)=p(a)=aco> X aci>
Aaxl) = (ax L)) ®a (1a % L))
€(axLl) = €(l)a
(axL)ywb = ax(L>b)

o If H has an antipode S : H — H then A x H has the antipode \g
As(IaxL) =1axS(L), As(axly)= 52(a<1>)>a<0> ><‘52(5'<2>)

and v((ax L) ®a (b x N)) = (abeos X be1sL) @ (14 x N)

denotes a canonical section v: (Ax H)®4 (Ax H) = (Ax H)® (A x H).



Back to the Weyl algebra

W=XxT={[P,x"]=—,1, [x'x"]=][P,PJ]=0}
is (Hopf) bialgebroid (W, X, s, t, A, ¢)

The source and target maps: s (x) = t(x) = x @ 17.

The coproduct and counit:

A(xxP)=(xx P(l)) ®x (Ly x P(2))
€(x x P)=¢€(P)x
forall x e X and P T.

And A(x*) = xt @y 1=10x x* ; A(P,) =P, @x 1+ 1@y P,
together with €(x*) = x* ; é(P,) =0; €(1) = 1x.



I11. Twisted bialgebroids

P. Xu, Comm. Math. Phys. 216, 539 (2001).

o Bialgebroid definition provides a canonical action
»MA—-A
(also known as an anchor M 5 m — m »€ EndA):
mw» a=e(ms(a)) = e(mt(a)),
Theorem [Xu]:
Assume that (M, A,s, t, A, €) is bialgebroid over the algebra A and
F=F®aF, € M®a M is a "twistor” (Hopf algebroid twist).
Then (M, Ar, sk, te, AF, €) is a bialgebroid over the algebra Af,
where

sr(a)=s(FRw»a)f ; tr(a)=t(FR»a)fL VacA
and new twisted coproduct Ar : M - M @4, M :

Ap(m)=F# (A(m)F'), V meM



For the twisted coproduct A : M - M ®a, M :
Ap(m)=F* (A(m)F '), ¥V meM
F#:M®aM— M®a, M is defined by:
F#(m ®a n) = (F1m)®a, (F2n).

The multiplication in M does not change.
In A it changes to:

*x = xf =%0 (FL» @F »)



[V.Main result

Goal: To compare two constructions of bialgebroids:

The bialgebroid obtained by bialgebroid twisting of the smash
product algebra (A x H)F
and
bialgebroid obtained from the smash product algebra of twisted
bialgebra with twisted YD module algebra FAF x HF

Main result: Both bialgebroids are equivalent (isomorphic):
FAF s HF = (A x H)F
Remainder: As algebras all three are equivalent
FAF 5 HF 2 A x H 22 (A x H)F
Corollary: First two are not isomorphic as bialgebras !

AF s HF 2 Ax H



Where the module-comodule algebra A is braided commutative in
the category D",

(a *b= b<0> * (b<]_> > a))

BM construction: A x H is a bialgebroid over the algebra A if we
define

(shifting AtH - H®Hto A: AxH— (Ax H)®a(Ax H))

A(a>4 L):(a><| L(l)) Ra (1A X L(z)), s(a):a><| 1y

t(a) = aco> ¥ a<1>

é(axLl)=¢(l)a



It is easy to see that any Drinfeld twist F = FF @ Fo € HR H in
the bialgebra H
can be shifted to the bialgebroid twistor F € (A x H) @4 (A x H)
by

F—)F_:(lANFl)@A(lANFQ)

which automatically satisfies bialgebroid cocycle and normalization
conditions. Therefore, it can be used to construct new (twisted)

bialgebroid (A x H)'E by making use of P. Xu twistor F.



Then apply bialgebroid twisting [Xu] to bialgebroid (A x H)':_ by
means of the shifted twist F

Ap(axJ)=FF(A(ax N)FY), sz(a) = (Fiva)x P,

te (a) = (:E2 > a)<0> X (:EQ > a)<1>l:_1

where
F# : (Ax H) @4 (Ax H) = (Ax H)®a, (Ax H)

and F#(m®a n) = (F1 m) ®a, (F2 n).

Note: original Xu twistor is an inverse of ours.



Similarly (BM construction)
FAF x HF a bialgebroid over the algebra £A if we set

AF(a X L) = (a X L(lp)) QA (lA X L(2F))
st (a) =ax 1y,
tF (a) = acgrs X aciFs
o where B ) )
acoFs ®ac1Fs = F1 > (Fo > a)<o> @ Fa(For > a) <1 Frr

o and the algebra £A is braided commutative as well:
axfF b= b<0F> *F (b<1F> > a).



A. B., A.Pachol , J. Phys. A. (2016)

Theorem
Let H be a bialgebra and A ey QD" stands for braided
commutative module algebra in the Yetter-Drinfeld category.

Assume that F = F1 ® F, € H® H is a normalized cocycle twist in
H. Then

FAF x HF = (A % H)F_

are isomorphic as bialgebroids, where F denotes bialgebroid cocycle
twist

F—)F_:(lANFl)@A(lANFQ)

obtained from F.



For the proof: The isomorphism
©:AFx HF - AxH

where ¢ (ax L) = (Fy>a) x Rl
of total algebras makes commuting the following diagram

FAF x HF —r AxH
"E ~
AF | 1A,

PR AY

(FAF x HF) @4 (FAF x HF) (Ax H)®.a(AxH)

ie. Apop=(p®.a (p)oA\?: as well as
<posF:s,:-, gpotF:t,:-, €op ==¢.

For antipodes A= Yo gy op L.



Quasi-triangular example: bialgebra level

o the universal quantum R-matrix R=Ri Q@ Ro e HR H
RA(X)R™! = A°P(X),

"almost cocommutative Hopf algebra”

and (A & Id)R = Ri3Ro3,
(id® A)R = Ri3R1,
(e® id)R = (id ® )R = 1

which imply quantum Yang-Baxter equation
R12R13R23 = RozRi3Rio

(H, R) is quasi-triangular bialgebra if (H, Ry;') is quasi-triangular.

Notation: B B B B
R=RI@R,cH@Hand R'=R @Ry, Ry'=R @R



Braided commutativity 2

o (Left) module A over (H, R) becomes automatically a
(left-right) Yetter-Drinfeld module with the right coaction

pr(a) =(Re>a)® R

for all a € A.

o Particularly, a module algebra A = (A, x,14, H>>) is an
algebra in HQJBDH if and only if it is a braided commutative:

axb=(Rx>b)x(Ri > a)



Twist of quasi-triangular bialgebra

(H,R) — (HF,RF)

o (HF,RF = F1RF~1) is quasi-triangular too.

o the module algebra (A, xf, 14, H>) € HF@”}DHF if and only if
(A, %, 14, H>) € DD where right coactions are given by
the corresponding R-matrices.



Back to the covariant quantum phase space

X 3 Ug, =W x Uy
where Uy, =T x U.

[La7 Lb] = ’)/;bLC7 [Lb7 pl/] - ([b)gpaa [puv pV] =0

[La,XM] = _(Za)gxav [pl,,Xu] = 14, [Xuvxl/] =0

Any Drinfeld twist F € Uy, ® U, allows to perform
deformation quantization of the Hopf algebroid X' x U,;, and
to construct its Hilbert space (Quantum Mechanical)
realization with non-commuting position operators. In such
framework specialization of the formal deformation parameter to
some numerical value is possible.



Hopf-Galois context
For a comodule M over the Hopf algebra H with the right coaction
p: M — M ® H one defines a subalgebra of coinvariant elements,
MeH =The M:p(m)=m®1y}.
We say that the extension M" ¢ M is H-Hopf-Galois if the map

M@MCOHM—>M®H

given by m® n+— (m® 1y)p(n), is bijective.

A smash product A x H is a particular kind of a crossed product
algebra A x, H, where a convolution invertible map

o:H®H — A has to satisfy (in A) the so-called 2-cocycle

[L1) &> oSy Kaylo(Ley, J2)Kz) = oLy Ju))o(Lzyde), K)
where o(J,1y) = o(1n,J) = €(J)1a as well as twisted module
(L) > (Ja) & a)]o(L2), J2)) = oLy Ja))l(L)J2)) > 2

conditions for any a€ Aand L, J,K € H.



These properties allow to establish on the vector space A ® H the
structure of unital, associative algebra with the multiplication

(a®@ L)(b® J) = a(L(1) > b)a(L(2), J1)) ® L(3) J2)

This algebra is denoted as A X, H . It has a natural left A module
and right H comodule structures (the so-called normal basis
property), which makes it a H-comodule algebra (a coring) with
the subalgebra A ® 1y = (A x, H)°H composed of coinvariants
of the coaction.

Due to this fact it provides a canonical example of Hopf-Galois
extension which, in turn, is an algebraic counterpart of a quantum
principal bundle.

Taking the trivial cocycle og(L, J) = €(L)e(J) 14 one reconstructs
the smash product. A natural question which appears now is
whether the result of the present section can be extended to the
case of nontrivial cocycleoc: HQH — A7



Conclusions

o The covariant phase space of Quantum Mechanics has a Hopf
algebroid structure

o Deformed phase space treated as an algebra does not
distinguish between commuting and non-commuting
space(time) variables FA x HF = A x H

o ... unless we consider FAF x HF = (A x H)F = bialgebroid
over A while A x H = bialgebroid over A.
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Thank you for your attention!



