Non-formal Deformation Quantization and abstract O*-Algebras Based on joint work with Stefan Waldmann

Matthias Schötz

23.04.2018

Bayrischzell Workshop 2018

On Noncommutativity and Physics: Hopf algebras in Noncommutative Geometry

Outline

Problem: Understand *-algebras of non-formal DQ

3 Topologisation

 Formal star product on Poisson manifold M: Associative C [[ħ]]-linear product ★ on C[∞](M) [[ħ]], such that

$$f \star g = fg + \mathcal{O}(\hbar)$$
$$\frac{1}{i\hbar} [f, g]_{\star} = \{f, g\} + \mathcal{O}(\hbar)$$

for all $f, g \in C^{\infty}(M)$.

3 N

3.5 3

 Formal star product on Poisson manifold M: Associative ℂ[[ħ]]-linear product ★ on C[∞](M)[[ħ]], such that

$$f \star g = fg + \mathcal{O}(\hbar)$$
$$\frac{1}{i\hbar} [f, g]_{\star} = \{f, g\} + \mathcal{O}(\hbar)$$

for all $f, g \in C^{\infty}(M)$.

• Convergent star product:

Subalgebra $\mathscr{A} \subseteq \mathcal{C}^{\infty}(M)$ with locally convex topology and formal star product \star on M such that $f \star g$ converges for all $f, g \in \mathscr{A}$ and all (or sufficiently many) $\lambda \in \mathbb{C}$.

 Formal star product on Poisson manifold M: Associative ℂ[[ħ]]-linear product ★ on C[∞](M)[[ħ]], such that

$$f \star g = fg + \mathcal{O}(\hbar)$$
$$\frac{1}{i\hbar} [f, g]_{\star} = \{f, g\} + \mathcal{O}(\hbar)$$

for all $f, g \in C^{\infty}(M)$.

• Convergent star product:

Subalgebra $\mathscr{A} \subseteq \mathcal{C}^{\infty}(M)$ with locally convex topology and formal star product \star on M such that $f \star g$ converges for all $f, g \in \mathscr{A}$ and all (or sufficiently many) $\lambda \in \mathbb{C}$.

• Ideally: Pointwise complex conjugation as *-involution.

Exponential star products on \mathbb{R}^n

$$f \star_{\Lambda,\hbar} g = \sum_{r=0}^{\infty} \frac{\hbar^r}{r!} \sum_{\substack{i_1,\ldots,i_r=1\\j_1,\ldots,j_r=1}}^{2n} \Lambda^{i_1,j_1} \ldots \Lambda^{i_n,j_n} \frac{\partial^r f}{\partial x^{i_1} \ldots \partial x^{i_n}} \frac{\partial^r g}{\partial x^{j_1} \ldots \partial x^{j_n}}$$

with $\Lambda \in \mathbb{C}^{n \times n}$ such that $-2i\Lambda_{asym} = \pi$.

э

- 4 回 ト - 4 回 ト

Exponential star products on \mathbb{R}^n

$$f \star_{\Lambda,\hbar} g = \sum_{r=0}^{\infty} \frac{\hbar^r}{r!} \sum_{\substack{i_1,\ldots,i_r=1\\j_1,\ldots,j_r=1}}^{2n} \Lambda^{i_1,j_1} \ldots \Lambda^{i_n,j_n} \frac{\partial^r f}{\partial x^{i_1} \ldots \partial x^{i_n}} \frac{\partial^r g}{\partial x^{j_1} \ldots \partial x^{j_n}}$$

with
$$\Lambda \in \mathbb{C}^{n \times n}$$
 such that $-2i\Lambda_{asym} = \pi$.

- For general $f, g \in C^{\infty}(M)$: only defined as formal star product.
- Convergent on polynomials $f, g \in \mathbb{C}[x^1, \dots, x^n]$.
- Complex conjugation is *-involution if Λ is Hermitian (e.g. Weyl- or Wick star product).

Crucial property: There exist $P, Q \in \mathbb{C}[x^1, \dots, x^n]$ with canonical commutation relations

$$[P, Q]_{\star} = \mathrm{i}\hbar$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

э.

Crucial property: There exist $P, Q \in \mathbb{C}[x^1, \dots, x^n]$ with canonical commutation relations

$$[P, Q]_{\star} = \mathrm{i}\hbar.$$

Only trivial submultiplicative seminorm on ccr

If $\|\cdot\|$ is a submuliplicative seminorm on a unital associative algebra \mathscr{A} , and $P, Q \in \mathscr{A}$ fulfil $[P, Q] := PQ - QP = \mathbb{1}$, then $\|\cdot\| = 0$: PROOF:

$$n! \|1\| = \|[\dots [P^n, Q], \dots, Q]\| \le 2^n \|P\|^n \|Q\|^n$$

holds for all $n \in \mathbb{N}$.

Crucial property: There exist $P, Q \in \mathbb{C}[x^1, \dots, x^n]$ with canonical commutation relations

$$[P, Q]_{\star} = \mathrm{i}\hbar.$$

Only trivial submultiplicative seminorm on ccr

If $\|\cdot\|$ is a submuliplicative seminorm on a unital associative algebra \mathscr{A} , and $P, Q \in \mathscr{A}$ fulfil $[P, Q] := PQ - QP = \mathbb{1}$, then $\|\cdot\| = 0$: PROOF:

$$n! \|1\| = \|[\dots [P^n, Q], \dots, Q]\| \le 2^n \|P\|^n \|Q\|^n$$

holds for all $n \in \mathbb{N}$.

 \Rightarrow \mathscr{A} cannot be lmc-*-algebra.

Given such a *-algebra \mathscr{A} ...

- Understand functionals calculus.
- Understand representations as operators of *A*.
- Or: Find the well-behaved representations.

Given such a *-algebra \mathscr{A} ...

- Understand functionals calculus.
- Understand representations as operators of *A*.
- Or: Find the well-behaved representations.
- If \mathscr{A} is commutative: understand representations as functions.

Given such a *-algebra \mathscr{A} ...

- Understand functionals calculus.
- Understand representations as operators of \mathscr{A} .
- Or: Find the well-behaved representations.
- If *A* is commutative: understand representations as functions.

Heuristically, pure states of commutative *-algebras are characters:

Definition

A state on \mathscr{A} is an $\omega \in \mathscr{A}^*$ such that $\langle \omega, a^*a \rangle \ge 0$ for all $a \in \mathscr{A}$ and $\langle \omega, \mathbb{1} \rangle = 1$. A *pure state* on \mathscr{A} is an extreme point of the convex set of states. A *character* of \mathscr{A} is a unital *-homomorphism $\omega : \mathscr{A} \to \mathbb{C}$.

Characters of commutative *-algebras are the evaluation functionals in representations as functions.

Given such a *-algebra \mathscr{A} ...

- Understand functionals calculus.
- Understand representations as operators of \mathscr{A} .
- Or: Find the well-behaved representations.
- If \mathscr{A} is commutative: understand representations as functions.

Heuristically, pure states of commutative *-algebras are characters:

Definition

A state on \mathscr{A} is an $\omega \in \mathscr{A}^*$ such that $\langle \omega, a^*a \rangle \ge 0$ for all $a \in \mathscr{A}$ and $\langle \omega, \mathbb{1} \rangle = 1$. A pure state on \mathscr{A} is an extreme point of the convex set of states. A character of \mathscr{A} is a unital *-homomorphism $\omega : \mathscr{A} \to \mathbb{C}$.

Characters of commutative *-algebras are the evaluation functionals in representations as functions.

• Are characters and pure states identical for commutative *A*?

・吊り ・ラト ・ラ

Back to our example...

<ロ> <同> <同> < 回> < 回>

æ

Back to our example...

Theorem: Topologisation for constant Poisson structures

There exists a coarsest locally convex topology on $\mathbb{C}[x^1, \ldots, x^n]$ such that \star for all Hermitian $\Lambda \in \mathbb{C}^{n \times n}$ and all $\hbar \geq 0$, the *-involution (complex conjugation) and the evaluation functional at 0, $\delta_0 \colon \mathbb{C}[x^1, \ldots, x^n] \to \mathbb{C}$, $f \mapsto \delta_0(f) := f(0)$, are continuous. This topology is the one defined by the norms coming from the inner products $\langle f \mid g \rangle_{\Lambda,\hbar} := \delta_0(f^* \star g)$ for all positive definite $\Lambda \in \mathbb{C}^{n \times n}$ and $\hbar > 0$. (S., Waldmann; 2018)

Back to our example...

Theorem: Topologisation for constant Poisson structures

There exists a coarsest locally convex topology on $\mathbb{C}[x^1, \ldots, x^n]$ such that \star for all Hermitian $\Lambda \in \mathbb{C}^{n \times n}$ and all $\hbar \geq 0$, the *-involution (complex conjugation) and the evaluation functional at 0, $\delta_0 \colon \mathbb{C}[x^1, \ldots, x^n] \to \mathbb{C}$, $f \mapsto \delta_0(f) := f(0)$, are continuous. This topology is the one defined by the norms coming from the inner products $\langle f \mid g \rangle_{\Lambda,\hbar} := \delta_0(f^* \star g)$ for all positive definite $\Lambda \in \mathbb{C}^{n \times n}$ and $\hbar > 0$. (S., Waldmann; 2018)

- Equivalence transformations are continuous.
- There are many continuous positive linear functionals.
- *-exponentials of linear functions exist in completion.
- Everything remains valid when ℝⁿ is replaced by nuclear space V, i.e. when ℂ[x¹,...,xⁿ] is replaced by S[•](V).

- < 同 > < 三 > < 三 >

Other properties? – Related to positive linear functionals on \mathscr{A} !

(人間) シスヨン スヨン

э

Other properties? – Related to positive linear functionals on \mathscr{A} !

Definition: abstract O^* -algebras

- An abstract O^* -algebra is a tuple $(\mathscr{A}, \Omega_H^+)$ consisting of a *-algebra \mathscr{A} and a subset Ω_H^+ of the set $\mathscr{A}_H^{*,+}$ of positive linear functionals on \mathscr{A} , such that:
 - $\Omega_{\rm H}^+$ is a cone.
 - a ▷ ω ∈ Ω_H⁺ for all a ∈ 𝔄 and ω ∈ Ω_H⁺, where ⟨a ▷ ω, b⟩ := ⟨ω, a*ba⟩ for all b ∈ 𝔄.
 - Ω_{H}^{+} is weak-*-closed in its linear span $\Omega := \langle \langle \Omega_{H}^{+} \rangle \rangle_{\text{lin}}$.

Other properties? – Related to positive linear functionals on \mathscr{A} !

Definition: abstract O^* -algebras

- An abstract O^* -algebra is a tuple $(\mathscr{A}, \Omega^+_H)$ consisting of a *-algebra \mathscr{A} and a subset Ω^+_H of the set $\mathscr{A}^{*,+}_H$ of positive linear functionals on \mathscr{A} , such that:
 - $\Omega_{\rm H}^+$ is a cone.
 - $a \triangleright \omega \in \Omega_{\mathbb{H}}^+$ for all $a \in \mathscr{A}$ and $\omega \in \Omega_{\mathbb{H}}^+$, where $\langle a \triangleright \omega, b \rangle := \langle \omega, a^* b a \rangle$ for all $b \in \mathscr{A}$.
 - Ω_H^+ is weak-*-closed in its linear span $\Omega := \langle \langle \, \Omega_H^+ \, \rangle \rangle_{\text{lin}}.$
- A morphism of abstract O^* -algebras $(\mathscr{A}, \Omega_H^+)$ and $(\mathscr{B}, \mathcal{R}_H^+)$ is a unital *-homomorphism $M \colon \mathscr{A} \to \mathscr{B}$ such that $M^*(\psi) := \psi \circ M \in \Omega_H^+$ for all $\psi \in \mathcal{R}_H^+$.

Other properties? – Related to positive linear functionals on \mathscr{A} !

Definition: abstract O^* -algebras

- An abstract O^* -algebra is a tuple $(\mathscr{A}, \Omega^+_H)$ consisting of a *-algebra \mathscr{A} and a subset Ω^+_H of the set $\mathscr{A}^{*,+}_H$ of positive linear functionals on \mathscr{A} , such that:
 - $\Omega_{\rm H}^+$ is a cone.
 - $a \triangleright \omega \in \Omega_{\mathsf{H}}^+$ for all $a \in \mathscr{A}$ and $\omega \in \Omega_{\mathsf{H}}^+$, where $\langle a \triangleright \omega, b \rangle := \langle \omega, a^* b a \rangle$ for all $b \in \mathscr{A}$.
 - Ω_H^+ is weak-*-closed in its linear span $\Omega := \langle \langle \, \Omega_H^+ \, \rangle \rangle_{\text{lin}}.$
- A morphism of abstract O^* -algebras $(\mathscr{A}, \Omega_{\mathsf{H}}^+)$ and $(\mathscr{B}, \mathcal{R}_{\mathsf{H}}^+)$ is a unital *-homomorphism $M \colon \mathscr{A} \to \mathscr{B}$ such that $M^*(\psi) := \psi \circ M \in \Omega_{\mathsf{H}}^+$ for all $\psi \in \mathcal{R}_{\mathsf{H}}^+$.
- A representation as operators of an abstract O^* -algebra $(\mathscr{A}, \Omega_H^+)$ is a morphism from $(\mathscr{A}, \Omega_H^+)$ to $(\mathcal{L}^*(\mathfrak{H}), \mathcal{X}(\mathfrak{H}))$ for some pre-Hilbert space \mathfrak{H} , where $\mathcal{L}^*(\mathfrak{H})$ is the *-algebra of adjointable (in the algebraic sense) endomorphisms of \mathfrak{H} and $\mathcal{X}(\mathfrak{H})$ generated by the positive linear functionals on $\mathcal{L}^*(\mathfrak{H})$ of the form $\mathcal{L}^*(\mathfrak{H}) \ni a \mapsto \langle \chi_{\xi}, a \rangle := \langle \xi \, | \, a(\xi) \rangle$ with $\xi \in \mathfrak{H}$.

Properties of representations

Let \mathscr{A}, \mathscr{B} be locally convex *-algebras with at least separately continuous multiplication. $\Phi \colon \mathscr{A} \to \mathscr{B}$ continuous unital *-homomorphism.

- Construct $\Omega_{H}^{+} \subseteq \mathscr{A}_{H}^{*,+}$ as the cone of continuous positive linear functionals on \mathscr{A} . Analogous $\mathcal{R}_{H}^{+} \subseteq \mathscr{B}_{H}^{*,+}$.
- Then $\Phi: (\mathscr{A}, \Omega^+_{\mathsf{H}}) \to (\mathscr{B}, \mathcal{R}^+_{\mathsf{H}})$ is a morphism of abstract O^+ -algebras

 \Rightarrow functoriality of the construction.

Then a unital *-homomorphism Ψ: 𝒜 → L*(𝔅) is weakly continuous if and only if Ψ is a representation as operators of (𝒜, Ω⁺_H).

 \Rightarrow representations of locally convex *-algebras can be studied via abstract O^* -algebras.

Properties of representations

Let \mathscr{A}, \mathscr{B} be locally convex *-algebras with at least separately continuous multiplication. $\Phi \colon \mathscr{A} \to \mathscr{B}$ continuous unital *-homomorphism.

- Construct $\Omega_{H}^{+} \subseteq \mathscr{A}_{H}^{*,+}$ as the cone of continuous positive linear functionals on \mathscr{A} . Analogous $\mathcal{R}_{H}^{+} \subseteq \mathscr{B}_{H}^{*,+}$.
- Then $\Phi: (\mathscr{A}, \Omega^+_H) \to (\mathscr{B}, \mathcal{R}^+_H)$ is a morphism of abstract O^+ -algebras

 \Rightarrow functoriality of the construction.

• Then a unital *-homomorphism $\Psi : \mathscr{A} \to \mathcal{L}^*(\mathfrak{H})$ is weakly continuous if and only if Ψ is a representation as operators of $(\mathscr{A}, \Omega^+_H)$.

 \Rightarrow representations of locally convex *-algebras can be studied via abstract $O^{*}\text{-algebras}.$

Similar constructions for strongly continuous representations of locally convex *-algebras, representations of ordered *-algebras,...

Back to our example...

Theorems: (S., Waldmann; 2018 und S; 2018)

- Nelsons criterium for essential self-adjointness can be transfered to abstract *O**-algebras. This yields:
- All Hermitian elements of up to degree 2 and all positive Hermitian elements up to degree 4 are essentially self-adjoint in all continuous representations.

Back to our example...

Theorems: (S., Waldmann; 2018 und S; 2018)

- Nelsons criterium for essential self-adjointness can be transfered to abstract *O**-algebras. This yields:
- All Hermitian elements of up to degree 2 and all positive Hermitian elements up to degree 4 are essentially self-adjoint in all continuous representations.
- Pure states and characters of commutative abstract *O**-algebras coincide under very general assumptions. This yields:
- The continuous pure states of the classical limit are just the continuous characters, which are the evaluation functionals on points of Rⁿ (or on points of the topological dual of V).

くぼう くうり くうり

 $\begin{array}{c} \mbox{Motivation: Exponential star products} \\ \mbox{Problem: Understand} & \mbox{-algebras of non-formal DQ} \\ & \mbox{Topologisation} \\ & \mbox{Abstract } \mathcal{O}^* \mbox{-algebras} \end{array}$

Thank you for your attention!

イロン イボン イヨン イヨン

æ