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Motivation

Review systematic way of quantising 3d gravity in Chern-Simons
formulation

Exhibit Hopf algebras and non-commutative spaces which arise
Discuss some recent results regarding quantisation ambiguities

Discuss some recent results for non-commutative waves describing
gravitational anyons
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3d Gravity in Chern-Simon formulation



(a) Euclidean (b) Lorentzian



Local isometry groups of 3d gravity

Cos. constant

Euclidean (¢? < 0)

Lorentzian (¢? > 0)

A=0 SU(2) x R SL(2,R) x R3
A>0 SU(2) x SU(2) SL(2,C)
A<O SL(2,C) SL(2,R) x SL(2,R)




Isometry Lie algebras

With metric 7, = diag(1, -1, —1), and
A= —-cPh=10?
isometry Lie algebra g, is
[Ja, Ib] = €abcd®;  [Ja, Po] = €abc P, [Pa, Po] = Aeabcd®.
Have bilinear pairings
t(Ja,Jo) =0, U(Pa, Pp) =0, (Ja, Pp) = nav,

and
S(J87 Jb) = 77aba S(Pa, Pb) = )‘nab7 S(Jeu Pb) = O

Most general such form parametrised in terms of 7 = a + 64
('7 ')T = th(‘, ) + ﬁs(v ')7

which is non-degenerate if 77 = o® — A\3% # 0.



Chern-Simons formulation

Cartan geometry combines spin connection w with frame field e:
A = WaJa —+ eaPa,
The Chern-Simons action for the gauge field A is

L (A) = /M (AN dA) + %(A/\ A, A,

Integrating by parts and ignoring boundary terms, this can be expanded
as

I(A) = a/ (2ea AR+ %eabcea A el A ec)
M

)
+5/ (wa/\dwaJr §eabcwa/\waw’“"jL)\ea/\ Ta> )
M

With o = ﬁ this is ‘Einstein + cosmological’ and ‘Immirzi term’
s



Fock-Rosly compatibility |
Fock-Rosly define Poisson structure on extended phase space of
holonomies in terms of classical r-matrix
regy®ga
satisfying a compatibility condition involving Casimir associated to 7:

K= S (Ua® PP+ Py@ ) — L (\a @ J7 + Py PA).
TT TT

Seek r' € g\ A gy so that r = r' + K satisfies CYBE, or
([, rll = —[IK: K-DI.
Expanding in terms of antiy-symmetric matrices A and C, and matrix B

r' = Apad® @ J° + BpaP? @ J° — Bpad® ® PP+ CpaP? @ PP



Fock-Rosly compatibility Il

In terms of
1 a? + \p? 200
ptv=—3ep= (@@ g2 VT T2 - apR)R
condition is

A(A) — 2 ((BY — u(B%) = ),

tr(CB) = v,
(B — tr(B)id)(B + B') + % (tr(B)? — tr(B?)) id
—CA+ \(C? - %tr(Cz)id) = —uid,
—A(B+ B') 4 (B' — tr(B)id) (\C — A) — tr(AB)id = —\vid.



Some compatible gravitational r-matrices’

Set 8 = 0, and define 3d Planck mass and length

1 h

Classical doubles

2 B
r— m“(Pa®Ja)+meacha®Jb AR =
P

Momentum co-multiplication when A = 0, m =0
27
0Py = ——eancP? @ P°
a mp €abc ®
Position commutators

[Xa, Xp) = 21lpeapcXe

1C Meusburger and BJS 2008; Ballesteros, Herranz and Meusburger2013



Bicrossproduct Poisson-Lie algebra for A = 0:

r = qaeabc(Pb@)Jc —J® Pb), 62 - _ (

Momentum co-multiplication

§Pyg=——(A-P)A P, M =—1.

Position commutators

[Xa, Xb] = 47Tfp(naXb — ana).

Symmetry is x-Poincaré algebra? with spacelike deformation parameter.

2Lukierski, Nowicki, Ruegg and Tolstoi 1991



Quantum isometry groups in 3d quantum gravity, g = e~ ¢

S

hG

Cos. const. Euclidean (c2 < 0) Lorentzian (c2 > 0)
A=0 D(U(su(2))) D(U(su(1,1)))
A>0 | D(Ug(su(2))), qrootof unity | D(Ug(su(1,1))) g € R
A<O D(Uy(su(2))), g € R D(Uy(s/(2,R))), g € U(1)




Non-commutative waves for gravitational anyons (A = 0)



Fractional spin in 3d gravity®

Spacetime surrounding a particle of mass m is cone with deficit angle

uw=8rGm

Scattering is ‘classical Aharonov-Bohm scattering’

3’t Hooft 1988



Fractional spin in 3d gravity*

Spacetime surrounding a particle of mass m and spin s is ‘twisted cone’

Simple quantisation argument for wavefunction on angular range
[0,27 — u) gives spin values

4Bais, Mulller and BJS 2002



The quantum double

The quantum double D(G) of a Lie group G is a ribbon-Hopf algebra. As
a vector space D(G) = C(G x G), with multiplication, co-product, unit,
co-unit, antipode and ribbon element given by

(FreF2)(g,u /F1 v,vuv ") Fa(v g, u)av,

(g, u) = de(9),
(AF)(g1,u1; g2, U2) = F(g1, U1U2)dg, (92),

/F97 )dg,

(SF)(g.u)=F(g .9 'ug),
F*(g,u) = F(g~', g "ug).
c(g, u) = dg(u), (1)



The Lorentz group and its covers

The proper, orthochronous part of the Lorentz group in 2+1 dimensions is
double covered by
SU(1,1) ~ SL(2,R)

Can parametrise u € SU(1,1) interms of w € [0,47),y€ DC C as

o= (% TN - L (D% )
TTVASRE 0T e )T o\ 10 et

The universal cover is not a matrix group, but can be identified with the
interior of an infinite cylinder R x D, with group multiplication

1+ F1y28 "
1+ 71726
v= (71 + 726 )1 +F17267"") "

1
w=w1+w2+l,|n<

Central elements Q = (2, 0) projects to —id under
7:SU(1,1) — SU(1,1) and ker 7 = {Q?"|n € Z}.



The universal cover of the Poincaré group

P3° _SU(1 1) x su(1,1)*
= su

UIRs are determined by orbits in (su(1,1)*)*
representations.

b
u(1,1) and centraliser

Parametrise time-like elements as

p=v(-8rGmS)v ' = —8xGp - J.
v €
R

Figure: Adjoint Orbits of SU(1, 1)



Equivariant UIRs

The carrier space for UIRs describing massive particles is

Vine = {1 SU(1,1) > Clu(w + 0,7) = €75 ¢(w,7) Va € R,
su(1,1)/NT

V(w,’y)eéﬁ(1,1),/~ |¢2|d1/<oo}.

The action of ((w,v),a) € Pg° is

(W?gs((W,’V)7 3)1/)) (V) = exp (i<a’ Ad((w,'y)*1V)(_/“"J0)>) ’L/) ((wv"Y)_1 V) .



Covariant UIRs

Recall discrete series UIRs of §IVJ(1 ,1). Let H,+, | € R be the completion
of holomorphic (anti-holomorphic) functions on the unit disc, and define

(Dii(w,1))(2) = (1 = [VP) (1 +732) (2 7(w, 7).
and
(Di—(w,NN(2) = e ™ (1 = v (1 +72)?f(z - 7(w, 7).

Write corresponding infinesimal generators as dj1.(J2) and let |0) : z — 1
be the vacuum.

Define covariant field by picking (w, v) so that p = —p Ad(, )(s°)

G OF = Hie,  64(P) = ¥(w,)Dix(w,7)|0),.

This is well-defined if s = =£/.



The anyonic Majorana equation®

The covariant representation on L2(su(1, 1)) defined via

(mins((0,7), @)9)(P) = exp(i(@, A, 1))-1P)) Dr((w, 7)) P+ (Ad(s )1 P).

is not irreducible. We need spin constraint

(di+(p) — ius)o+(p) =0,
and the mass constraint:
(P* — mP)¢+(p) = 0.

Choose /+ for s > 0 and /- for s < 0. Then m and p° automatically have
the same sign!

Fourier transforms produces field ¢4 : R%" — #,, satisfying

5Majorana 1932, Plyushchay 1991



The anyonic Majorana equation®

The covariant representation on L2(su(1, 1)) defined via

(mins((0,7), @)9)(P) = exp(i(@, A, 1))-1P)) Dr((w, 7)) P+ (Ad(s )1 P).

is not irreducible. We need spin constraint

(di+(p) — ius)o+(p) =0,
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the same sign!
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5Majorana 1932, Plyushchay 1991



The Lorentz double®

Replace momentum space su(1, 1)* of the Poincaré group by C(SU(1, 1))
to deform .
P3° — D(SU(1,1))

This means
» Lorentz symmetry is still §IVJ(1 , 1). Anyonic spin!
» Momentum space is now SU(1, 1). What does this mean?
» Double is still ribbon-Hopf algebra.

6Bais, Koornwinder, Muller 1997; Bais, Muller, BJS 2002



Equivariant UIRs of the Lorentz double

Classification now in terms of conjugacy classes and centraliser
representations. For massive particles, require elliptic conjugacy classes

E(u) = { V(, 0)v~! ‘ vesu(i,1), ue (R\sz)}.

and get UIRs on the same carrier space as for the Pg° UIRs:

(M (F))(v) = /sm | Flo.g7vn.0v""g) v(g™vag,



Covariant UIRs of the Lorentz double

Define covariant, infinite-component fields

dr: E() = Hys, ¢+ (u) = ¥(v)DiL(v) [0), .

Here v is chosen so that u = v(u, 0)v—'and s =/for ¢, and s = —/ for
b_.
The covariant fields satisfy the following spin constraint

(D (v) - €¥2) u(u) = 0,
which can be expressed in terms of the ribbon element as
Mers(C)ds = €190
For UIR on L2(§f1(1 ,1)) also need a mass constraint

%tr(ﬂ'(w,'y)) = COS (g) , int (%) = int (%) .



Parametrising curved momentum space

(a) Selected conjugacy classes (b) Selected exponential curves



Proposition (Parametrisation of SU(1, 1))

Every element (w,v) € SU (1,1) can be uniquely expressed in terms of
the 27 -rotation 2 and the exponential map via

(w,7) = Q"exp(p), p=—(87G)p-Jesu(1,1), neZ,

with
o 1

p <W’ and p° >0 if B> > 0.



Group Fourier transform’
We want to generalise
L?(g) = L*(g").

to
L*(G) — L3(g").

Need ‘non-commutative plane waves’
E:Gxg —C,
satisfying the following normalisation and completeness relations
E(e;x) =1, E(u™";x) = E(u; x) = E(u; —x), de(u) = (er)d /g E(u; x) dx,
Then can define
E(u1; x) x E(u2; x) = E(uqug; x).

and

FL2(G) = L2(g"), (x) = F(3)(x) = /G E(u; x)(u) du,

"Rieffel 1990; Freidel and Livine 2006; Guedes, Oriti and Raasakka 2013



Non-commutative waves for G = SU(1, 1)

Definition
We define non-commutative plane waves for @(1 ,1) as the maps

E :SU(1,1) x (su(1,1)* x 8"y = C,

1 .
E(u; x,p) = 7e/(<xap>+n¢)7 2)
(%, 2) p(P)
where p € su(1,1) and n € Z are the parameters determining u, the
function p is defined via du = p(p)d®p and ¢ < [0, 2r) is an angular
coordinate on the circle S'.

The integer n labels particle types, and the parameter ¢ is a dual angular
variable.



Non-commutative wave equations for gravitational anyons

The mass constraint is split according to
= po+2mn, uo € (0,2m)

into a Klein-Gordon equation for the fractional part
Ho\E o _
(D + (27T) mP) o(x, ) =0.

and a differential condition on the angular dependence of ¢ for the integer
part:

.0
—I%¢(X7tp) = n(b(X,(p).

The spin constraint involves Atiyah’s exponentiated Dirac operator 8.

( 2rite A (S)0s _ efﬂos) ¢+ (X, ) = 0.

8 Atiyah and Moore 2009



Fusion and braiding
Fusion rules generalising the ‘Gott-pair’ production are encoded in

ei((X,p1)+n1go) * ei(<X7P2>+”2<P) — e"(<X7P(U1 uz))+n(th U2)<P).




The cone constraint revisited
The quantisation condition

, ke,

follows from ' .
HHS(C) == I—],MS(Q) = elMs = 627”5.

After group Fourier transform, and using 1 = po + 27n, this becomes
g2mite d,i(Ja)aa(;S _ D/i(QF”)QZi
Noting that, for the discrete series,
(idh4 (J°))? — (icl.(J"))? = (i (J1))? = s(s — 1),

this condition means

‘Translation by (27s) x Planck length = Rotation by 27x(1 — n)‘




Conclusion



There is a systematic way of deriving non-commutative geometry
from 3d quantum gravity

The outcome is not unique but related by twist - e.g., quantum double
and spacelike x-Poincaré both possible

Fourier transform of UIRs of quantum double amounts to Rieffel
deformation quantisation of spin spacetime

Non-commutative waves provide new ‘spacetime’ picture of 3d
quantum gravity as braided QFT
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