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General motivation

_ String geometry departs from Riemannian geometry, notably in presence of fluxes

D open strings  noncommutativity - Poisson structure - ?-product - Kontsevich ’97 DQ
Chu, Ho ’99; Seiberg, Witten ’99

D closed strings  noncommutativity/nonassociativity - (twisted) Poisson - ?-product
Halmagyi ’09; Lüst ’10; Blumenhagen, Plauschinn ’10; Mylonas, Schupp, Szabo ’12; & c.

_ Dualities relate different geometries/topologies  “non-geometric backgrounds”

_ Manifestly duality-invariant theories - double and exceptional field theories
Hull, Hohm, Zwiebach; Hohm, Samtleben; & c.

_ Evidence that the correct language is algebroid/generalized geometry
Courant; Liu, Weinstein, Xu, Ševera; Roytenberg; Hitchin; Gualtieri; Cavalcanti; Bouwknegt, Hannabuss, Mathai; & c.



Generalized Geometries and Double Field Theory

_ Courant Algebroids and Generalized Geometry double the bundle, e.g. TM ⊕ T ∗M

_ DFT doubles the base, M = M × M̃ — comes with constraints

_ Solving the strong constraint, reduces DFT data to the data of the standard CA

D What is the geometric origin of the DFT data and the strong constraint?
cf. also Deser, Stasheff ’14; Deser, Saemann ’16

_ CAs provide membrane sigma models  describe non-geometric backgrounds
Roytenberg ’06

Mylonas, Schupp, Szabo ’12; ACh, Jonke, Lechtenfeld ’15; Bessho, Heller, Ikeda, Watamura ’15

D Is there a “DFT algebroid” that could provide a DFT membrane sigma model?
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Basic DFT Data



Double Field Theory (Generalised Metric Formulation)

A field theory invariant under O(d , d); T-duality becomes manifest.

It uses doubled coordinates (x I ) = (x i , x̃i ), and all fields depend on both.

The O(d , d) structure is associated to a (constant) O(d , d)-invariant metric

η = (ηIJ) =

(
0 1d

1d 0

)
, htηh = η , h ∈ O(d , d) ,

used to raise and lower I = 1, . . . , 2d indices.

Derivatives are also doubled accordingly: (∂I ) = (∂i , ∂̃
i ).

The fields g and B are packed together in a generalised metric

HIJ =

(
gij − Bikg

klBlj Bikg
kj

−g ikBkj g ij

)
,

satisfying
Ht = H and HηH = η−1 , hK

Ih
L
JH′KL(x ′) = HIJ(x)



DFT action, its symmetries and constraints

The O(d , d)-invariant action for H and the invariant dilaton d (e−2d =
√
−ge−2φ) is

S =

∫
dxdx̃e−2d

(
1
8
HIJ∂IHKL∂JHKL − 1

2
HIJ∂IHKL∂LHKJ − 2∂Id∂JHIJ + 4HIJ∂Id∂Jd

)
.

Gauge transformations are also included with a parameter εI = (εi , ε̃I ):

δεHIJ = εK∂KH
IJ + (∂I εK − ∂K εI )HKJ + (∂JεK − ∂K εJ)HIK := LεHIJ ,

δεd = − 1
2
∂K ε

K + εK∂Kd ,

and Lε· is called the generalised Lie derivative. But S is not automatically invariant.

The theory is constrained.

D Weak constraint: ∆· := ∂I∂I · = 0; stems from the level matching condition.

_ Strong constraint: ∂I∂I (. . . ) = 0 on products on fields.

Only when the strong constraint is satisfied, the action S is gauge invariant.



The C-bracket of DFT

The generalised Lie derivative, after imposing the strong constraint, satisfies

Lε1Lε2 − Lε2Lε1 = L[[ε1,ε2]] ,

with the bracket operation, called the C-bracket, being

[[ε1, ε2]]J = εK1 ∂K ε
J
2 − 1

2
εK1 ∂

Jε2K − (ε1 ↔ ε2) .

Solving the strong constraint amounts to eliminating half of the coordinates.

Then, DFT reduces to ordinary sugra in different duality frames.

 the geometric structure reduces to a Courant Algebroid (C-bracket
s.c.−→ Courant bracket &c.)

But, what is the underlying geometric structure of DFT, and where does it come from?

Can the strong constraint be relaxed?



Courant Algebroids



Definition of a Courant Algebroid
Courant ’90; Liu, Weinstein, Xu ’97

(E
π→ M, [·, ·], 〈·, ·〉, ρ : E → TM), such that for A,B,C ∈ Γ(E) and f , g ∈ C∞(M):

1 Modified Jacobi identity where D : C∞(M)→ Γ(E) is derivative defined by
〈Df ,A〉 = 1

2
ρ(A)f .

[[A,B],C ] + c.p. = DN (A,B,C) , where N (A,B,C) = 1
3
〈[A,B],C〉+ c.p. ,

2 Modified Leibniz rule

[A, fB] = f [A,B] + (ρ(A)f )B − 〈A,B〉Df ,

3 Compatibility condition

ρ(C)〈A,B〉 = 〈[C ,A] +D〈C ,A〉,B〉+ 〈[C ,B] +D〈C ,B〉,A〉 ,

The structures also satisfy the following properties (they follow...):

4 Homomorphism
ρ[A,B] = [ρ(A), ρ(B)] ,

5 ”Strong constraint”
ρ ◦ D = 0 ⇔ 〈Df ,Dg〉 = 0 .



Alternative definition of a Courant Algebroid
Ševera ’98

Definition in terms of a bilinear, non-skew operation (Dorfman derivative)

[A,B] = A ◦ B − B ◦ A ,

notably satisfying instead of 1, the Jacobi identity (in Loday-Leibniz form):

A ◦ (B ◦ C) = (A ◦ B) ◦ C + B ◦ (A ◦ C) .

Axioms 2 and 3 do not contain D-terms any longer,

A ◦ fB = f (A ◦ B) + (ρ(A)f )B ,

ρ(C)〈A,B〉 = 〈C ◦ A,B〉+ 〈C ◦ B,A〉 .

with two additional properties:

ρ(A ◦ B) = [ρ(A), ρ(B)] ,

A ◦ A = D〈A,A〉 .

The two definitions are equivalent, as proven by Roytenberg ’99



Local expressions for CAs

In a local basis (e I ) of Γ(E), I = 1, . . . , 2d , we can write the local form of the operations:

[e I , eJ ] = ηIKηJLTKLMeM ,

〈e I , eJ〉 = 1
2
ηIJ ,

ρ(e I )f = ηIJρi J∂i f ,

Df = DI f e I = ρi I∂i f e I ,

with (ρi J) the anchor components. The axioms and properties of a CA take the form:

ηIJρi Iρ
j
J = 0 ,

ρi I∂iρ
j
J − ρi J∂iρj I − ηKLρi KTLIJ = 0 ,

4ρi [L∂iTIJK ] − 3ηMNTM[IJTKL]N = 0 .



Brackets for standard and non-standard CAs

The standard CA: E = TM ⊕ T ∗M, ρ = (id, 0), and TIJK = (Hijk , 0, 0, 0) with dH = 0.
For this case, the (Courant) bracket is

[A,B]s = [AV ,BV ] + LAV BF − LBV AF − 1
2
d(ιAV BF − ιBV AF ) + H(AV ,BV )

= Al∂lB
k∂k + (Al∂lBk + 1

2
Al∂kBl)dx

k − (A↔ B) + AlBmHlmkdx
k ,

where A = AV + AF ∈ Γ(E), with AV ∈ Γ(TM) and AF ∈ Γ(T ∗M).

Another simple example: ρ = (0,Π]), TIJK = (0, 0, 0,R ijk) with [Π,Π]S = [Π,R]S = 0.
Here, Π is a Poisson 2-vector. The bracket is not any longer the standard Courant.

In general, the Courant bracket is given by an expression of the form Liu, Weinstein, Xu

[A,B] = [AV ,BV ] + LAFBV − LBFAV + 1
2
d∗(ιAV BF − ιBV AF )

+ [AF ,BF ] + LAV BF − LBV AF − 1
2
d(ιAV BF − ιBV AF ) + T (A,B) ,

=
(
ρi J(AJ∂iBK − BJ∂iAK )− 1

2
ρi K (AJ∂iBJ − BJ∂iAJ)

)
eK + ALBMTLMKe

K .



AKSZ sigma models

AKSZ sigma model - topological sigma models satisfying the classical master equation
Alexandrov, Kontsevich, A. Schwarz, Zaboronsky ‘97.

In 2d Poisson sigma model is most general TFT Cattaneo, Felder ‘01. Quantization of this
model lead to Kontsevich deformation quantization formula.

In 3d the AKSZ sigma model requires a dg-manifolds for source and target, symplectic
form on a target, and a self-commuting hamiltonian of degree 3. Given the data of a CA,
(E , [·, ·]E , 〈·, ·〉E , ρ), one can uniquely construct a membrane sigma model Roytenberg ‘06:

S [X ,A,F ] =

∫
Σ3

(
〈F , dX 〉+ 〈A, dA〉E − 〈F , ρ(A)〉+ 1

3
〈A, [A,A]E 〉E

)
For a manifold with boundaries on can add both topological and non-topological terms
Cattaneo, Felder ‘01; Park ‘00

Sb[X ,A] =

∫
∂Σ3

1
2
gIJA

I ∧ ∗AJ + 1
2
BIJA

I ∧ AJ .



Courant sigma model

In local coordinates

S [X ,A,F ] =

∫
Σ3

Fi ∧ dX i + 1
2
ηIJA

I ∧ dAJ − ρi I (X )AI ∧ Fi + 1
6
TIJK (X )AI ∧ AJ ∧ AK .

i = 1, . . . , d (target space index) and I = 1, . . . , 2d (CA index).

Maps X = (X i ) : Σ3 → M, 1-forms A ∈ Ω1(Σ3,X
∗E), and auxiliary 2-form

F ∈ Ω2(Σ3,X
∗T ∗M).

Symmetric bilinear form of the CA  O(d , d) invariant metric

η = (ηIJ) =

(
0 1d

1d 0

)
,

ρ and T are the anchor and twist of the CA, the latter generating a generalized
Wess-Zumino term.

Gauge invariance of the Courant sigma model ⇒ CA axioms and properties.



The Burger Proposal



The relation of DFT and CAs

Solving the s.c. by elimination of x̃ , i.e. ∂̃ i = 0, takes us from DFT to the standard CA.

Indeed, the C-bracket/gen. Lie derivative reduces then to the Courant/Dorfman bracket.

However, CAs double the bundle, DFT doubles the space.

What if we take a CA on doubled space?

_ Geometric origin of the DFT operations and the strong constraint?

_ Definition of a DFT algebroid?

Our proposal is instead that the DFT geometry should lie ”in between” two CAs.



←− Large CA over M × M̃

←− Projection

←− DFT structure

←− Strong Constraint

←− Canonical CA over M



Doubling and rewriting

In order to relate to DFT, we consider a Courant algebroid over the doubled space.

At least locally, we can work with a 2nd order bundle E = (T ⊕ T ∗)M, over M = T ∗M.

In order to reveal the DFT structure, for simplicity start with the standard CA over M.
A section A ∈ E is

A := AV + AF = AI∂I + ÃIdXI .

Now introduce the following combinations: (N.B. ηIJ is not the metric of the CA overM)

AI
± = 1

2
(AI ± ηIJ ÃJ) .

Strategy: rewrite all structural data of E in terms of A±.



Projected sections and bilinear

Starting with sections of the large CA:

A = AI
+e

+
I + AI

−e
−
I , where e±I = ∂I ± ηIJdXJ ,

a projection to the subbundle L+ spanned by local sections (e+
I )

p : E → L+

(AV ,AF ) 7→ A+ := A ,

leads exactly to the form of a DFT O(d , d) vector

A = Ai (dX
i + ∂̃ i ) + Ai (dPi + ∂i ) .

Projection of the symmetric bilinear of E, leads to the O(d,d) invariant DFT metric:

〈A,B〉E = 1
2
ηÎ ĴA

ÎBĴ = ηIJ(AI
+BJ

+ − AI
−BJ
−) 7→ ηIJA

IBJ = 〈A,B〉L+ ,

where Î = 1, . . . , 4d , while I = 1, . . . , 2d .



Projected brackets

Rewriting the Courant bracket on E in terms of the ± components:

[A,B]E = ηIK (AK
+∂

IBL
+ − AK

−∂
IBL

+ − 1
2
(AK

+∂
LBI

+ − AK
−∂

LBI
−)− {A↔ B})e+

L +

+ ηIK (AK
+∂

IBL
− − AK

−∂
IBL
− + 1

2
(AK

+∂
LBI

+ − AK
−∂

LBI
−)− {A↔ B})e−L .

The C-bracket of DFT is obtained from the large standard Courant bracket as:

[[A,B]] = p[p(A), p(B)]E .

(L+ is not an involutive subbundle, thus neither a Dirac structure of E.)

Projection of the Dorfman derivative on E to the generalised Lie derivative of DFT:

LAB = p (p(A) ◦ p(B)) .

Projection of the anchor map ρI J = (ρI J , ρ̃
IJ)

(ρ±)I J = ρI J ± ηJK ρ̃IK

Thus, the map p sends all CA structures to the corresponding DFT structures.



Membrane Sigma Model for DFT



The DFT Membrane Sigma Model

Using the data of DFT algebroid we propose cf. Chatzistavrakidis, Jonke, Lechtenfeld ’15

S [X,A,F ] =

∫ (
FI ∧ dXI + ηIJA

I ∧ dAJ − (ρ+)I JA
J ∧ FI + 1

3
T̂IJKA

I ∧ AJ ∧ AK
)
,

where ρ+ : L+ → TM is a map to the tangent bundle and T̂ corresponds to DFT fluxes.

Maps X = (XI ) : Σ3 →M, 1-forms A ∈ Ω1(Σ3,X∗L+), and auxiliary 2-form
F ∈ Ω2(Σ3,X∗T ∗M).

Symmetric bilinear form η is O(d , d) invariant metric.

We use the DFT MSM to

describe the flux backgrounds

find the relation with flux formulation of DFT
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Universal description of flux backgrounds

Consider a doubled torus as target of the DFT MSM and DFT structural data as
(ρ+)I J = (ρi j , ρ

ij , ρi
j , ρij) , TIJK = (Hijk , fij

k ,Qi
jk ,R ijk) ,

Add symmetric term on boundary gIJ = (gij , gi
j , g i

j , g
ij) ,

Expand coordinate and vector components XI = (X i , X̃i ), AI = (qi , pi ) ,

Goal here is to describe the standard T-duality chain relating geometric and
non-geometric fluxes schematically through Shelton, Taylor, Wecht ’05

Hijk
Tk←→ fij

k Tj←→ Qi
jk Ti←→ R ijk ,

using DFT membrane action.



H flux background

Choose

(ρ+)I J = (δi j , 0, 0, 0) , TIJK = (Hijk , 0, 0, 0) , gIJ = (0, 0, 0, g ij) .

Then the membrane action becomes

SDFT =

∫
Σ3

(
FI ∧ dXI + qi ∧ dpi + pi ∧ dqi − qi ∧ Fi + 1

6
Hijk q

i ∧ qj ∧ qk)
+

∫
∂Σ3

1
2
g ij pi ∧ ∗pj .

The on-shell membrane theory  integrate FI

qi = dX i and dX̃i = 0 .

The action now takes the form∫
∂Σ3

(
pi ∧ dX i + 1

2
g ij pi ∧ ∗pj

)
+

∫
Σ3

1
6
Hijk dX

i ∧ dX j ∧ dX k ,

which, after integrating out pi using ∗2 = 1, takes precisely the desired form

SH [X ] :=

∫
∂Σ3

1
2
gij dX

i ∧ ∗dX j +

∫
Σ3

1
6
Hijk dX

i ∧ dX j ∧ dX k



R flux and nonassociativity

We choose

(ρ+)I J =
(
δi j ,R

ijk X̃k ,−δi j , 0
)

TIJK = (0, 0, 0,R ijk) gIJ = (0, 0, 0, g ij) .

The topological part of the membrane action becomes

S =

∫
Σ3

(
FI ∧ dXI + qi ∧ dpi + pi ∧ dqi − qi ∧ Fi + pi ∧ F i

−R ijk X̃k pj ∧ Fi + 1
6
R ijk pi ∧ pj ∧ pk

)
.

Integrating out the auxiliary fields FI gives

qi = dX i − R ijk X̃k pj and pi = −dX̃i ,

leading to

SR [X , X̃ ] =

∫
∂Σ3

(
dX̃i ∧ dX i + 1

2
R ijk X̃k dX̃i ∧ dX̃j + 1

2
g ij dX̃i ∧ ∗dX̃j

)
,

The resulting action was proposed by Mylonas, Schupp, Szabo ’12.



R flux and nonassociativity

They defined a bivector Θ = 1
2

ΘIJ ∂I ∧ ∂J on phase space T ∗M given by

ΘIJ =

(
R ijk X̃k δi j
−δi j 0

)
.

It induces a twisted Poisson bracket given by

{XI ,XJ}Θ = ΘIJ ,

with non-vanishing Jacobiator

{X i ,X j ,X k}Θ := 1
3
{{X i ,X j}Θ,X

k}Θ + cyclic = R ijk .

Alternatively, modify the anchor to

(ρ+)I J = (0, 0, δi
j , 0) .

The resulting worldsheet action

SR [X̃ ] =

∫
∂Σ3

1
2
g ij dX̃i ∧ ∗dX̃j +

∫
Σ3

1
6
R ijk dX̃i ∧ dX̃j ∧ dX̃k ,

is the same as the sigma-model action with H-flux under the duality exchanges of all
fields X i with X̃i .



Flux backgrounds from DFT MSM - Summary

In terms of the doubled space of DFT, the four T-dual backgrounds with H-, f -, Q- and
R-flux all correspond to the standard Courant algebroid over different submanifolds of
the doubled space.

This does not include the nonassociative (nor noncommutative) models, which violate
the strong constraint of DFT and therefore do not correspond to Courant sigma-models.

Global properties important additional input.



Fluxes, Bianchi Identities and Gauge Invariance

Taking a parametrization of the ρ+ components to be (ρ+)I J = (δi j , β
ij , δi

j + βjkBki ,Bij) ,
we make contact with flux formulation of DFT Geissbuhler, Marques, Nunez, Penas ‘13. This gives

ηIJρK Iρ
L
J = ηKL

2ρL[I∂Lρ
K
J] − ρK Jη

JLT̂LIJ = ρL[I∂
KρLJ] .

Considering gauge transformations of the form (here T̂ = 1
2
T .)

δεXI = ρI J(X)εJ ,

δεA
I = dεI + ηIJ T̂JKL(X)AK εL ,

δεFK = −εJ(∂Kρ
I
JFI − ∂K T̂ILJA

I ∧ AL) ,

gives the following necessary conditions for gauge invariance of the DFT MSM action:

4ρM [L∂M T̂IJK ] + 3ηMN T̂M[IJ T̂KL]N = ZIJKL .

Sufficiency also requires use of the strong constraint.

 Strong constraint needed for gauge invariance of DFT sigma model and for (on-shell)
closure of gauge algebra.



Algebroid structure of DFT



Towards a DFT Algebroid structure

Strategy: Replace [·, ·]E → [[·, ·]], 〈·, ·〉E → 〈·, ·〉L+ and ρ→ ρ+, and also define D+ as

〈A,D+f 〉L+ = 1
2
ρ+(A)f ,

and determine one by one the obstructions to the CA axioms and properties.

1 Modified Jacobi identity (N (A,B,C) = 1
3
〈[[A,B]],C〉L+ + c.p.)  obstructed

[[[[A,B]],C ]] + c.p. = D+N (A,B,C) + Z(A,B,C) + SC1(A,B,C) ,

where the last term (which vanishes on the strong constraint) is explicitly given by

SC1(A,B,C)L = − 1
2

(
AI∂JBI∂

JC L − B I∂JAI∂
JC L

)
−

− ρI [J∂Mρ
I
N]

(
AJBN∂MC L − 1

2
C JAK∂MBKη

NL + 1
2
C JBK∂MAKη

NL
)

+

+ c.p.(A,B,C) .

2 Modified Leibniz rule  unobstructed

[[A, fB]] = f [[A,B]] + (ρ+(A)f )B − 〈A,B〉L+D+f .
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Towards a DFT Algebroid structure

3 Compatibility condition  unobstructed

〈[[C ,A]] +D+〈C ,A〉L+ ,B〉L+ + 〈[[C ,B]] +D+〈C ,B〉L+ ,A〉L+ = ρ+(C)〈A,B〉L+ .

4 Homomorphism  obstructed

ρ+[[A,B]] = [ρ+(A), ρ+(B)] + SC2(A,B) ,

where the last term (which vanishes on the strong constraint) is explicitly given by

SC2(A,B) =
(
ρL[I∂

KρLJ]A
IBJ + 1

2

(
AI∂KBI − B I∂KAI

))
∂K .

5 ”Strong constraint”  obstructed

〈D+f ,D+g〉L+ = 1
4
〈df , dg〉L+ = ηIJρK Iρ

L
J∂K f ∂Lg = ∂Lf ∂Lg .
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A DFT Algebroid

Let M be d-dimensional manifold. A DFT algebroid on T∗M is a quadruple
(L+, [[·, ·]], 〈·, ·〉L+ , ρ+), where L+ is rank-(2d) vector bundle over T∗M equipped with a
skew-symmetric bracket [[·, ·]] : Γ(L+)⊗ Γ(L+)→ Γ(L+), a non-degenerate symmetric
form 〈·, ·〉L+ : Γ(L+)⊗ Γ(L+)→ C∞(T∗M) and a smooth bundle map
ρ+ : L+ → T(T∗M), such that

1 〈D+f ,D+g〉L+ = 1
4
〈df , dg〉L+ ,

2 [[A, fB]] = f [[A,B]] + (ρ+(A)f )B − 〈A,B〉L+D+f ,

3 〈[[C ,A]] +D+〈C ,A〉L+ ,B〉L+ + 〈[[C ,B]] +D+〈C ,B〉L+ ,A〉L+ = ρ+(C)〈A,B〉L+ ,

for all A,B,C ∈ Γ(L+) and f ∈ C∞(T∗M), where D+ : C∞(T∗M)→ Γ(L+) is the
derivative defined through 〈A,D+f 〉L+ = 1

2
ρ+(A)f .

When the s.c. is imposed, it reduces to a CA and ρ+ becomes a homomorphism.



A DFT Algebroid - discussion

A DFT algebroid is an example of the structure we call pre-DFT algebroid.

Recall the definition of a Courant algebroid:
(E

π→ M, [·, ·], 〈·, ·〉, ρ : E → TM), such that for A,B,C ∈ Γ(E) and f , g ∈ C∞(M):

1 Modified Jacobi identity where D : C∞(M)→ Γ(E) is defined by
〈Df ,A〉 = 1

2
ρ(A)f .

[[A,B],C ] + c.p. = DN (A,B,C) , where N (A,B,C) = 1
3
〈[A,B],C〉+ c.p. ,

2 Modified Leibniz rule

[A, fB] = f [A,B] + (ρ(A)f )B − 〈A,B〉Df ,

3 Compatibility condition

ρ(C)〈A,B〉 = 〈[C ,A] +D〈C ,A〉,B〉+ 〈[C ,B] +D〈C ,B〉,A〉 ,

4 Homomorphism ρ[A,B] = [ρ(A), ρ(B)] ,

5 Ker(ρ) ρ ◦ D = 0 ⇔ 〈Df ,Dg〉 = 0 .
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A DFT Algebroid - discussion

In general, one can obstruct the properties 1, 4, 5 in an independent way!

Pre-DFT
algebroid

�5←−− Ante-Courant
algebroid

�4←−− Pre-Courant
algebroid

�1←−− Courant
algebroid

DFT algebroid is a special case of pre-DFT algebroid where all three obstructions are
controled by the strong constraint.

Relaxing the strong constraint?

Pre-Courant algebroid was introduced by Vaisman Vaisman ’05; cf. Hansen, Strobl ‘09; Bruce, Grabowski

‘16.

Pre-DFT algebroid corresponds to metric algebroid defined in terms of Dorman bracket
Vaisman ’12.
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Closing remarks

We showed that the geometric structure of DFT is in between two Courant
algebroids. It is an example of pre-DFT algebroid related to the metric algebroid of
Vaisman.

We proposed membrane sigma model for DFT, gauge invariant under the strong
constraint. It provides universal description of geometric and non-geometric fluxes.

Gauge structure of DFT membrane sigma model needs further study. In particular,
can we propose gauge invariant action violating the strong constriant and realize
non-associative R-flux in that framework?

The global properties might be understood in the framework of para-Hermitean
geometry (Vaisman ’12; Freidel, Rudolph, Svoboda ’17; Svoboda ’18), where symplectic structure
plays the key role.


