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Global action-angle map and duality

for a Poisson-Lie deformation of the BCn Sutherland system

The talk is based on joint works with T.F. Görbe and I. Marshall.

Consider two Liouville integrable Hamiltonian systems (M,ω,H) and
(M̂, ω̂, Ĥ). These systems are said to be in action-angle duality if
there exist Darboux coordinates qi, pi on (dense open subset of) M
and Darboux coordinates p̂k, q̂k on (dense open subset of) M̂ and a
global symplectomorphism R : M → M̂ such that

H ◦ R−1 depends only on p̂ (action variables for H) and

Ĥ ◦ R depends only on q (action variables for Ĥ).

This is non-trivial if both systems are themselves interesting ones.

A special case of duality is self-duality, where the leading Hamilto-
nians of the two systems have the same form.
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It is a particularly interesting relation if both are many-body systems
(interacting points) in such a way that

the qi describe particle positions for H(q, p) and

the p̂i describe particle positions for Ĥ(p̂, q̂).

• We study integrable many-body systems of Toda and Calogero
(Sutherland, Moser, Olshanetsky-Perelomov, Ruijsenaars-Schneider)
type, which describe “particles” moving on the line or on the circle.

• It was discovered by Ruijsenaars (1988-95) in his direct construc-
tion of action-angle variables for Calogero and Toda type systems
that these systems enjoy duality relations.

• My research goal is to understand all known dualities in group
theoretic terms and derive new ones.

• In this talk I shall focus on some many-body system associated
with the BCn root system.
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Duality from Hamiltonian reduction: the basic idea

Goes back to Kazhdan-Kostant-Sternberg [1978], Ruijsenaars [1988]
Fock-Gorsky-Nekrasov-Roubtsov [2000] . . .

Start with a ‘big phase space’M equipped with two Abelian Poisson

algebras H1 and H2 generated by two families of ‘free’ Hamiltonians.

Apply some suitable reduction to the big phase space and construct

two ‘natural’ models, M and M̂ , of the single reduced phase space.

The two families of ‘free’ Hamiltonians turn into commuting many-

body Hamiltonians and particle positions in terms of both mod-

els. Their rôle is interchanged in the two models.

The natural symplectomorphism between the two models of the

reduced phase space yields the ‘duality symplectomorphism’.
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momentum level surface

orbits
of isotropy group = points of reduced phase space

M

M̂

Figure. The geometry of reduction and action-angle duality.

Key question: What to reduce and how? The big phase space,

the free Hamiltonians, the symmetry and constraints defining the

reduction must be found by ‘inspiration’.Then the work may start.
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Starting with the Abelian algebras H1 and H2 on the master phase
space M, the reduced Abelian algebras are defined by Hired ◦ π0 =
Hi◦ι0 for i = 1,2. They turn into the Abelian algebras of the models
M and M̂ according to H◦Ψ = H1

red = P̂◦Ψ̂ and Q◦Ψ = H2
red = Ĥ◦Ψ̂.
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The simplest self-dual system: HCal(q, p) =
1

2

n∑
k=1

p2
k +

1

2

∑
j 6=k

µ2

(qk − qj)2

Symplectic reduction: Consider phase space T ∗iu(n) ' iu(n) × iu(n) := {(Q,P )}
with two families of ‘free’ Hamiltonians {tr (Qk)} and {tr (P k)}. Reduce by the
adjoint action of U(n) using the moment map constraint

[Q,P ] = C(µ) := iµ
∑
j 6=k

Ej,k

This yields the rational Calogero system (OP [76], KKS [78]):

gauge slice (i): Q = q := diag(q1, . . . , qn), q1 > · · · > qn, with p := diag(p1, . . . , pn)

P = p+ iµ
∑
j 6=k

Ejk

qj − qk
≡ LCal(q, p) Lax matrix, tr (dP ∧ dQ) =

n∑
k=1

dpk ∧ dqk

gauge slice (ii): P = p̂ := diag(p̂1, . . . , p̂n), p̂1 > · · · > p̂n, with q̂ := diag(q̂1, . . . , q̂n)

Q = −LCal(p̂, q̂) dual Lax matrix, tr (dP ∧ dQ) =
n∑

k=1

dq̂k ∧ dp̂k.

The alternative gauge slices give two models of the reduced phase space. Their
natural symplectomorphism is the self-duality map.
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Some examples of dual pairs due to Ruijsenaars [1995]

The trigonometric Sutherland system and its Ruijsenaars dual:

Htrigo−Suth =
1

2

n∑
k=1

p2
k +

µ2

2

∑
j 6=k

1

sin2(qk − qj)

Ĥrat−RS =
n∑

k=1

(cos q̂k)
∏
j 6=k

[
1−

µ2

(p̂k − p̂j)2

]1
2

Derived by reduction of T ∗U(n) [Kazhdan-Kostant-Sternberg 1978, Ayadi-LF 2010].

‘Relativistic’ deformation of the above dual pair:

Htrigo−RS =
n∑

k=1

(cosh pk)
∏
j 6=k

[
1 +

sinh2µ

sin2(qk − qj)

]1
2

Ĥtrigo−RS =
n∑

k=1

(cos q̂k)
∏
j 6=k

[
1−

sinh2µ

sinh2(p̂k − p̂j)

]1
2

Derived by reduction of the Heisenberg double of Poisson U(n) [LF-Klimcik 2011].

These many-body systems are associated with the An−1 root system.
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A dual pair associated with the BCn root system
The trigonometric BCn Sutherland system

H(q, p) =
1

2

n∑
j=1

p2
j+

∑
1≤j<k≤n

(
γ

sin2(qj − qk)
+

γ

sin2(qj + qk)

)
+

n∑
j=1

γ1

sin2(qj)
+

n∑
j=1

γ2

sin2(2qj)

is dual to the (completed) rational Ruijsenaars-Schneider-van Diejen system

Ĥ(λ, θ) =
n∑

j=1

cos(θj)

[
1−

ν2

λ2
j

]1
2
[
1−

κ2

λ2
j

]1
2

n∏
k=1

(k 6=j)

[
1−

µ2

(λj − λk)2

]1
2
[
1−

µ2

(λj + λk)2

]1
2

−
νκ

µ2

n∏
j=1

[
1−

µ2

λ2
j

]
+
νκ

µ2
. Coupling constants are subject to

γ > 0, γ2 > 0, 4γ1 + γ2 > 0, and µ > 0, |ν| 6= |κ| 6= 0. Duality holds under the

relation γ = µ2, γ1 = νκ
2
, γ2 = (ν−κ)2

2
. (Sorry: (λ, θ) ≡ (p̂, q̂).)

The Sutherland positions q live in the open polytope (Weyl alcove)

D1 = {q ∈ Rn |
π

2
> q1 > · · · > qn > 0}

and the Sutherland actions λ (dual positions) fill the polyhedron

D2 = {λ ∈ Rn | λa − λa+1 ≥ µ (a = 1, . . . , n− 1), λn ≥ max(|ν|, |κ|)}.

The Liouville tori collapse at the boundary of D2. The above description of dual
system is valid on a dense open submanifold parametrized by Do2 × Tn.
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Where does it come from and what is it good for?

Reduce the master phase space T ∗SU(2n) = {(k, J) | k ∈ SU(2n), J ∈ su(2n)}
using the symmetry group K+ ×K+, where K+ = S(U(n) × U(n)) is the block-
diagonal subgroup of K = SU(2n).

Two Abelian algebras of free Hamiltonians are generated by

Ha(k, J) =
1

2
tr (iJ)2a and Ĥa(k, J) :=

1

2
tr (k†IkI)a with I := diag(1n,−1n).

The moment map values for the actions of K+ generated by left- and respectively
by right-multiplications are fixed to be

diag(C(µ), 0n) + i(µ− ν)I and − iκI.

Here, the matrix C(µ) ∈ u(n) is given by C(µ)lm = iµ(δlm − 1).

The free Hamiltonians Ha reduce to the Sutherland Hamiltonians, which in their
action-angle variables λ, θ become

Hred
a (λ) =

n∑
j=1

(λj)
2a, a = 1, . . . , n.

The free Hamiltonians Ĥa reduce to the RSvD Hamiltonians, which in their
action-angle variables q, p become

Ĥred
a (q) =

n∑
j=1

cos(2aqj), a = 1, . . . , n.
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• Each Sutherland Hamiltonian Hred
a has a unique global minimum, correspond-

ing to the ‘special vertex’ of the action polyhedron D2. Each of them is non-
degenerate (the commutant is Abelian).

• Each RSvD Hamiltonian Ĥred
a is maximally superintegrable, since it admits the

following conserved quantities:

fi(q, p) :=
n∑

j=1

pjYj,i(q), i ∈ {1, . . . , n} \ {a},

where Y (q) is the inverse of the non-degenerate matrix Xi,j(q) := ∂Ĥred
i (q)
∂qj

, ∀q ∈ D1.

This example was analyzed in the following paper:

L.F. and T.F. Görbe, Duality between the trigonometric BC(n) Sutherland system and a com-

pleted rational Ruijsenaars-Schneider-van Diejen system, Journ. Math. Phys. 55, 102704 (2014)

Next, I describe a generalization based on replacing the master

system defined on the cotangent bundle T ∗SU(2n) by its natural

Poisson-Lie analogue.
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A new dual pair from a reduction of a Heisenberg double

For the big phase space, take the standard Poisson-Lie analogue of T ∗SU(2n).
This is the (symplectic) Heisenberg double of Poisson SU(2n), which as a man-
ifold is the real Lie group M := SL(2n,C).

• Every g ∈M admits the alternative Iwasawa decompositions

g = kLbR = bLkR, kL, kR ∈ K, bL, bR ∈ B,
where K := SU(2n) and B := B(2n) consists of upper triangular matrices with
positive diagonal. Using these, M is equipped with the Alekseev-Malkin sym-
plectic form

ωM =
1

2
=tr (dbLb

−1
L ∧ dkLk

−1
L ) +

1

2
=tr (b−1

R dbR ∧ k−1
R dkR).

• The smooth functions depending only on bL, or only on bR, form two mutually
commuting Poisson algebras, and similarly for kL and kR. These are (up to signs)
the Poisson algebras of the standard Poisson groups K and B in duality.

The ‘master system’ (M, ωM, {Ha}, {Ĥa}) is now defined as follows. Using the
Iwasawa decomposition of g ∈ M = SL(2n,C), written as g = kb, we introduce
the ‘unreduced Lax matrices’

Ω(g) := bb† and L(g) := k†IkI, with I := diag(1n,−1n).

Two Abelian Poisson algebras are generated by the Hamiltonians

Ha(g) :=
1

2
tr Ω(g)a and Ĥa(g) :=

1

2
trL(g)a, a = 1,2, . . .
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They are invariant with respect to the action of the symmetry group K+ ×K+

defined by

K+ ×K+ ×M 3 (ηL, ηR, g) 7→ ηLgη
−1
R ∈M, K+ = {k ∈ K | IkI = k}.

K+ < K is a Poisson subgroup and the action of K+ × K+ is a Poisson action
generated by the following moment map (in Lu’s sense)

M∈ g 7→ (πN(bL), πN(b−1
R )) ∈ B/N ×B/N,

where πN : B → B/N is the projection associated with the normal subgroup
N < B = B(2n) of elements having 1n as diagonal blocks.



The constraints and the key spectral invariants

Inspired by experience, we consider the moment map ‘constraint surface’

M0 :=

{
g ∈M

∣∣∣∣ bR := b =

(
e−v1n ∗

0 ev1n

)
, bL =

(
euσ ∗
0 e−u1n

)}
,

where σ := σ(µ) ∈ B(n) satisfies σσ† = e−2µ1n + v̂v̂† with fixed v̂ ∈ Cn verifying
|v̂|2 = e−2µ(e2nµ − 1). Here, u, v and µ > 0 are real constants (|u| 6= |v|).

Our task is to construct two suitable models of the reduced phase space

Mred =M0/(K+(σ)×K+) where K+(σ) = {η ∈ K+ | ησσ†η−1 = σσ†}.
M0 is a principal bundle over Mred. It inherits a symplectic structure and two
reduced Abelian Poisson algebras.

For any g = kb ∈ M0, L(g) = k†IkI and Ω(g) = bb† are conjugate to unique
diagonal matrices of the following form:

L(g) ∼ diag(e2iq1, . . . , e2iqn, e−2iq1, . . . , e−2iqn) with
π

2
≥ q1 ≥ q2 ≥ · · · ≥ qn ≥ 0

and

Ω(g) ∼ diag(e2λ1, . . . , e2λn, e−2λ1, . . . , e−2λn) with λ1 ≥ λ2 ≥ . . . λn ≥ |v|.
The respective ‘spectral invariants’ qi and λi descend to functions on Mred.
Naturally, they (or their suitable functions) give rise to action variables. A crucial
problem is to find their range of values.
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Darboux coordinates and reduced Hamiltonians: Act I

We proved that the domain of the λ-variables is

Dλ =
{
λ ∈ Rn | λi − λi+1 ≥ µ (i = 1, . . . , n− 1), λn ≥ max(|v|, |u|)

}
.

We can parametrize a dense open subset M0
red ⊂ Mred by Darboux coordinates

λi, θj varying in D0
λ × Tn = {(λ, eiθ}, where D0

λ ⊂ Dλ is the interior. In these

coordinates Ĥred
1 becomes the RSvD type Hamiltonian

eu−v Ĥred
1 (λ, θ) = V (λ) +

n∑
k=1

cos θk
cosh2 λk

[
1−

sinh2 v

sinh2 λk

]1/2 [
1−

sinh2 u

sinh2 λk

]1/2

×
n∏
l=1

(l 6=k)

[
1−

sinh2 µ

sinh2(λk − λl)

]1/2 [
1−

sinh2 µ

sinh2(λk + λl)

]1/2

with

V (λ) =
sinh(v) sinh(u)

sinh2 µ

n∏
k=1

[
1−

sinh2 µ

sinh2 λk

]
−

cosh(v) cosh(u)

sinh2 µ

n∏
k=1

[
1 +

sinh2 µ

cosh2 λk

]
+C.

We also have the reduced Lax matrix Lred(λ, θ) generating Ĥred
j for j = 1, . . . , n.

Even globally on Mred, the other family Hred
j of reduced Hamiltonians reads

Hred
j =

n∑
i=1

cosh(2jλi).

As was promised, the λi play the double role of positions and actions.
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Darboux coordinates and reduced Hamiltonians: Act II

The action variables (2π-periodic flows) corresponding to eigenvalues of L(g) are

xi := log sin qi and their domain is proved to be

Dx =
{
x ∈ Rn | x1 ≤ s := min(0, v − u), xj − xj+1 ≥ µ (j = 1, . . . , n− 1)

}
.

The pair (x, eiy) ∈ D0
x × Tn gives Darboux coordinates on a dense open subset

M′
red ⊂Mred. In these coordinates Hred

1 becomes the RSvD type Hamiltonian

Hred
1 (x, y) = U(x)−

n∑
j=1

cos(yj)U1(xj)
1
2

n∏
k=1

(k 6=j)

[
1−

sinh2(µ)

sinh2(xj − xk)

]1
2

U(x) =
e−2u + e2v

2

n∑
j=1

e−2xj, U1(xj) =
[
1− (1 + e2(v−u))e−2xj + e2(v−u)e−4xj

]
.

We also have the reduced Lax matrix Ωred(x, y) generating Hred
j for j = 1, . . . , n.

The other family Ĥred
j of reduced Hamiltonians takes the following form:

Ĥred
j =

n∑
i=1

cos(2jqi), (cos(2jqi) is a polynomial in sin qi = exi).

Therefore the xi also play the double role of positions and actions.

Consequence: Each reduced Hamiltonian Ĥred
j and Hred

j is non-degenerate and
possesses a unique equilibrium point (which is shared by its family).
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Sketch of the derivation of Dλ and the model D0
λ × Tn of M0

red

By standard algebra, each element of M0 can be transformed to g = kb for which

b =

(
e−v1n β

0 ev1n

)
with β = diag(β1, . . . , βn), β1 ≥ · · · ≥ βn ≥ 0.

We can easily diagonalize bb† and write it as

bb† = ρ(λ)diag(e2λ1, . . . , e2λn, e−2λ1, . . . , e−2λn)ρ(λ)†,

where, on a dense open subset, λ1 > · · · > λn > |v|.

The C2n vector w̃ := ρ(λ)†k†ŵ, with ŵ = (v̂,0, . . . ,0)T , turns out to transform by
the residual gauge transformations as

w̃ 7→ diag(τ1, . . . , τn, τ1, . . . , τn)w̃, τi ∈ U(1), i = 1, . . . , n.

Therefore, |w̃a| (a = 1, . . . ,2n) is gauge invariant (a function on M0
red), and we

showed that it depends only on the spectral invariants λ. Moreover, we were able
to compute the functions

Fa(λ) = |w̃a|2.
These functions must be positive on a dense domain, and there we obtain the

complementary invariants

w̃∗j w̃j+n = |w̃∗j w̃j+n|eiθj, j = 1, . . . , n.

The interior of Dλ was found as the domain where Fa(λ) > 0 for all a.

The full domain Dλ was then determined by invoking a density argument. The
invariants λj, eiθj parametrize a dense open submanifold M0

red ⊂Mred.
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Concretely, the open domain was found by requiring positivity of the functions

Fj(λ) = e−µ
(
e2λj − e−2u

) sinh(µ)

sinh(2λj)

n∏
i=1

(i 6=j)

(
sinh(λj + λi + µ) sinh(λj − λi + µ)

sinh(λj − λi) sinh(λj + λi)

)

and

Fn+j(λ) = e−µ
(
e−2u − e−2λj

) sinh(µ)

sinh(2λj)

n∏
i=1

(i6=j)

(
sinh(λj + λi − µ) sinh(λj − λi − µ)

sinh(λj − λi) sinh(λj + λi)

)

for all j = 1, . . . , n.



Two global models of Mred

The action-angle variables λi, θj are not good coordinates on Mred where λ
reaches the boundary of the polyhedron Dλ. To describe the global structure
of Mred, we introduce the complex variables

ζj =
√
λj − λj+1 − µ

j∏
k=1

e−iθk, j = 1, . . . , n− 1, ζn =
√
λn − |u|

n∏
k=1

e−iθk.

The boundary of Dλ is characterized by the vanishing of some ζk, and for the
dense open part M0

red we have

D0
λ × Tn ⇐⇒ (C∗)n, with C∗ = C \ {0}.

The complex variables remain valid when we ‘add the zeros’, and the standard
symplectic vector space (M̂, ω̂) = (Cn, i

∑n
j=1 dζj ∧ dζ∗j ) gives a global model of

Mred. The point ζ = 0 corresponds to the common equilibrium of the reduced
Hamiltonians Hred

j .

Analogously, we combine the variables xi, yj into complex coordinates

Zj =
√
xj − xj+1 − µ

n∏
k=j+1

eiyk, j = 1, . . . , n− 1, Zn =
√
s− x1

n∏
k=1

eiyk.

Using these, the symplectic manifold (M,ω) = (Cn, i
∑n

j=1 dZj∧dZ∗j ) represents an
alternative model of Mred. The point Z = 0 corresponds to common equilibrium
of the dual Hamiltonians Ĥred

j .

We have the reduced Lax matrices, generating the reduced Hamiltonians, in
terms of both global models of Mred explicitly.
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Remark: In Zn we have s = min(0, v − u), and in the formula of ζn we assumed that |u| > |v|.

Consequence: The identity map of the reduced phase space Mred translates into
a (very non-trivial) symplectomorphism from Cn to Cn, which parametrizes both

models M and M̂ of Mred. This is the duality map R that produces action-angle
variables for our pair of integrable systems obtained by Hamiltonian reduction.
The Hamiltonian flows of the action variables are equivalent to the standard
torus action on the symplectic vector space Cn ' R2n.

In summary, we have generalized the reduction treatment of the duality between
the trigonometric BCn Sutherland system

H(q, p) =
1

2

n∑
j=1

p2
j+

∑
1≤j<k≤n

(
γ

sin2(qj − qk)
+

γ

sin2(qj + qk)

)
+

n∑
j=1

γ1

sin2(qj)
+

n∑
j=1

γ2

sin2(2qj)

and the rational Ruijsenaars-Schneider-van Diejen system

Ĥ(λ, θ) =
n∑

j=1

cos(θj)

[
1−

ν2

λ2
j

]1
2
[
1−

κ2

λ2
j

]1
2

n∏
k=1

(k 6=j)

[
1−

µ2

(λj − λk)2

]1
2
[
1−

µ2

(λj + λk)2

]1
2

−
νκ

µ2

n∏
j=1

[
1−

µ2

λ2
j

]
+
νκ

µ2
.

It is well-known that the cotangent bundle T ∗SU(2n) can be recovered as a limit
of the Heisenberg double SL(2n,C). Next, I outline how the limit appears for the
corresponding dual pairs of integrable Hamiltonians.
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The cotangent bundle limit

• Limit of Ĥred
1 to dual BCn Sutherland: Take any positive parameter r and define

Ĥr(λ, θ;u, v, µ) := Ĥred
1 (rλ, θ; ru, rv, rµ) on the domain D0

λ × Tn. Then we obtain

lim
r→0

Ĥr(λ, θ;u, v, µ) = Ĥ(λ, θ;u, v, µ),

where Ĥ is the dual of the BCn Sutherland Hamiltonian. The symplectic form is
also rescaled during the limit and the parameters match as (u, v, µ)↔ (−ν, κ, µ).

• Limit of Hred
1 to BCn Sutherland: Define new Darboux coordinates qi, pi by

exp(xi) = sin(qi) and yi = pi tan(qi),

and then make the substitution

u→ βu, v → βv, µ→ βµ, p→ βp, ωred → βωred, using a parameter β > 0.

The ‘deformed Hamiltonians’ Hβ(q, p;u, v, µ) := Hred
1 (log sin q, βp tan q;βu, βv, βµ)

are found to satisfy

lim
β→0

Hβ(q, p;u, v, µ)− n
β2

= HSuth(q, p; γ1, γ2, γ),

with γ = µ2 etc. The domain of x and correspondingly that of q, p depends on
β, and in the β → 0 limit we recover the usual BCn domain (Weyl alcove) for q.

The second limit is rather singular: eiyj ∈ U(1) and pj runs over R in the limit.
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Relation to van Diejen’s many-body models

We recall that van Diejen’s trigonometric integrable many-body model (RSvD
model or BCn RS model) has the Hamiltonian

HRSvD(q, p) =
n∑

j=1

(
cosh(βpj)

√
Vj(−q)Vj(q)− [Vj(q) + Vj(−q)]/2

)
,

with Vj defined by

Vj(q) = w(qj)
n∏

k=1
(k 6=j)

v(qj + qk)v(qj − qk),

where v,w denote the functions

v(z) =
sin(z + ig)

sin(z)
and w(z) =

sin(z + ig0)

sin(z)

cos(z + ig1)

cos(z)

sin(z + ig′0)

sin(z)

cos(z + ig′1)

cos(z)
,

and g, g0, g1, g′0, g
′
1 are arbitrary coupling parameters.

In the trigonometric case π/2 > q1 > q2 > · · · > qn > 0, p ∈ R2n and the constants
are positive. The model admits a plethora of analytic continuations and limits.

We can show that by applying suitable analytic continuations, specializations and
limits HRSvD reproduces our reduced Hamiltonians Hred

1 and Ĥred
1 .

The limit yielding Hred
1 is rather singular, it involves a suitable infinite shift of the

positions like in the well-known ‘Toda limit’ of the hyperbolic Sutherland model.
For the details, see our papers (which use slightly different notations).
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CONCLUSION

I have illustrated how Hamiltonian reduction leads to integrable

many-body systems enjoying action-angle duality.

The advantage of this approach is that once the correct starting

point is ‘guessed’, the global phase space (with complete flows)

and the duality symplectomorphism result automatically.

Open problems:

Can our 3-parametric reduction be extended so as to accommodate

5-parameters, and yield 5-parametric systems of van Diejen?

What is the reduction origin of the hyperbolic RS system?

Finally, what about quantum Hamiltonian reduction?
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