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Motivation

I Review systematic way of quantising 3d gravity in Chern-Simons
formulation

I Exhibit Hopf algebras and non-commutative spaces which arise
I Discuss some recent results regarding quantisation ambiguities
I Discuss some recent results for non-commutative waves describing

gravitational anyons
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3d Gravity in Chern-Simon formulation



(a) Euclidean (b) Lorentzian



Local isometry groups of 3d gravity

Cos. constant Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 SU(2) nR3 SL(2,R) nR3

Λ > 0 SU(2)× SU(2) SL(2,C)

Λ < 0 SL(2,C) SL(2,R)× SL(2,R)



Isometry Lie algebras

With metric ηab = diag(1,−1,−1), and

λ = −c2Λ = θ2

isometry Lie algebra gλ is

[Ja, Jb] = εabcJc , [Ja,Pb] = εabcPc , [Pa,Pb] = λεabcJc .

Have bilinear pairings

t(Ja, Jb) = 0, t(Pa,Pb) = 0, t(Ja,Pb) = ηab,

and
s(Ja, Jb) = ηab, s(Pa,Pb) = ληab, s(Ja,Pb) = 0.

Most general such form parametrised in terms of τ = α + θβ

(·, ·)τ = αt(·, ·) + βs(·, ·),

which is non-degenerate if τ τ̄ = α2 − λβ2 6= 0.



Chern-Simons formulation

Cartan geometry combines spin connection ω with frame field e:

A = ωaJa + eaPa,

The Chern-Simons action for the gauge field A is

Iτ (A) =

∫
M

(A ∧ dA)τ +
1
3

(A ∧ [A,A])τ .

Integrating by parts and ignoring boundary terms, this can be expanded
as

Iτ (A) = α

∫
M

(
2ea ∧ Ra +

λ

3
εabcea ∧ eb ∧ ec

)
+ β

∫
M

(
ωa ∧ dωa +

1
3
εabcω

a ∧ ωb ∧ ωc + λea ∧ Ta

)
.

With α =
1

16πG
this is ‘Einstein + cosmological’ and ‘Immirzi term’



Fock-Rosly compatibility I

Fock-Rosly define Poisson structure on extended phase space of
holonomies in terms of classical r -matrix

r ∈ gλ ⊗ gλ

satisfying a compatibility condition involving Casimir associated to τ :

Kτ =
α

ττ̄
(Ja ⊗ Pa + Pa ⊗ Ja)− β

τ τ̄
(λJa ⊗ Ja + Pa ⊗ Pa).

Seek r ′ ∈ gλ ∧ gλ so that r = r ′ + K satisfies CYBE, or

[[r ′, r ′]] = −[[Kτ ,Kτ ]].

Expanding in terms of antiy-symmetric matrices A and C, and matrix B

r ′ = AbaJa ⊗ Jb + BbaPa ⊗ Jb − BbaJb ⊗ Pa + CbaPa ⊗ Pb



Fock-Rosly compatibility II

In terms of

µ+ θν =
1
τ2 ⇔ µ =

α2 + λβ2

(α2 − λβ2)2 , ν = − 2αβ
(α2 − λβ2)2 ,

condition is

1
2

tr(A2)− λ

2
(
tr(B)2 − tr(B2)

)
= µλ,

tr(CB) = ν,

(B − tr(B)id)(B + Bt ) +
1
2
(
tr(B)2 − tr(B2)

)
id

−CA + λ(C2 − 1
2

tr(C2)id) = −µ id,

−A(B + Bt ) + (Bt − tr(B)id) (λC − A)− tr(AB)id = −λν id.



Some compatible gravitational r -matrices1

Set β = 0 , and define 3d Planck mass and length

mP =
1

4G
, `P =

~
mP

= 4~G

Classical doubles

r =
2π
mP

(Pa ⊗ Ja) + mcεabcJa ⊗ Jb, ~m2 = −λ

Momentum co-multiplication when λ = 0, ~m = 0

δPa =
2π
mP

εabcPb ⊗ Pc

Position commutators

[Xa,Xb] = 2π`PεabcXc

1C Meusburger and BJS 2008; Ballesteros, Herranz and Meusburger 2013



Bicrossproduct Poisson-Lie algebra for λ = 0:

r ′ = qaεabc(Pb ⊗ Jc − Jc ⊗ Pb), ~q2 = −
(

4π
mP

)2

Momentum co-multiplication

δPa =
4π
mP

(~n · ~P) ∧ Pa, ~n2 = −1.

Position commutators

[Xa,Xb] = 4π`P(naXb − nbXa).

Symmetry is κ-Poincaré algebra2 with spacelike deformation parameter.

2Lukierski, Nowicki, Ruegg and Tolstoi 1991



Quantum isometry groups in 3d quantum gravity, q = e−
~G
√

Λ
c

Cos. const. Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 D(U(su(2))) D(U(su(1,1)))

Λ > 0 D(Uq(su(2))), q root of unity D(Uq(su(1,1))) q ∈ R

Λ < 0 D(Uq(su(2))), q ∈ R D(Uq(sl(2,R))), q ∈ U(1)



Non-commutative waves for gravitational anyons (Λ = 0)



Fractional spin in 3d gravity3

Spacetime surrounding a particle of mass m is cone with deficit angle

µ = 8πGm

µ

µ

Scattering is ‘classical Aharonov-Bohm scattering’

3’t Hooft 1988



Fractional spin in 3d gravity4

Spacetime surrounding a particle of mass m and spin s is ‘twisted cone’

Simple quantisation argument for wavefunction on angular range
[0,2π − µ) gives spin values

s =
k

1− µ
2π
, k ∈ Z.

4Bais, Mulller and BJS 2002



The quantum double

The quantum double D(G) of a Lie group G is a ribbon-Hopf algebra. As
a vector space D(G) = C(G ×G), with multiplication, co-product, unit,
co-unit, antipode and ribbon element given by

(F1 • F2)(g,u) =

∫
G

F1(v , vuv−1)F2(v−1g,u)dv ,

1(g,u) = δe(g),

(∆F )(g1,u1; g2,u2) = F (g1,u1u2)δg1 (g2),

ε(F ) =

∫
G

F (g,e)dg,

(SF )(g,u) = F (g−1,g−1u−1g),

F ∗(g,u) = F (g−1,g−1ug).

c(g,u) = δg(u), (1)



The Lorentz group and its covers

The proper, orthochronous part of the Lorentz group in 2+1 dimensions is
double covered by

SU(1,1) ' SL(2,R)

Can parametrise u ∈ SU(1,1) in terms of ω ∈ [0,4π), γ ∈ D ⊂ C as

u(ω, γ) =
1√

1− |γ|2

(
ei ω2 γ̄e−i ω2

γei ω2 e−i ω2

)
=

1√
1− |γ|2

(
1 γ̄
γ 1

)(
ei ω2 0
0 e−i ω2

)
.

The universal cover is not a matrix group, but can be identified with the
interior of an infinite cylinder R× D, with group multiplication

ω = ω1 + ω2 +
1
i

ln
(

1 + γ̄1γ2e−iω1

1 + γ1γ̄2eiω1

)
,

γ = (γ1 + γ2e−iω1 )(1 + γ̄1γ2e−iω1 )−1.

Central elements Ω = (2π,0) projects to −id under
π : S̃U(1,1)→ SU(1,1) and ker π = {Ω2n|n ∈ Z}.



The universal cover of the Poincaré group

P∞3 = S̃U(1,1) n su(1,1)∗,

UIRs are determined by orbits in (su(1,1)∗)∗ = su(1,1) and centraliser
representations.

Parametrise time-like elements as

p = v(−8πGmJ0)v−1 = −8πG ~p · ~J.

Figure: Adjoint Orbits of SU(1, 1)



Equivariant UIRs

The carrier space for UIRs describing massive particles is

V A
ms =

{
ψ : S̃U(1,1)→ C|ψ(ω + α, γ) = e−isαψ(ω, γ) ∀α ∈ R,

∀(ω, γ) ∈ S̃U(1,1),

∫
S̃U(1,1)/ÑT

|ψ2|dν <∞

}
.

The action of ((ω, γ),a) ∈ P∞3 is

(πeq
ms((ω, γ),a)ψ) (v) = exp

(
i〈a,Ad((ω,γ)−1v)(−µJ0)〉

)
ψ
(
(ω, γ)−1v

)
.



Covariant UIRs

Recall discrete series UIRs of S̃U(1,1). Let Hl±, l ∈ R+ be the completion
of holomorphic (anti-holomorphic) functions on the unit disc, and define

(Dl+(ω, γ)f )(z) = eilω(1− |γ|2)l (1 + γ̄z)−2l f (z · π(ω, γ)).

and

(Dl−(ω, γ)f )(z̄) = e−ilω(1− |γ|2)l (1 + γz̄)−2l f (z · π(ω, γ)).

Write corresponding infinesimal generators as dl±(Ja) and let |0〉 : z 7→ 1
be the vacuum.

Define covariant field by picking (ω, γ) so that p = −µAd(ω,γ)(s0)

φ̃± : OT
m → Hl±, φ̃±(p) = ψ(ω, γ)Dl±(ω, γ) |0〉l .

This is well-defined if s = ±l .



The anyonic Majorana equation5

The covariant representation on L2(su(1,1)) defined via

(πco
ms((ω, γ),a)φ̃±)(p) = exp(i〈a,Ad(ω,γ))−1p〉)Dl±((ω, γ))φ̃±(Ad(ω,γ)−1p).

is not irreducible. We need spin constraint

(dl±(p)− iµs)φ̃±(p) = 0,

and the mass constraint:

(~p2 −m2)φ̃±(p) = 0.

Choose l+ for s > 0 and l− for s < 0. Then m and p0 automatically have
the same sign!

Fourier transforms produces field φ± : R2,1 → Hl± satisfying

(� + m2)φ± = 0, (dl±(Ja)∂a −ms)φ± = 0

5Majorana 1932, Plyushchay 1991
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The Lorentz double6

Replace momentum space su(1,1)∗ of the Poincaré group by C(S̃U(1,1))
to deform

P∞3 → D(S̃U(1,1))

This means

I Lorentz symmetry is still S̃U(1,1). Anyonic spin!
I Momentum space is now S̃U(1,1). What does this mean?
I Double is still ribbon-Hopf algebra.

6Bais, Koornwinder, Muller 1997; Bais, Muller, BJS 2002



Equivariant UIRs of the Lorentz double

Classification now in terms of conjugacy classes and centraliser
representations. For massive particles, require elliptic conjugacy classes

E(µ) =
{

v(µ,0)v−1
∣∣∣ v ∈ S̃U(1,1), µ ∈ (R \ 2πZ)

}
.

and get UIRs on the same carrier space as for the P∞3 UIRs:

(Πeq
ms(F )ψ)(v) =

∫
S̃U(1,1)

F
(
g,g−1v(µ,0)v−1g

)
ψ(g−1v)dg,



Covariant UIRs of the Lorentz double

Define covariant, infinite-component fields

φ̃± : E(µ)→ Hl±, φ̃±(u) = ψ(v)Dl±(v) |0〉l .

Here v is chosen so that u = v(µ,0)v−1 and s = l for φ̃+ and s = −l for
φ̃−.

The covariant fields satisfy the following spin constraint(
Dl±(u)− eiµs

)
φ̃±(u) = 0,

which can be expressed in terms of the ribbon element as

Πco
ms(c)φ̃± = eiµsφ̃±.

For UIR on L2(S̃U(1,1)) also need a mass constraint

1
2

tr(π(ω, γ)) = cos
(µ

2

)
, int

( ω
2π

)
= int

( µ
2π

)
.



Parametrising curved momentum space

(a) Selected conjugacy classes (b) Selected exponential curves



Proposition (Parametrisation of S̃U(1,1))

Every element (ω, γ) ∈ S̃U(1,1) can be uniquely expressed in terms of
the 2π-rotation Ω and the exponential map via

(ω, γ) = Ωnẽxp(p), p = −(8πG) ~p · ~J ∈ su(1,1), n ∈ Z,

with
~p2 <

1
(4G)2 , and p0 > 0 if ~p2 > 0.



Group Fourier transform7

We want to generalise
L2(g)→ L2(g∗).

to
L2(G)→ L2

?(g∗).

Need ‘non-commutative plane waves’

E : G × g∗ → C,

satisfying the following normalisation and completeness relations

E(e; x) = 1, E(u−1; x) = Ē(u; x) = E(u;−x), δe(u) =
1

(2π)d

∫
g∗

E(u; x) dx ,

Then can define

E(u1; x) ? E(u2; x) = E(u1u2; x).

and

F : L2(G)→ L2
?(g∗), φ(x) = F(φ̃)(x) =

∫
G

E(u; x)φ̃(u) du,

7Rieffel 1990; Freidel and Livine 2006; Guedes, Oriti and Raasakka 2013



Non-commutative waves for G = S̃U(1,1)

Definition
We define non-commutative plane waves for S̃U(1,1) as the maps

E : S̃U(1,1)× (su(1,1)∗ × S1)→ C,

E(u; x , ϕ) =
1

ρ(p)
ei(〈x,p〉+nϕ), (2)

where p ∈ su(1,1) and n ∈ Z are the parameters determining u, the
function ρ is defined via du = ρ(p)d3~p and ϕ ∈ [0,2π) is an angular
coordinate on the circle S1.

The integer n labels particle types, and the parameter ϕ is a dual angular
variable.



Non-commutative wave equations for gravitational anyons

The mass constraint is split according to

µ = µ0 + 2πn, µ0 ∈ (0,2π)

into a Klein-Gordon equation for the fractional part(
� +

(µ0

2π

)2
m2

P

)
φ(x , ϕ) = 0.

and a differential condition on the angular dependence of φ for the integer
part:

−i
∂

∂ϕ
φ(x , ϕ) = nφ(x , ϕ).

The spin constraint involves Atiyah’s exponentiated Dirac operator 8.(
e2πi`P dl±(Ja)∂a − eiµ0s

)
φ±(x , ϕ) = 0.

8Atiyah and Moore 2009



Fusion and braiding

Fusion rules generalising the ‘Gott-pair’ production are encoded in

ei(〈x,p1〉+n1ϕ) ? ei(〈x,p2〉+n2ϕ) = ei(〈x,p(u1u2)〉+n(u1u2)ϕ).



The cone constraint revisited
The quantisation condition

s =
k

1− µ
2π
, k ∈ Z,

follows from
Πµs(c) = Πµs(Ω)⇒ eiµs = e2πis.

After group Fourier transform, and using µ = µ0 + 2πn, this becomes

e2πi`P dl±(Ja)∂aφ = Dl±(Ω1−n)φ.

Noting that, for the discrete series,

(idl+(J0))2 − (idl+(J1))2 − (idl+(J1))2 = s(s − 1),

this condition means

Translation by (2πs)× Planck length = Rotation by 2π(1− n)



Conclusion



I There is a systematic way of deriving non-commutative geometry
from 3d quantum gravity

I The outcome is not unique but related by twist - e.g., quantum double
and spacelike κ-Poincaré both possible

I Fourier transform of UIRs of quantum double amounts to Rieffel
deformation quantisation of spin spacetime

I Non-commutative waves provide new ‘spacetime’ picture of 3d
quantum gravity as braided QFT
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