The gauge group of a Hopf-Galois extension and twist deformations

Chiara Pagani

Bayrischzell 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

principal bundles & Hopf-Galois extensions

- *H* Hopf algebra (structure group)
- A an H-comodule algebra (total space) with coaction $\delta: A \to A \otimes H$, $a \mapsto a_{(0)} \otimes a_{(1)}$, algebra map
- B algebra (base space), $B \simeq A^{co(H)} := \{b \in A | \delta(b) = b \otimes \mathbb{1}_H\}$
- + principality condition: the algebra extension $B \subseteq A$ is Hopf-Galois:

$$\chi = (m_A \otimes id)(id \otimes_B \delta) : A \otimes_B A \to A \otimes H$$
$$a \otimes_B a' \mapsto aa'_{(0)} \otimes a'_{(1)}$$

(canonical map) is bijective.

The classical gauge group

For a principal G-bundle $\pi: P \to X$, the group \mathcal{G}_P of gauge transformations is

• the subgroup of principal bundle automorphisms which are vertical:

 $\mathcal{G}_{P} = \operatorname{Aut}_{V}(P) := \{ \varphi : P \to P; \ \varphi(pg) = \varphi(p)g \ , \pi \circ \varphi = \pi \},$

with group law given by the composition of maps;

• the group of G-equivariant maps,

 $\mathcal{G}_P = \{ \sigma : P \to G; \ \sigma(pg) = g^{-1}\sigma(p)g \}$

with pointwise product, $(\sigma \cdot \tau)(p) := \sigma(p)\tau(p) \in G$. (Locally, $x \in X \to g(x) \in G$)

The group of gauge transformations acts by pullback on the set \mathcal{A}_P of connections of the bundle $\pi: P \to X$.

 ω, η connection forms are gauge equivalent iff $\exists \varphi \in \mathcal{G}_P$ such that $\varphi^* \omega = \eta$. Indeed gauge equivalence defines an equivalence relation on \mathcal{A}_P

 $\rightsquigarrow \mathcal{M} = \mathcal{A}_{\mathcal{P}}/\mathcal{G}_{\mathcal{P}} \quad \text{ moduli space of connections}$

The group of gauge transformations acts by pullback on the set \mathcal{A}_P of connections of the bundle $\pi: P \to X$.

 ω, η connection forms are gauge equivalent iff $\exists \varphi \in \mathcal{G}_P$ such that $\varphi^* \omega = \eta$. Indeed gauge equivalence defines an equivalence relation on \mathcal{A}_P

 $\rightsquigarrow \mathcal{M} = \mathcal{A}_{\mathcal{P}}/\mathcal{G}_{\mathcal{P}} \quad \text{ moduli space of connections}$

Aim: extend the notion of gauge transformations to the algebraic framework of (NC) Hopf-Galois extensions.

- [Brzeziński (1996)]
- [Aschieri, Landi, P. (2018)] in the framework of coquasitriangular Hopf algebras

For the HG extension $\mathcal{O}(X) \subseteq \mathcal{O}(P)$ associated to a principal G-bundle $P \to X$, the canonical map

$$\chi = (m \otimes \mathit{id}) \circ (\mathit{id} \otimes_B \delta^A) : A \otimes_B A \to A \otimes H \quad a \otimes_B a' \mapsto aa'_{(0)} \otimes a'_{(1)}$$

is an algebra map. Moreover, $\forall \varphi \in \mathcal{G}_P$, φ^* is an algebra map.

<u>Remark:</u> In general the canonical map χ of a HG extension is NOT an algebra map, but a morphism of relative Hopf-modules, $\chi \in Hom(_{A}\mathcal{M}_{A}^{H})$.

 $(Hom(_{A}\mathcal{M}_{A}^{H}) = \{$ linear maps of *H*-comodules and of *A*-bimodules $\})$

Problem: if we defined

 $Aut_V := \{F : A \to A | F \text{ invertible left } B \text{-module morph. s.t. } \delta F = (F \otimes id)\delta\}$

without the assumption that the maps F are algebra morphisms, then

 for a Hopf-Galois extension associated to a classical bundle, the group Aut_V of 'quantum' gauge transformations would be too big, much bigger than the 'classical' gauge group.

<u>Ex.</u> For $P = \mathbb{Z}_2 \rightarrow \{*\}$ with $G = \mathbb{Z}_2$, the group Aut_V is the group

$$Aut_V = \left\{ \begin{pmatrix} a & 1-a \\ 1-a & a \end{pmatrix}, \text{ with } 2a \neq 1
ight\}.$$

Whereas with the additional hypothesis that the maps F are algebra morphisms this group collapses to \mathbb{Z}_2 .

• the condition of invertibility of the maps F would be a requirement (while classical gauge transformations are automatically invertible).

Coquasitriangular Hopf algebras

A Hopf algebra H is called coquasitriangular if it is endowed with

 $R: H \otimes H \to \mathbb{K}$ (universal *r*-form)

linear map such that

(i) R is invertible for the convolution product, with inverse denoted by \overline{R} ; (ii) $m_{op} = R * m * \overline{R}$, i.e. for all $h, k \in H$

$$kh = R(h_{(1)} \otimes k_{(1)}) h_{(2)}k_{(2)}\bar{R}(h_{(3)} \otimes k_{(3)})$$

(iii) $R \circ (m \otimes id) = R_{13} * R_{23}$ and $R \circ (id \otimes m) = R_{13} * R_{12}$, where $R_{12}(h \otimes k \otimes l) = R(h \otimes k) \varepsilon(l)$ and similarly for R_{13} and R_{23} .

• If (H, R) is coquasitriangular then so is (H, \overline{R}_{21}) where $\overline{R}_{21}(h \otimes k) := \overline{R}(k \otimes h)$ (H, R) is called cotriangular if $R = \overline{R}_{21}$.

Examples

- Any commutative H is cotriangular with trivial universal r-form $R = \varepsilon \otimes \varepsilon$.
- The noncommutative FRT bialgebras

$$\mathcal{O}_q(G) = \mathbb{C} \langle u_{ij} \rangle / \langle \mathcal{R}_{kl}^{ji} u_{km} u_{ln} = u_{ik} u_{jl} \mathcal{R}_{mn}^{lk} \rangle, \quad q \in \mathbb{R}$$

deforming the coordinate functions on Lie groups are coquasitriangular, $R(u_{ik} \otimes u_{jl}) \propto \mathcal{R}_{kl}^{ij}$

• If (H, R) is a coquasitriangular Hopf algebra and $\gamma : H \otimes H \to \mathbb{K}$ is a 2-cocycle on H, then the Hopf algebra H_{γ} with twisted product and antipode is also coquasitriangular with universal *r*-form

$$\mathsf{R}_{\gamma} := \gamma_{21} \ast \mathsf{R} \ast \bar{\gamma} : \mathsf{h} \otimes \mathsf{k} \longmapsto \gamma \left(\mathsf{k}_{\scriptscriptstyle (1)} \otimes \mathsf{h}_{\scriptscriptstyle (1)} \right) \mathsf{R} \left(\mathsf{h}_{\scriptscriptstyle (2)} \otimes \mathsf{k}_{\scriptscriptstyle (2)} \right) \bar{\gamma} \left(\mathsf{h}_{\scriptscriptstyle (3)} \otimes \mathsf{k}_{\scriptscriptstyle (3)} \right)$$

Some useful facts from the theory of cqt Hopf algebras:

• For (H, R) coquasitriangular, the monoidal category of right *H*-comodules \mathcal{M}^H is braided monoidal with braiding given by the *H*-comodule isomorphisms

 $R_{V,W}: V \otimes W \longrightarrow W \otimes V , \quad v \otimes w \longmapsto w_{(0)} \otimes v_{(0)} R(v_{(1)} \otimes w_{(1)})$

• The category $(\mathcal{A}^{H}, \boxtimes)$ of *H*-comodule algebras is monoidal:

Proposition

Let $(A, \delta^A), (C, \delta^C) \in \mathcal{A}^H$, then the H-comodule $A \otimes C$ (with tensor product coaction $\delta^{A \otimes C}$: $a \otimes c \mapsto a_{(0)} \otimes c_{(0)} \otimes a_{(1)}c_{(1)}$) is a right H-comodule algebra,

 $A \boxtimes C := (A \otimes C, \bullet)$ (braided product algebra)

when endowed with the product

 $(a \otimes c) \bullet (a' \otimes c') := a \ R_{C,A}(c \otimes a')c' = aa'_{(0)} \otimes c_{(0)}c' \ R(c_{(1)} \otimes a'_{(1)}) \ .$

Moreover, if $\phi : A \to E$ and $\psi : C \to F$ are morhisms of H-comodule algebras, then so is $\phi \boxtimes \psi := \phi \otimes \psi : (A \otimes C, \bullet) \to (E \otimes F, \bullet)$ where $(\phi \otimes \psi) (a \otimes c) = \phi(a) \otimes \psi(c)$.

Proposition

Let (H, R) be a coquasitriangular Hopf algebra. The right H-comodule $\underline{H} = (H, \operatorname{Ad})$ becomes an H-comodule algebra $\underline{H} = (H, \star, \operatorname{Ad})$ when endowed with the product

 $h \star k := h_{(2)}k_{(2)}R(S(h_{(1)})h_{(3)} \otimes S(k_{(1)}))$

and unit $\eta : \mathbb{K} \to \underline{H}$ given as linear map by the unit of H.

- $(\underline{H}, \star, \eta, \Delta, \epsilon, \underline{S}, \mathrm{Ad})$ is a braided Hopf algebra (associated with H):
 - $\Delta: \underline{H} \to \underline{H} \boxtimes \underline{H}$ is an algebra map w.r.t. the braided product $m_{\underline{H} \boxtimes \underline{H}}$
 - the antipode $\underline{S}: \underline{H} \rightarrow \underline{H}$ defined by

$$\underline{S}(h) := S(h_{\scriptscriptstyle (2)}) R\Big(S^2(h_{\scriptscriptstyle (3)}) S(h_{\scriptscriptstyle (1)}) \otimes h_{\scriptscriptstyle (4)}\Big) \; ,$$

is an H-comodule map and turns out to be a braided anti-algebra map and a braided anti-coalgebra map

$$\underline{S} \circ \star = \star \circ R_{\underline{H},\underline{H}} \circ (\underline{S} \otimes \underline{S}) \quad , \quad \Delta \circ \underline{S} = (\underline{S} \otimes \underline{S}) \circ R_{\underline{H},\underline{H}} \circ \Delta \quad .$$

Hopf-Galois extensions for coquasitriangular Hopf algebras and their gauge groups. [P. Aschieri, G. Landi, C.P. (2018)]

Theorem

Let (H, R) be a coquasitriangular Hopf algebra and $A \in \mathcal{A}_{qc}^{(H,R)}$ a quasi-commutative H-comodule algebra. Let $B \subseteq Z(A)$ be the corresponding subalgebra of coinvariants. Then the canonical map

$$\chi = (m \otimes \mathrm{id}) \circ (\mathrm{id} \otimes_B \delta^A) : A \boxtimes_B A \longrightarrow A \boxtimes \underline{H} ,$$
$$a' \boxtimes_B a \longmapsto a' a_{(0)} \boxtimes a_{(1)}$$

is an algebra map, thus a morphism in \mathcal{A}^{H} .

Definition

Let (H, R) be a coquasitriangular Hopf algebra. A right H-comodule algebra A is quasi-commutative (with respect to the universal r-form R), $A \in \mathcal{A}_{qc}^{(H,R)}$ if

$$m_A = m_A \circ R_{A,A}, \qquad ac = c_{(0)}a_{(0)} R(a_{(1)} \otimes c_{(1)}) \qquad a,c \in A$$

Examples

• Clearly, for $(H, \varepsilon \otimes \varepsilon)$, every commutative algebra $A \in \mathcal{A}^H$ is quasi-commutative.

• Twist deformations $A_{\gamma} \in \mathcal{A}^{H_{\gamma}}$ of quasi-commutative algebras A via a 2-cocycle on H are quasi-commutative algebras.

- A main example of quasi-commutative comodule algebra is the *H*-comodule algebra $(\underline{H}, \star, \operatorname{Ad})$ associated with a cotriangular Hopf algebra (H, R).
- $H = O(GL_q(2))$ is coquasitriangular with (not cotriangular) universal *r*-form

$$R(u_{ij}\otimes u_{kl}) = q^{-1}\mathcal{R}_{jl}^{ik}, \quad R\Big(D^{-1}\otimes u_{ij}\Big) = R\Big(u_{ij}\otimes D^{-1}\Big) = q\,\delta_{ij},$$

The quantum plane $\mathcal{O}(\mathbb{C}_q^2) = \mathbb{C}[x, x_2]/\langle x_1x_2 - q x_2x_1 \rangle$ is a quasi-commutative $\mathcal{O}(GL_q(2))$ -comodule algebra with coaction $\delta(x_i) = \sum_i x_j \otimes u_{ji}$.

The gauge group of a (coquasi \triangle) Hopf-Galois extension.

Theorem

Let (H, R) be a coquasitriangular Hopf algebra, $(\underline{H}, \star, \eta, \Delta, \epsilon, \underline{S}, \operatorname{Ad})$ the associated braided Hopf algebra, $A \in \mathcal{A}_{qc}^{(H,R)}$ and $B = A^{coH} \subseteq A$ a Hopf-Galois extension. The \mathbb{K} -module

 $\mathcal{G}_A := \operatorname{Hom}_{\mathcal{A}^H}(\underline{H}, A)$

of *H*-equivariant algebra maps $\underline{H} \to A$ is a group with respect to the convolution product, with inverse $\overline{f} := f \circ \underline{S}$, for $f \in \operatorname{Hom}_{\mathcal{A}^H}(\underline{H}, A)$.

• the convolution product of two such algebra maps is an algebra map is shown by using the fact that A is quasi-commutative.

• moreover the hypothesis A quasi commutative is a sufficient condition for the invertibility in \mathcal{G}_A of each map $f : \underline{H} \to A$, in particular for its inverse (with respect to the convolution product) to be again an algebra morphism.

Theorem

Let $B = A^{coH} \subseteq A$ be an H-Hopf-Galois extension with H coquasitriangular and $A \in \mathcal{A}_{qc}^{(H,R)}$. The \mathbb{K} -module

 $\operatorname{Aut}_{V}(A) := \operatorname{Hom}_{_{R}\mathcal{A}^{H}}(A, A) = \{ \mathsf{F} \in \operatorname{Hom}_{\mathcal{A}^{H}}(A, A), \text{ such that } \mathsf{F}_{|_{B}} = \operatorname{id} \}$

of left B-module, right H-comodule algebra morphisms is a group with respect to map composition

$$\mathsf{F} \cdot \mathsf{G} := \mathsf{G} \circ \mathsf{F}, \quad \mathsf{F}, \mathsf{G} \in \operatorname{Aut}_V(A)$$

with inverse

$$\mathsf{F}^{-1}: \textit{a} \longmapsto \textit{a}_{(0)}\mathsf{F}(\textit{a}_{(1)}{}^{<1>})\textit{a}_{(1)}{}^{<2>}$$

for $\mathsf{F} \in \operatorname{Hom}_{_{\mathcal{B}}\mathcal{A}^{H}}(\mathcal{A},\mathcal{A})$.

• The translation map $\tau = \chi_{|_{1\otimes \underline{H}}}^{-1} : \underline{H} \longrightarrow A \boxtimes_B A$, $h \mapsto h^{<1>} \otimes h^{<2>}$ is an algebra map;

the translation map satisfies

$$\tau \circ \underline{S} = R_{A,A} \circ \tau$$

(for $\tau = t^*$, the classical translation map of a principal bundle $\pi : P \to B$ corresponds by duality to the property $t(q, p) = t(p, q)^{-1}$, $p, q \in P$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition

The groups $(\mathcal{G}_A, *)$ and $(Aut_V(A), \cdot)$ are isomorphic via the map

 $\begin{array}{l} \theta_A:\mathcal{G}_A\longrightarrow \operatorname{Aut}_V(A)\\ f\mapsto \mathsf{F}_{\mathsf{f}}:=m_A\circ (\operatorname{id}_A\otimes_B\mathsf{f})\circ\delta^A \quad :a\mapsto a_{(0)}\mathsf{f}(a_{(1)}) \end{array}$

with inverse

$$\mathsf{F} \mapsto \mathsf{f}_\mathsf{F} := m_A \circ (\mathrm{id}_A \otimes \mathsf{F}) \circ \tau \quad : h \mapsto h^{<1>} \mathsf{F}(h^{<2>}).$$

Definition

We term $\mathcal{G}_A \simeq \operatorname{Aut}_V(A)$ the gauge group of the Hopf-Galois extension $B \subseteq A \in \mathcal{A}_{qc}^{(H,R)}$.

Example

Let us consider the principal *G*-bundle $G \to \{*\}$ over a point, or dually the Hopf-Galois extension $\mathbb{C} \subseteq \mathcal{O}(G)$, where $A := \mathcal{O}(G)$ is a comodule algebra with coaction of $H := \mathcal{O}(G)$ given by the coproduct, then

$$\mathcal{G}_A = \operatorname{Hom}_{_B\mathcal{A}^H}(A, A) \simeq G$$

Deformation of Hopf-Galois extensions and gauge groups via 2-cocycles.

Let $\gamma: H \otimes H \to \mathbb{K}$ be a convolution invertible unital 2-cocycle or Drinfel'd twist on H,

 $\gamma\left(g_{(1)}\otimes h_{(1)}\right)\gamma\left(g_{(2)}h_{(2)}\otimes k\right)=\gamma\left(h_{(1)}\otimes k_{(1)}\right)\gamma\left(g\otimes h_{(2)}k_{(2)}\right)\,.$

- $H \rightsquigarrow$ twisted Hopf-algebra H_{γ} with twisted product $h \cdot_{\gamma} k := \gamma (h_{(1)} \otimes k_{(1)}) h_{(2)} k_{(2)} \overline{\gamma} (h_{(3)} \otimes k_{(3)})$ and twisted antipode $S_{\gamma} := u_{\gamma} * S * \overline{u}_{\gamma}$.
- $A \in \mathcal{A}^{H} \rightsquigarrow$ twisted comodule-algebra $A_{\gamma} \in \mathcal{A}^{H_{\gamma}}$ with twisted product $a \bullet_{\gamma} a' := a_{(0)}a'_{(0)}\overline{\gamma} (a_{(1)} \otimes a'_{(1)})$ and coaction $\delta = \delta_{\gamma} : A_{\gamma} \to A_{\gamma} \otimes H_{\gamma}.$
- ~ apply to HG extensions [Aschieri, Bieliavsky, P., Schenkel, CMP 2017]

$$\begin{array}{ccc} A & & A_{\gamma} \\ \\ H \uparrow & \stackrel{twisting}{\rightsquigarrow} & H_{\gamma} \uparrow \\ B = A^{coH} & & B = A_{\gamma}^{coH_{\gamma}} \end{array}$$

Theorem (Aschieri, Bieliavsky, P., Schenkel, CMP 2017)

The following diagram in $_{A_{\gamma}}\mathcal{M}_{A_{\gamma}}^{H_{\gamma}}$ commutes:

Corollary

The extension $B = A^{coH} \subset A$ is H-Galois \iff the extension $B \simeq A_{\gamma}^{coH_{\gamma}} \subset A_{\gamma}$ is H_{γ} -Galois.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Case of H coquasi \triangle

Theorem

Let γ be a twist on (H, R). Let $A \in \mathcal{A}_{qc}^{(H,R)}$ with $B = A^{coH} \subseteq A$ and twist deformation $B = A_{\gamma}^{coH_{\gamma}} \subseteq A_{\gamma} \in \mathcal{A}_{qc}^{(H_{\gamma},R_{\gamma})}$. Then the following diagram in $\mathcal{A}^{H_{\gamma}}$ commutes.

Twisting gauge groups

Theorem

The functor $\Gamma : \mathcal{A}^{H} \to \mathcal{A}^{H_{\gamma}}$ composed with the pullback $Q^{*} : \operatorname{Hom}_{\mathcal{A}^{H_{\gamma}}}(\underline{H}_{\gamma}, A_{\gamma}) \to \operatorname{Hom}_{\mathcal{A}^{H_{\gamma}}}(\underline{H}_{\gamma}, A_{\gamma})$ of the map $\mathcal{Q} : \underline{H_{\gamma}} \longrightarrow \underline{H}_{\gamma}$ gives the gauge group isomorphism

 $\Gamma_{Q} := \mathcal{Q}^{*} \circ \Gamma : \operatorname{Hom}_{\mathcal{A}^{H}}(\underline{H}, A) \xrightarrow{\simeq} \operatorname{Hom}_{\mathcal{A}^{H_{\gamma}}}(H_{\gamma}, A_{\gamma}).$

Twisting gauge groups

Theorem

The functor $\Gamma : \mathcal{A}^{H} \to \mathcal{A}^{H_{\gamma}}$ composed with the pullback $Q^{*} : \operatorname{Hom}_{\mathcal{A}^{H_{\gamma}}}(\underline{H}_{\gamma}, A_{\gamma}) \to \operatorname{Hom}_{\mathcal{A}^{H_{\gamma}}}(\underline{H}_{\gamma}, A_{\gamma})$ of the map $\mathcal{Q} : \underline{H_{\gamma}} \longrightarrow \underline{H}_{\gamma}$ gives the gauge group isomorphism

 $\Gamma_{\mathcal{Q}} := \mathcal{Q}^* \circ \Gamma : \operatorname{Hom}_{\mathcal{A}^H}(\underline{H}, A) \xrightarrow{\simeq} \operatorname{Hom}_{\mathcal{A}^{H_{\gamma}}}(H_{\gamma}, A_{\gamma}).$

Proposition

For θ_A and $\theta_{A_{\gamma}}$ the isomorphisms described before the following diagram

commutes.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Open questions

• study of the gauge group of a twisted Hopf-Galois extension obtained by deformation with a cocycle σ on an external Hopf algebra of symmetries

$$A \qquad \qquad \sigma A$$

$$H \uparrow \qquad \sim twisting \\ \sigma \text{ on } K \rightarrow \qquad H \uparrow$$

$$B = A^{coH} \qquad \qquad \sigma B \simeq (\sigma A)^{co(H)}$$

or double deformation, H_{γ} -Galois $_{\sigma}B \subseteq {}_{\sigma}A_{\gamma}$.

• Gauge group of a generic Hopf-Galois extension