# Quantization of Poisson-Lie groups and of (easy) Poisson groupoids

Pavol Ševera

## Deformation quantization problem for Hopf algebras

#### Ingredients

- a commutative Hopf algebra  $(\mathcal{H}, m_0, \Delta_0, S_0, 1, \epsilon)$
- a compatible Poisson bracket  $\{,\} : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$  $(\Delta_0 : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H} \text{ is a Poisson algebra morphism})$

Typically  $\mathcal{H} = C^{\infty}(G)$ , in general  $\mathcal{H}$  in any  $\mathbb{Q}$ -linear SMC

## Deformation quantization problem for Hopf algebras

#### Ingredients

- a commutative Hopf algebra  $(\mathcal{H}, m_0, \Delta_0, S_0, 1, \epsilon)$
- a compatible Poisson bracket  $\{,\} : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$  $(\Delta_0 : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H} \text{ is a Poisson algebra morphism})$

Typically  $\mathcal{H} = C^{\infty}(G)$ , in general  $\mathcal{H}$  in any  $\mathbb{Q}$ -linear SMC

#### The problem

Find "universal" (functorial) deformations

$$m_{\hbar} = \sum_{n=0}^{\infty} \hbar^n m_n \qquad \Delta_{\hbar} = \sum_{n=0}^{\infty} \hbar^n \Delta_n \qquad S_{\hbar} = \sum_{n=0}^{\infty} \hbar^n S_n$$

s.t.  $(\mathcal{H}, m_{\hbar}, \Delta_{\hbar}, S_{\hbar}, 1, \epsilon)$  is a Hopf algebra and  $m_1 - m_1^{op} = \{, \}$ [For  $\mathcal{H} = (U\mathfrak{g})^*$ : Etingof-Kazhdan 1995]

(not supposed to be understandable at this point)

Hopf holonomies on a disk ....



$$igoplus = n$$
 black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, igodot_; G) \cong G^{n-1}$ 

(not supposed to be understandable at this point)

Hopf holonomies on a disk ...



igoplus = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, igoplus; G) \cong G^{n-1}$  generalizes to

$$H_1(\bigcirc, igodot; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$$

(allowed by: ordering along and across a path)

(not supposed to be understandable at this point)

Hopf holonomies on a disk ...



igoplus = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, igoplus; G) \cong G^{n-1}$  generalizes to

 $H_1(\bigcirc, igodot; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$ 

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H^1(\bigcirc, \bullet; \mathcal{H})$ 

(not supposed to be understandable at this point)

Hopf holonomies on a disk ...



igodot = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, igodot ; G) \cong G^{n-1}$  generalizes to

 $H_1(\bigcirc, igodot; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$ 

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H^1(\bigcirc, \bullet; \mathcal{H})$ 

#### $\ldots$ = a Hopf algebra



provided we know the maps (for nested disks)  $H_1(\mathbb{O}, \Phi; \mathcal{H}) \rightarrow H_1(\mathbb{O}, \Phi; \mathcal{H}) \rightarrow H_1(\mathbb{O}, \mathbb{O}; \mathcal{H})$ 

(not supposed to be understandable at this point)

Hopf holonomies on a disk ...



igodot = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, igodot ; G) \cong G^{n-1}$  generalizes to

 $H_1(\bigcirc, igodot; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$ 

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H^1(\bigcirc, \bullet; \mathcal{H})$ 

#### $\ldots$ = a Hopf algebra



provided we know the maps (for nested disks)  $H_1(\mathbb{O}, \Phi; \mathcal{H}) \rightarrow H_1(\mathbb{O}, \Phi; \mathcal{H}) \rightarrow H_1(\mathbb{O}, \mathbb{O}; \mathcal{H})$ 

*Quantization*: obtain the  $B_n$  action via the KZ connection (or from a Drinfeld associator)

## The nerve of a group G

holonomies in the "commutative world"

X a finite set

$$F(X) = \{g : X \times X \to G \mid g_{ij}g_{jk} = g_{ik} \& g_{ii} = 1 \ (\forall i, j, k \in X)\}$$
$$F(X) \cong G^{|X|-1}, \text{ e.g. } \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet \quad (|X| = 4)$$
functoriality:  $f : X \to Y \quad \rightsquigarrow \quad f^* : F(Y) \to F(X)$ 

 $F:\mathsf{FinSet}^{op}\to\mathsf{Set}$ 

## The nerve of a group G

holonomies in the "commutative world"

X a finite set

$$F(X) = \{g : X \times X \to G \mid g_{ij}g_{jk} = g_{ik} \& g_{ii} = 1 \ (\forall i, j, k \in X)\}$$
$$F(X) \cong G^{|X|-1}, \text{ e.g. } \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet \quad (|X| = 4)$$
functoriality:  $f : X \to Y \quad \rightsquigarrow \quad f^* : F(Y) \to F(X)$ 

 $F:\mathsf{FinSet}^{op}\to\mathsf{Set}$ 

From a nerve to its group

If F is the nerve of G then  $G = F(\bullet \bullet)$ 



## The nerve of a group G

holonomies in the "commutative world"

X a finite set

$$F(X) = \{g : X \times X \to G \mid g_{ij}g_{jk} = g_{ik} \& g_{ii} = 1 \ (\forall i, j, k \in X)\}$$
$$F(X) \cong G^{|X|-1}, \text{ e.g. } \bullet \xrightarrow{g_{12}} \bullet \xrightarrow{g_{23}} \bullet \xrightarrow{g_{34}} \bullet \quad (|X| = 4)$$
functoriality:  $f : X \to Y \quad \rightsquigarrow \quad f^* : F(Y) \to F(X)$ 

 $F:\mathsf{FinSet}^{op}\to\mathsf{Set}$ 

From a nerve to its group

If *F* is the nerve of *G* then  $G = F(\bullet \bullet)$ *F* is a nerve iff  $F(\bullet^n) \to F(\bullet \bullet)^{n-1}$  is an iso. The product:  $F(\bullet \bullet) \times F(\bullet \bullet) \cong F(\bullet \bullet \bullet) \to F(\bullet \bullet)$ 

| • $\xrightarrow{g}$ • $\xrightarrow{h}$ • |
|-------------------------------------------|
| $ \uparrow \uparrow$                      |
| • $\rightarrow \bullet$<br>gh             |

# Colliding braids and Hopf algebras

Hopf algebras in terms of braids

BrSet - "braided maps":



(The BMC generated by a commutative algebra)

# Colliding braids and Hopf algebras

Hopf algebras in terms of braids BrSet - "braided maps":  $F(\bullet^4)$ (The BMC generated by a commutative algebra)  $F(\bullet\bullet)^3$ 

Theorem (The nerve of a Hopf algebra)

Hopf algebras (with invertible S) in a BMC C are equivalent to braided lax-monoidal functors F : BrSet  $\rightarrow C$  such that  $F(\bullet\bullet)^{n-1} \rightarrow F(\bullet^n)$  is an iso and  $1_C \rightarrow F() \rightarrow F(\bullet)$  are isos

# Colliding braids and Hopf algebras

Hopf algebras in terms of braids BrSet - "braided maps":





(The BMC generated by a commutative algebra)

#### Theorem (The nerve of a Hopf algebra)

Hopf algebras (with invertible S) in a BMC C are equivalent to braided lax-monoidal functors  $F : BrSet \to C$  such that  $F(\bullet \bullet)^{n-1} \to F(\bullet^n)$  is an iso and  $1_C \to F() \to F(\bullet)$  are isos

$$\mathcal{H} = F(\bullet \bullet), \Delta =$$
,  $m =$ ,  $S =$ 

Constructing the nerve of a Hopf algebra

a Hopf algebra  $\mathcal{H} \in \mathcal{C} \quad \rightsquigarrow \quad$  a functor  $F : BrSet \rightarrow \mathcal{C}$ 

 $F(\bullet^n) = \mathcal{H}^{n-1}$ 

Constructing the nerve of a Hopf algebra

a Hopf algebra  $\mathcal{H} \in \mathcal{C} \quad \rightsquigarrow \quad \text{a functor } F : \text{BrSet} \to \mathcal{C}$  $F(\bullet^n) = \mathcal{H}^{n-1} \qquad F(\bullet^n) : \mathcal{H}^3 \to \mathcal{H}^2 \quad \text{is}$ 

Constructing the nerve of a Hopf algebra

a Hopf algebra  $\mathcal{H} \in \mathcal{C} \quad \rightsquigarrow \quad \text{a functor } F : \text{BrSet} \to \mathcal{C}$  $F(\bullet^n) = \mathcal{H}^{n-1} \qquad F(\bullet^n) : \mathcal{H}^3 \to \mathcal{H}^2 \quad \text{is}$ 



Constructing the nerve of a Hopf algebra



### The semiclassical picture: chord diagrams

Poisson Hopf algebras in terms of infinitesimal braids (chord diagrams) Chord diagrams, or "semiclassical braids":

$$= + \frac{\epsilon}{2} \qquad (\epsilon^2 = 0)$$

### The semiclassical picture: chord diagrams

Poisson Hopf algebras in terms of infinitesimal braids (chord diagrams) Chord diagrams, or "semiclassical braids":

$$= \left| \left\langle + \frac{\epsilon}{2} \right\rangle \quad (\epsilon^2 = 0)$$

$$\downarrow = t^{ij} = t^{ij}, \quad \downarrow = t^{(ij)k} = t^{ik} + t^{jk}, \quad [t^{ij}, t^{(ij)k}] = 0$$

#### The semiclassical picture: chord diagrams

Poisson Hopf algebras in terms of infinitesimal braids (chord diagrams) Chord diagrams, or "semiclassical braids":

#### Theorem (The nerve of a Poisson Hopf algebra)

Poisson Hopf algebras in a (linear) SMC C are equivalent to braided lax-monoidal functors F: ChordSet  $\rightarrow C$  such that  $F(\bullet \bullet)^{n-1} \rightarrow F(\bullet^n)$  is an iso and  $1_C \rightarrow F() \rightarrow F(\bullet)$  are isos

$$\mathcal{H} = F(\bullet \bullet), \ \Delta = \bigvee_{\bullet} \bullet \bullet \bullet, \ m = \bigvee_{\bullet} \bullet \bullet \bullet \bullet, \ \{,\} = \bigvee_{\bullet} \bullet \bullet \bullet \bullet \bullet \bullet$$

# Quantization: KZ connection and associators

KZ connection becomes Gauss-Manin connection

Knizhnik-Zamolodchikov connection

$$A_n^{KZ} = \hbar \sum_{1 \le i < j \le n} t^{ij} \frac{d(z_i - z_j)}{z_i - z_j} \qquad dA_n^{KZ} + [A_n^{KZ}, A_n^{KZ}]/2 = 0$$

#### Quantization of Poisson Hopf algebras



(no divergences in  $P \exp \int A^{KZ}$  at collisions: A = 0)

# Quantization: KZ connection and associators

KZ connection becomes Gauss-Manin connection

Knizhnik-Zamolodchikov connection

$$A_{n}^{KZ} = \hbar \sum_{1 \le i < j \le n} t^{ij} \frac{d(z_{i} - z_{j})}{z_{i} - z_{j}} \qquad dA_{n}^{KZ} + [A_{n}^{KZ}, A_{n}^{KZ}]/2 = 0$$

#### Quantization of Poisson Hopf algebras



(no divergences in  $P \exp \int A^{KZ}$  at collisions: A = 0)

(I guess it's still not understandable)

Hopf holonomies on a disk ...



igodot = n black disks in  $\bigcirc$  = white disk  $H^1(\bigcirc, igodot ; G) \cong G^{n-1}$  generalizes to

$$H_1(\bigcirc, \bullet; \mathcal{H}) \cong \mathcal{H}^{\otimes (n-1)}$$

(allowed by: ordering along and across a path)

Move the black disks  $\rightsquigarrow B_n$  acts on  $H^1(\bigcirc, \bullet; \mathcal{H})$ 

#### $\ldots$ = a Hopf algebra



provided we know the maps (for nested disks)  $H_1(\mathbb{O}, \Phi; \mathcal{H}) \rightarrow H_1(\mathbb{O}, \Phi; \mathcal{H}) \rightarrow H_1(\mathbb{O}, \mathbb{O}; \mathcal{H})$ 

*Quantization*: obtain the  $B_n$  action via the KZ connection (or from a Drinfeld associator)

or simply quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize in this way?

or simply quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize in this way?

#### Easy Poisson groupoids

a Lie groupoids  $\Gamma \Rightarrow M$  with a Poisson structure on  $\Gamma$ such that  $\Gamma_{x,y} \subset \Gamma$  is a Poisson submanifold  $\forall x, y \in M$ and s.t. the composition  $\Gamma_{xy} \times \Gamma_{y,z} \to \Gamma_{x,z}$  is a Poisson map

or simply quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize in this way?

#### Easy Poisson groupoids

a Lie groupoids  $\Gamma \Rightarrow M$  with a Poisson structure on  $\Gamma$ such that  $\Gamma_{x,y} \subset \Gamma$  is a Poisson submanifold  $\forall x, y \in M$ and s.t. the composition  $\Gamma_{xy} \times \Gamma_{y,z} \to \Gamma_{x,z}$  is a Poisson map

F: FinSet, ChordSet, BrSet  $\rightarrow C$  a braided lax-monoidal functor s.t.  $F(\bullet \bullet) \otimes_{F(\bullet)} F(\bullet \bullet) \otimes_{F(\bullet)} \cdots \otimes_{F(\bullet)} F(\bullet \bullet) \rightarrow F(\bullet^n)$  is an iso

#### Algebraic/quantum/quantization

Commutative algebra  $B = F(\bullet)$ , Poisson/NC algebra  $A = F(\bullet \bullet)$ ,  $\epsilon : A \to B$  (units<sup>\*</sup>), central maps  $\eta_{L,R} : B \rightrightarrows A$  (source<sup>\*</sup>,target<sup>\*</sup>), coassociative  $\Delta : A \to A \otimes_B A$  (composition<sup>\*</sup>), antipode  $S : A \to A$ 

or simply quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie groupoids can we quantize in this way?

#### Easy Poisson groupoids

a Lie groupoids  $\Gamma \Rightarrow M$  with a Poisson structure on  $\Gamma$ such that  $\Gamma_{x,y} \subset \Gamma$  is a Poisson submanifold  $\forall x, y \in M$ and s.t. the composition  $\Gamma_{xy} \times \Gamma_{y,z} \to \Gamma_{x,z}$  is a Poisson map

F: FinSet, ChordSet, BrSet  $\rightarrow C$  a braided lax-monoidal functor s.t.  $F(\bullet \bullet) \otimes_{F(\bullet)} F(\bullet \bullet) \otimes_{F(\bullet)} \cdots \otimes_{F(\bullet)} F(\bullet \bullet) \rightarrow F(\bullet^n)$  is an iso

#### Algebraic/quantum/quantization

Commutative algebra  $B = F(\bullet)$ , Poisson/NC algebra  $A = F(\bullet \bullet)$ ,  $\epsilon : A \to B$  (units<sup>\*</sup>), central maps  $\eta_{L,R} : B \rightrightarrows A$  (source<sup>\*</sup>,target<sup>\*</sup>), coassociative  $\Delta : A \to A \otimes_B A$  (composition<sup>\*</sup>), antipode  $S : A \to A$ 

#### THANKS!