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Deformation quantization problem for Hopf algebras

Ingredients

• a commutative Hopf algebra (H,m0,∆0, S0, 1, ε)

• a compatible Poisson bracket {, } : H⊗H → H
(∆0 : H → H⊗H is a Poisson algebra morphism)

Typically H = C∞(G ), in general H in any Q-linear SMC

The problem

Find “universal” (functorial) deformations

m~ =
∞∑
n=0

~nmn ∆~ =
∞∑
n=0

~n∆n S~ =
∞∑
n=0

~nSn

s.t. (H,m~,∆~,S~, 1, ε) is a Hopf algebra and m1 −mop
1 = {, }

[For H = (Ug)∗: Etingof-Kazhdan 1995]
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The method in a nutshell: holonomies on a surface
(not supposed to be understandable at this point)

Hopf holonomies on a disk . . .
= n black disks in = white disk

H1( , ;G ) ∼= Gn−1

generalizes to

H1( , ;H) ∼= H⊗(n−1)

(allowed by: ordering along and across a path)

Move the black disks ; Bn acts on H1( , ;H)

. . . = a Hopf algebra

provided we know the maps (for nested disks)
H1( , ;H)→ H1( , ;H)→ H1( , ;H)

Quantization: obtain the Bn action via the KZ
connection (or from a Drinfeld associator)
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The nerve of a group G
holonomies in the “commutative world”

X a finite set

F (X ) = {g : X × X → G | gijgjk = gik & gii = 1 (∀i , j , k ∈ X )}

F (X ) ∼= G |X |−1, e.g. • g12−−→ • g23−−→ • g34−−→ • (|X | = 4)

functoriality: f : X → Y ; f ∗ : F (Y )→ F (X )

F : FinSetop → Set

From a nerve to its group

If F is the nerve of G then G = F (••)

F is a nerve iff F (•n)→ F (••)n−1 is an iso.
The product:
F (••)× F (••) ∼= F (• • •)→ F (••)

• •

• • •

gh

g h
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Colliding braids and Hopf algebras
Hopf algebras in terms of braids

BrSet - “braided maps”:

(The BMC generated by
a commutative algebra)

F (••)3

F (•4)

Theorem (The nerve of a Hopf algebra)

Hopf algebras (with invertible S) in a BMC C are equivalent to
braided lax-monoidal functors F : BrSet→ C such that
F (••)n−1 → F (•n) is an iso and 1C → F ()→ F (•) are isos

H = F (••), ∆ = , m = , S =
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Hopf holonomies at last
Constructing the nerve of a Hopf algebra

a Hopf algebra H ∈ C ; a functor F : BrSet→ C

F (•n) = Hn−1

F
( )

: H3 → H2 is

a ⊗ b ⊗ c 7→

a

b S
(1)b S

(2)

c(1)
c(2)

b S
(2) c(1) ⊗ ab S

(1) c(2)
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The semiclassical picture: chord diagrams
Poisson Hopf algebras in terms of infinitesimal braids (chord diagrams)

Chord diagrams, or “semiclassical braids”:

= +
ε

2
(ε2 = 0)

i j

= t ij = t ji ,

i j k

= t(ij)k = t ik + t jk , [t ij , t(ij)k ] = 0

Theorem (The nerve of a Poisson Hopf algebra)

Poisson Hopf algebras in a (linear) SMC C are equivalent to
braided lax-monoidal functors F : ChordSet→ C such that
F (••)n−1 → F (•n) is an iso and 1C → F ()→ F (•) are isos

H = F (••), ∆ = , m = , {, } =
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Quantization: KZ connection and associators
KZ connection becomes Gauss-Manin connection

Knizhnik-Zamolodchikov connection

AKZ
n = ~

∑
1≤i<j≤n

t ij
d(zi − zj)

zi − zj
dAKZ

n + [AKZ
n ,AKZ

n ]/2 = 0

Quantization of Poisson Hopf algebras

BrSet ChordSet C
P exp

∫
AKZ

Hopf

Poisson Hopf

(no divergences in P exp
∫
AKZ at collisions: = 0)

Better: Φ ∈ K 〈〈X ,Y 〉〉 a Drinfeld associator, BrSet→ ChordSet via

7→ ◦ exp(~t12/2) 7→ 7→ Φ(~t12, ~t23)
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The method in a nutshell: holonomies on a surface
(I guess it’s still not understandable)

Hopf holonomies on a disk . . .
= n black disks in = white disk

H1( , ;G ) ∼= Gn−1 generalizes to

H1( , ;H) ∼= H⊗(n−1)

(allowed by: ordering along and across a path)

Move the black disks ; Bn acts on H1( , ;H)

. . . = a Hopf algebra

provided we know the maps (for nested disks)
H1( , ;H)→ H1( , ;H)→ H1( , ;H)

Quantization: obtain the Bn action via the KZ
connection (or from a Drinfeld associator)
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(Easy) Poisson groupoids
or simply quantization of twists

Groupoids have nerves, too - which Poisson structures on Lie
groupoids can we quantize in this way?

Easy Poisson groupoids

a Lie groupoids Γ ⇒ M with a Poisson structure on Γ
such that Γx ,y ⊂ Γ is a Poisson submanifold ∀x , y ∈ M
and s.t. the composition Γxy × Γy ,z → Γx ,z is a Poisson map

F : FinSet,ChordSet,BrSet→ C a braided lax-monoidal functor
s.t. F (••)⊗F (•) F (••)⊗F (•) · · · ⊗F (•) F (••)→ F (•n) is an iso

Algebraic/quantum/quantization

Commutative algebra B = F (•), Poisson/NC algebra A = F (••),
ε : A→ B (units∗), central maps ηL,R : B ⇒ A (source∗,target∗),
coassociative ∆ : A→ A⊗B A (composition∗), antipode S : A→ A

THANKS!
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