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Plan:
I. Motivation and general framework: Weyl-Heisenberg algebras
and their extensions.
II. Bi-/Hopf algebroids.
III. Twisting bi-/Hopf algebroids by Drinfeld twist.
IV. Yetter-Drinfeld modules and braided categories.
V. Smash product bi-/Hopf algebroids and their twistings by
Drinfeld twists.
VI. Quasi-triangular examples.
VII. Hopf-Galois context.

NOTE: All rings are unital. All objects are modules over
commutative (background) ring or field K. All maps are K- linear.
⊗ = ⊗K if not stated otherwise.
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CCR algebra = Weyl-Heisenberg algebra=quantum phase
space

[Pµ, x
ν ] = −iδνµ 1, [xµ, xν ] = 0 [Pµ,Pν ] = 0.

where µ, ν = 0, . . . n − 1.

Hilbert space realization (K = C)

Providing the algebra of differential operator on Kn

Generating some abstract associative unital algebra (Weyl
algebra) ⇒ smash product construction
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Smash product algebras

Ao H - is an extension of a (left) module algebra
(A, ?,HB, 1A) by the corresponding bialgebra H to create a
new algebra

by determining on the K-module A⊗ H = Ao H the
multiplication (LB 1A = ε(L)1A):

(ao L) ? (b o J) = a ? (L(1) B b)o L(2)J.

the initial algebras are canonically embedded, A 3 f � f ⊗ 1A
and H 3 L � 1A ⊗ L as subalgebras in Ao H.

Example: Trivial action L . a = ε(L)a makes Ao H isomorphic to
the ordinary tensor product algebra A⊗ H:
(f ⊗ L)(g ⊗M) = fg ⊗ LM.
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Weyl-Heisenberg algebra as a smash product

Weyl-Heisenberg algebra contains two Abelian subalgebras which
can be considered as a universal enveloping algebras of two Abelian
Lie algebras:

Algebra of coordinates X 3 xµ.
X ≡ {C[x0, . . . , xn−1] : [xµ, xν ] = 0}
X is T -(Hopf) module algebra.

Algebra of translations T 3 Pµ.

T ≡ {C[P0, . . . ,Pn−1] : [Pµ,Pν ] = 0}
T is Hopf algebra with :
∆(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ

The action is implemented by a duality map

Pµ . x
ν = −i〈Pµ, xν〉 = −iδνµ, Pµ . 1 = 0

and can be extended to whole algebra X due to the Leibniz rule,
e.g., Pµ . (xνxλ) = −iδνµxλ − iδλµx

ν .
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From X o T =W −→ standard set of Heisenberg commutation
relations:

[Pµ, x
ν ]o = −iδνµ 1, [xµ, xν ]o = 0 [Pµ,Pν ]o = 0.

as generating relations.

Note that W = X o T cannot be equipped in Hopf algebra
structure for two reasons:

evaluation of the counit ε on commutator [Pµ, x
ν ] = −iδνµ 1

leads to a contradiction since ε(1) = 1.
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Lie-algebraic formula for the coproduct

∆0(y) = y ⊗ 1 + 1⊗ y for y ∈ {x1 . . . xn} ∪ {P1 . . .Pn}

is incompatible with [Pµ, x
ν ] = −ıδνµ 1.

Instead the structure of unital non-counital bialgebra
equipped with left or right ’half-primitive’ coproducts:

∆R
0 (xµ) = xµ ⊗ 1; ∆L

0(xµ) = 1⊗ xµ

and the standard: ∆0(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ turns out to be
compatible.

In contrast to primitive coproduct which is valid only on
generators, the above ’half-primitive’ coproducts preserve their
form for all elements of the algebra X . It provides a (trivial)
comodule algebra structure.

On the other hand one can show that X o T =W has the
structure of

Hopf algebroid. S. Meljanac+Zagreb group]

7/36



Lie-algebraic formula for the coproduct

∆0(y) = y ⊗ 1 + 1⊗ y for y ∈ {x1 . . . xn} ∪ {P1 . . .Pn}

is incompatible with [Pµ, x
ν ] = −ıδνµ 1.

Instead the structure of unital non-counital bialgebra
equipped with left or right ’half-primitive’ coproducts:

∆R
0 (xµ) = xµ ⊗ 1; ∆L

0(xµ) = 1⊗ xµ

and the standard: ∆0(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ turns out to be
compatible.

In contrast to primitive coproduct which is valid only on
generators, the above ’half-primitive’ coproducts preserve their
form for all elements of the algebra X . It provides a (trivial)
comodule algebra structure.

On the other hand one can show that X o T =W has the
structure of

Hopf algebroid. S. Meljanac+Zagreb group]
7/36



Covariant quantum phase space

Consider a Lie algebra g:

[La, Lb] = γcabLc

and its finite dimensional representation

ρ : g→ EndKV ⇔ . : g⊗ V → V

L . x ≡ ρ(L)(x) = L̂µνxν .
This action can be uniquely extended to the action of the entire
universal enveloping algebra . : Ug ⊗ C∞(V )→ C∞(V ) if we
define the Lie algebra generators

ρ̂(L) = −L̂βαxα∂β

in terms of first-order differential operators, which are in fact
coordinate independent objects (∂µ = ∂

∂xµ ). This realization leads
to the Weyl-Heisenberg extension of the initial algebra g.
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Resulting (abstract) algebra can be represented by the following
set of commutation relations

[La, Lb] = γcabLc , [Lb, pν ] = (L̂b)αν pα, [pµ, pν ] = 0

[La, x
µ] = −(L̂a)µαx

α, [pν , x
µ] = 1 δµν , [xµ, xν ] = 0

The first line represents a Lie subalgebra which can be recognized
as a inhomogeneous extension igρ of the initial Lie algebra g with
respect to the representation ρ.

Thus a unital associative algebra generated by the above
commutation relations can be presented as a double smash
product:

X o Uigρ ≡ W o Ug

since Uigρ = T o Ug.

9/36



Bi-/Hopf algebroids

J.H. Lu, Intern. Journ. Math. 7, 47 (1996);
P. Xu, Comm. Math. Phys. 216, 539 (2001);

T. Brzezinski, G. Militaru, J. Alg. 251, (2002);
G. Bohm, K. Szlachanyi, J. Algebra 274 (2004).

Hopf algebroids are Hopf algebras over noncommutative rings.

A left Hopf algebroid M = (M,A, s, t,∆, ε) is a left bialgebroid
together with an antipode λ : M → M .
The bialgebroid M consists of the following data

a total algebra M and a base algebra A

two mappings providing A- bimodule or Ae-ring structure on M:

an algebra homomorphism s : A � M - a source map
an algebra anti-homomorphism t : A � M - a target map
such that: s(a)t(b) = t(b)s(a), for all a, b ∈ A and

a.m.b = s(a)t(b)m
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coproduct and counit maps, with analogous axioms of a coalgebra
but all mappings are A-bimodule homomorphisms and ⊗ =⇒ ⊗A.

Since M ⊗A M is not an algebra one assumes a coring structure,
i.e. the bialgebroid coproduct map ∆ : M → M ⊗A M is a
coassociative A-bimodule map :

∆(s(a)t (b)m) = s(a)m(1) ⊗A t(b)m(2)

Notice: (t(a)⊗A 1− 1⊗A s(a))∆(m) = 0
Moreover, the image Im∆ ⊆ M ×A M ⊆ M ⊗A M, i.e.

∆(m)(t(a)⊗A 1− 1⊗A s(a)) = 0

and we can require that ∆ : M → M ×A M is an algebra map, i.e.

∆(mn) = ∆(m)∆(n) ≡ m(1)n(1) ⊗A m(2)n(2)

Note: M ×A M is known as a Takeuchi product.
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The counit map ε : M � A has to satisfy:
ε(1M) = 1A,
ε(mn) = ε(ms(ε(n))) = ε(mt(ε(n))),
s(ε(m(1)))m(2) = t(ε(m(2)))m(1) = m
enables to introduce the anchor map M 3 m 7→ m I∈ EndA
by m I a = ε(ms(a)) = ε(mt(a))

In the case of Hopf algebroid one requires, in addition, an
antipode as antialgebra map λ : M � M
λ ◦ t = s
λ(m(2))m(1) = t(ε(λ(m)))
there exists a section γ : M ⊗A M � M ⊗M s.t.

µM ◦ (id ⊗ λ) ◦ γ ◦∆ = s ◦ ε
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Yetter - Drinfeld modules (left-right)

(Yang-Baxter modules, crossed modules, Hopf modules)
A Yetter - Drinfeld (YD) module over a bialgebra H(µ, η,∆, ε), is
a H-module which is simultaneously a H-comodule

a left H-module with the action H ⊗ A→ A, L⊗ a 7→ L . a

a right H-comodule with the coaction ρ : A 7→ A⊗ H;
ρ(a) = a<0> ⊗ a<1>

Compatibility condition between action and coaction
is required in the form:

ρ(LB a) = L(2) . a<0> ⊗ L(3) . a<1>L(1)

or

L(1) . a<0> ⊗ L(2)a<1> = (L(2) . a)<0> ⊗ (L(2) . a)<1>L(1)
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Algebras in Yetter-Drinfeld category

HYDH - denotes the category of all (left-right)
Yetter-Drinfeld modules (braided monoidal category).

LB (a⊗ a′) = L(1) B a⊗ L(2) B
′ a′

(a⊗ a′)<0> ⊗ (a⊗ a′)<1> = a<0> ⊗ a′<0′> ⊗ a′<1′>a<1>

A⊗ A′ → A′ ⊗ A : a⊗ a′ → a′<0′> ⊗ (a′<1′> B a)

A module-comodule algebra A = (A, ?, 1A,HB, ρ)

LB (a ? b) = (L(1) B a) ? (L(2) B b)

(a ? b)<0> ⊗ (a ? b)<1> = (a<0> ? b<0>)⊗ b<1>a<1>

is an algebra in HYDH if and only if it is a braided
commutative, i.e. :

a ? b = b<0> ? (b<1> B a)
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Drinfeld twist deformation
Deformation- ’quantization’ procedure

The twist F - invertible element of H ⊗ H
1 the two-cocycle condition

(F ⊗ 1)(∆⊗ id)F = (1⊗ F )(id ⊗∆)F

2 normalization (id ⊗ ε)F = (ε⊗ id)F = 1⊗ 1,

Twisted bi/Hopf algebra

H(µ, η,∆, ε,S) −→ HF (µ, η,∆F , ε,SF )

∆F (·) = F∆(·)F−1

S (·)→ SF (·) = F1S(F2)S(·)S(F1′)F2′

Notation:

F = F1 ⊗ F2 ∈ H ⊗ H, F−1 = F̄1′ ⊗ F̄2′ ∈ H ⊗ H

L(1) ⊗ L(2) → L(1F ) ⊗ L(2F ) = F1L(1)F̄1′ ⊗ F2L(2)F̄2′
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Twisted braided commutativity

(Left-right) Yetter-Drinfeld module over H with the right
coaction

ρ(a) = a<0> ⊗ a<1>

becomes automatically a YD module over HF if the action
remains unchanged and the coaction is modified by the
twist

ρF (a) = F1B(F̄2′Ba)<0>⊗F2(F̄2′Ba)<1>F̄1′ = a<0F>⊗a<1F>

for all a ∈ A.

Particularly, a module-comodule algebra A = (A, ?, 1A,HB, ρ)
is an algebra in HYDH if and only if its twisted counterpart

FA
F = (A, ?F , 1A,H

FB, ρF ) is braided commutative:

a ?F b = b<0F> ?F (b<1F> B a),

where a ?F b = (F̄1 . a) ? (F̄2 . b) denotes modified product.
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Twisted smash product

Proposition
[D. Bulacu, F. Panaite, F. M. J. Van Oystaeyen, Comm. Alg. 28 (2000),631]

For any Drinfeld twist F :

Ao H ∼=F A o HF

even though A �F A and H � HF (as bialgebras).

Both algebras are determined on the same K-module A⊗ H
but differ by the multiplications:

(ao L) ? (b o J) = a ? (L(1) . b)o L(2)J

(ao L) ?F (b o J) = a ?F (L(1F ) . b)o L(2F )J

where ∆F (L) = F∆(L)F−1 = L(1F ) ⊗ L(2F ) - twisted

coproduct of the bialgebra HF .
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Both algebras are generated by elements:

ao 1H , a ∈ A and 1A o L, L ∈ H

The isomorphism ϕ :F A o HF → Ao H can be defined by
the formula

ϕ (ao L) =
(
F̄1 . a

)
o F̄2L

such that:

ϕ ((ao L) ?F (b o J)) = ϕ (ao L) ? ϕ (b o J)

for all a, b ∈ A and L, J ∈ H.

Due to the normalization condition: ϕ(1A o L) = 1A o L,
but ϕ (ao 1H) =

(
F̄1 . a

)
o F̄2.

The inverse map ϕ−1 : Ao H → AF o HF is given by
ϕ−1 (ao L) = (F1 . a)o F2L.

18/36



II.Cross product algebras as bialgebroids
Theorem [T. Brzezinski, G. Militaru, J. Alg. 251, (2002)]:
Let H = (H,∆, ε) be a bialgebra, A = (A, ?,HB) is a left H-module
algebra and (A, ρ) a right H-comodule. Then (A, ?,HB, ρ) is a braided

commutative algebra in HYDH if and only if
(
Ao H, s, t, ∆̃, ε̃

)
is an

A-bialgebroid with

The source, target, coproduct and the counit given by:

s (a) = ao 1H , t (a) ≡ ρ(a) = a<0> o a<1>

∆̃ (ao L) = (ao L(1))⊗A (1A o L(2))

ε̃ (ao L) = ε(L)a

(ao L) I b = a ? (LB b)

If H has an antipode S : H � H then Ao H has the antipode λS

λS(1AoL) = 1AoS(L), λS(ao1H) = S2(a<1>)Ba<0>oS2(a<2>)

and γ((ao L)⊗A (b o N)) = (ab<0> o b<1>L)⊗ (1A o N)

denotes a canonical section γ : (A o H)⊗A (A o H)→ (A o H)⊗ (A o H).
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Back to the Weyl algebra

W = X o T = {[Pµ, xν ] = −ıδνµ 1, [xµ, xν ] = [Pµ,Pν ] = 0}
is (Hopf) bialgebroid (W,X , s, t, ∆̃, ε̃)

The source and target maps: s (x) = t(x) = x ⊗ 1T .

The coproduct and counit:

∆̃ (x o P) = (x o P(1))⊗X (1X o P(2))

ε̃ (x o P) = ε(P)x

for all x ∈ X and P ∈ T .

And ∆̃(xµ) = xµ ⊗X 1 = 1⊗X xµ ; ∆̃(Pµ) = Pµ ⊗X 1 + 1⊗X Pµ
together with ε̃(xµ) = xµ ; ε̃(Pµ) = 0 ; ε̃(1) = 1X .
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III.Twisted bialgebroids

P. Xu, Comm. Math. Phys. 216, 539 (2001).

Bialgebroid definition provides a canonical action
I: M ⊗ A→ A
(also known as an anchor M 3 m→ m I∈ EndA):
m I a = ε(ms(a)) = ε(mt(a)),

Theorem [Xu]:
Assume that (M,A, s, t,∆, ε) is bialgebroid over the algebra A and
F = F1 ⊗A F2 ∈ M ⊗A M is a ”twistor” (Hopf algebroid twist).
Then (M,AF , sF , tF ,∆F , ε) is a bialgebroid over the algebra AF ,
where

sF (a) = s
(
F̄1 I a

)
F̄2 ; tF (a) = t

(
F̄2 I a

)
F̄1 ∀a ∈ A.

and new twisted coproduct ∆F : M � M ⊗AF
M :

∆F (m) = F#
(
∆ (m)F−1

)
, ∀ m ∈ M
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For the twisted coproduct ∆F : M � M ⊗AF
M :

∆F (m) = F#
(
∆ (m)F−1

)
, ∀ m ∈ M

F# : M ⊗A M → M ⊗AF
M is defined by:

F#(m ⊗A n) = (F1m)⊗AF
(F2 n).

The multiplication in M does not change.
In A it changes to:

? 7→ ?F = ? ◦ (F̄1 I ⊗F̄2 I)
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IV.Main result
Goal: To compare two constructions of bialgebroids:

The bialgebroid obtained by bialgebroid twisting of the smash
product algebra (Ao H)F̃

and
bialgebroid obtained from the smash product algebra of twisted

bialgebra with twisted YD module algebra FA
F o HF

Main result: Both bialgebroids are equivalent (isomorphic):

FA
F o HF ∼= (Ao H)F̃

Remainder: As algebras all three are equivalent

FA
F o HF ∼= Ao H ∼= (Ao H)F̃

Corollary: First two are not isomorphic as bialgebras !

FA
F o HF � Ao H
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Where the module-comodule algebra A is braided commutative in
the category HYDH ,
(a ? b = b<0> ? (b<1> . a)).

BM construction: Ao H is a bialgebroid over the algebra A if we
define
(shifting ∆ : H → H ⊗ H to ∆̃ : Ao H → (Ao H)⊗A (Ao H))

∆̃(ao L) = (ao L(1))⊗A (1A o L(2)), s (a) = ao 1H

t (a) = a<0> o a<1>

ε̃(ao L) = ε(L)a
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It is easy to see that any Drinfeld twist F = F1 ⊗ F2 ∈ H ⊗ H in
the bialgebra H
can be shifted to the bialgebroid twistor F̃ ∈ (Ao H)⊗A (Ao H)
by

F → F̃ = (1A o F1)⊗A (1A o F2)

which automatically satisfies bialgebroid cocycle and normalization
conditions. Therefore, it can be used to construct new (twisted)

bialgebroid (Ao H)F̃ by making use of P. Xu twistor F̃ .
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Then apply bialgebroid twisting [Xu] to bialgebroid (Ao H)F̃ by
means of the shifted twist F̃

∆̃F̃ (ao J) = F̃#(∆̃(ao J)F̃−1), sF̃ (a) = (F̄1 . a)o F̄2,

tF̃ (a) =
(
F̄2 . a

)
<0>

o (F̄2 B a)<1>F̄1

where

F̃# : (Ao H)⊗A (Ao H)→ (Ao H)⊗AF
(Ao H)

and F#(m ⊗A n) = (F1m)⊗AF
(F2 n).

Note: original Xu twistor is an inverse of ours.
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Similarly (BM construction)

FA
F o HF a bialgebroid over the algebra FA if we set

∆̃F (ao L) = (ao L(1F ))⊗FA (1A o L(2F ))

sF (a) = ao 1H ,

tF (a) = a<0F> o a<1F>

where
a<0F> ⊗ a<1F> = F1 B (F̄2′ B a)<0> ⊗ F2(F̄2′ B a)<1>F̄1′

and the algebra FA is braided commutative as well:
a ?F b = b<0F> ?F (b<1F> . a).
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A. B., A.Pachol , J. Phys. A. (2016)

Theorem
Let H be a bialgebra and A ∈HYDH stands for braided
commutative module algebra in the Yetter-Drinfeld category.
Assume that F = F1 ⊗ F2 ∈ H ⊗H is a normalized cocycle twist in
H. Then

FA
F o HF ∼= (Ao H)F̃

are isomorphic as bialgebroids, where F̃ denotes bialgebroid cocycle
twist

F → F̃ = (1A o F1)⊗A (1A o F2)

obtained from F .
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For the proof: The isomorphism

ϕ : AF o HF → A o H

where ϕ (ao L) = (F̄1 . a)o F̄2L
of total algebras makes commuting the following diagram

FA
F o HF ϕ−−−−−−→ A o H

∆̃F ↓ ↓ ∆̃
F̃

(FA
F o HF )⊗

FA (FA
F o HF )

ϕ⊗
F Aϕ−−−−−−−→ (A o H)⊗

FA (A o H)

i.e. ∆̃F̃ ◦ ϕ = (ϕ⊗
FA ϕ) ◦ ∆̃F as well as

ϕ ◦ sF = sF̃ , ϕ ◦ tF = tF̃ , ε̃ ◦ ϕ = ε̃.

For antipodes λ̃ = ϕ ◦ λBM ◦ ϕ−1.
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Quasi-triangular example: bialgebra level

the universal quantum R-matrix R = R1 ⊗ R2 ∈ H ⊗ H

R∆(X )R−1 = ∆op(X ),

”almost cocommutative Hopf algebra”

and (∆⊗ id)R = R13R23,
(id ⊗∆)R = R13R12,
(ε⊗ id)R = (id ⊗ ε)R = 1

which imply quantum Yang-Baxter equation

R12R13R23 = R23R13R12

(H,R) is quasi-triangular bialgebra if (H,R−121 ) is quasi-triangular.

Notation:
R = R1 ⊗ R2 ∈ H ⊗ H and R−1 = R̄1 ⊗ R̄2, R−121 = R̄2 ⊗ R̄1.
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Braided commutativity 2

(Left) module A over (H,R) becomes automatically a
(left-right) Yetter-Drinfeld module with the right coaction

ρR(a) = (R2 B a)⊗ R1

for all a ∈ A.

Particularly, a module algebra A = (A, ?, 1A,HB) is an
algebra in HYDH if and only if it is a braided commutative:

a ? b = (R2 B b) ? (R1 B a)
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Twist of quasi-triangular bialgebra

(H,R) −→ (HF ,RF )

(HF ,RF ≡ F21RF
−1) is quasi-triangular too.

the module algebra (A, ?F , 1A,HB) ∈ HFYDHF
if and only if

(A, ?, 1A,HB) ∈ HYDH , where right coactions are given by
the corresponding R-matrices.
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Back to the covariant quantum phase space

X o Uigρ ≡ W o Ug

where Uigρ = T o Ug.

[La, Lb] = γcabLc , [Lb, pν ] = (L̂b)αν pα, [pµ, pν ] = 0

[La, x
µ] = −(L̂a)µαx

α, [pν , x
µ] = 1 δµν , [xµ, xν ] = 0

Any Drinfeld twist F ∈ Uigρ ⊗ Uigρ allows to perform
deformation quantization of the Hopf algebroid X o Uigρ and
to construct its Hilbert space (Quantum Mechanical)
realization with non-commuting position operators. In such
framework specialization of the formal deformation parameter to
some numerical value is possible.
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Hopf-Galois context
For a comodule M over the Hopf algebra H with the right coaction
ρ : M → M ⊗ H one defines a subalgebra of coinvariant elements,
McoH = {h ∈ M : ρ(m) = m ⊗ 1H}.
We say that the extension McoH ⊂ M is H-Hopf-Galois if the map

M ⊗McoH M → M ⊗ H

given by m ⊗ n 7→ (m ⊗ 1H)ρ(n), is bijective.
A smash product AoH is a particular kind of a crossed product
algebra Aoσ H, where a convolution invertible map
σ : H⊗H → A has to satisfy (in A) the so-called 2-cocycle

[L(1) B σ(J(1),K(1))]σ(L(2), J(2)K(2)) = σ(L(1), J(1))σ(L(2)J(2),K )

where σ(J, 1H) = σ(1H , J) = ε(J)1A as well as twisted module

[L(1) B (J(1) B a)]σ(L(2), J(2)) = σ(L(1), J(1))[(L(2)J(2)) B a]

conditions for any a ∈ A and L, J,K ∈ H.
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These properties allow to establish on the vector space A⊗H the
structure of unital, associative algebra with the multiplication

(a⊗ L)(b ⊗ J) = a(L(1) B b)σ(L(2), J(1))⊗ L(3) J(2)

This algebra is denoted as Aoσ H . It has a natural left A module
and right H comodule structures (the so-called normal basis
property), which makes it a H-comodule algebra (a coring) with
the subalgebra A⊗ 1H = (Aoσ H)coH composed of coinvariants
of the coaction.
Due to this fact it provides a canonical example of Hopf-Galois
extension which, in turn, is an algebraic counterpart of a quantum
principal bundle.
Taking the trivial cocycle σ0(L, J) = ε(L)ε(J) 1A one reconstructs
the smash product. A natural question which appears now is
whether the result of the present section can be extended to the
case of nontrivial cocycle σ : H⊗H → A ?
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Conclusions

The covariant phase space of Quantum Mechanics has a Hopf
algebroid structure

Deformed phase space treated as an algebra does not
distinguish between commuting and non-commuting
space(time) variables FAo HF ∼= Ao H

... unless we consider FA
F o HF ∼= (Ao H)F = bialgebroid

over FA while Ao H = bialgebroid over A.

Thank you for your attention!
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