AKSZ	Topological strings	DFT approach	GG formulation	Conclusion

Generalized geometry and topological string theory

Zoltán Kökényesi

MTA Wigner Research Centre for Physics, Budapest

based on 1805.11485 with A. Sinkovics and R. J. Szabo

Bayrischzell, 14. April 2019.

AKSZ 0000000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion 00
AKSZ sigma	-models in general	ized geometry (G	G)	

	Identities	\Leftrightarrow	Mast	er equation	
	Courant algebroid	⇔	AKSZ Coui	rant sigma-model	
AKSZ sigm	a-models in genera	lized g	geometry (G	G)	
AKSZ 0000000	Topological strings 000	D	FT approach 000	GG formulation	Conclusion 00

AKSZ 0000000	Topological strings 000	D	FT approach 000	GG formulation 0000	Conclusion
AKSZ sign	na-models in genera	lized g	geometry (GC	5)	
	Courant algebroid	\Leftrightarrow	AKSZ Coura	nt sigma-model	
	1.1				

Identities	\Leftrightarrow	Master equation
Twists (fluxes)	\Leftrightarrow	Bulk flux terms

AKSZ 0000000	Topological strings 000	D 0	FT approach GG formulation	Conclusion
AKSZ sigm	na-models in general	zed ۽	geometry (GG)	
	Courant algebroid	\Leftrightarrow	AKSZ Courant sigma-model	
	Identities	\Leftrightarrow	Master equation	-
	Twists (fluxes)	\Leftrightarrow	Bulk flux terms	
	\downarrow		\downarrow	
	'Classical' geometric structure of GG		BV-quantized action formulation for GG	
			\rightsquigarrow could be used to calculate quantized quantities	

▶ The question what we study in this talk:

How the AKSZ formulations of topological strings fit into the framework of GG?

[Pestun,Zucchini,Stojevic,Ikeda,Tokunaga,...]

aksz	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		00
Outline				

• AKSZ constructions (def., gauge fixing, dim. red.)

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		00
Outline				

- AKSZ constructions (def., gauge fixing, dim. red.)
- Examples (2D, 3D)

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		00
Outline				

- AKSZ constructions (def., gauge fixing, dim. red.)
- Examples (2D, 3D)
- Topological strings & their AKSZ formulations

aksz	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		00
Outline				

- AKSZ constructions (def., gauge fixing, dim. red.)
- Examples (2D, 3D)
- Topological strings & their AKSZ formulations

Results

• DFT approach to AKSZ models of topological strings

aksz 0000000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
Outline				

- AKSZ constructions (def., gauge fixing, dim. red.)
- Examples (2D, 3D)
- Topological strings & their AKSZ formulations

Results

- DFT approach to AKSZ models of topological strings
- \bullet Reduction to GG $\, \rightsquigarrow \,$ description w/ generalized complex structure

aksz 0000000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
Outline				

- AKSZ constructions (def., gauge fixing, dim. red.)
- Examples (2D, 3D)
- Topological strings & their AKSZ formulations

Results

- DFT approach to AKSZ models of topological strings
- ullet Reduction to GG $\,\, \rightsquigarrow \,\,$ description w/ generalized complex structure
- Interesting feature: topological S-duality arises from the generalized complex structure

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
000000				
AKSZ constr	uction			

[Alexandrov,Kontsevich,Schwartz,Zaboronsky '97]

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
000000				
AKS7 cons	truction			

[Alexandrov,Kontsevich,Schwartz,Zaboronsky '97]

• Fields are maps between source and target manifolds:

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
000000				
AKSZ cons	truction			

[Alexandrov,Kontsevich,Schwartz,Zaboronsky '97]

• Fields are maps between source and target manifolds:

Source manifold: $(\mathcal{W}, \mathcal{Q}_{\mathcal{W}}, \mu)$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion	
000000					
AKS7 construction					

```
[Alexandrov,Kontsevich,Schwartz,Zaboronsky '97]
```

• Fields are maps between source and target manifolds:

Source manifold: $(\mathcal{W}, \mathcal{Q}_{\mathcal{W}}, \mu)$

1. $\mathcal{W} = T[1]\Sigma_d$ dg-manifold, 'superworldsheet' coordinates are $\hat{z}^{\hat{\imath}} = (\sigma^{\mu}, \theta^{\mu})$, where $\sigma^{\mu} \in \Sigma_d$ even; $\theta^{\mu} \in T\Sigma_d$ odd

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion	
000000					
AKS7 construction					

```
[Alexandrov,Kontsevich,Schwartz,Zaboronsky '97]
```

• Fields are maps between source and target manifolds:

Source manifold: $(\mathcal{W}, \mathcal{Q}_{\mathcal{W}}, \mu)$

1. $W = T[1]\Sigma_d$ dg-manifold, 'superworldsheet' coordinates are $\hat{z}^{\hat{\imath}} = (\sigma^{\mu}, \theta^{\mu})$, where $\sigma^{\mu} \in \Sigma_d$ even; $\theta^{\mu} \in T\Sigma_d$ odd 2. Q_W cohomological vector field a) Q_W have degree 1

b) $\mathcal{L}^2_{\mathcal{Q}_{\mathcal{W}}} = 0$ the choice: $\mathcal{Q}_{\mathcal{W}} = \theta^{\mu} \frac{\partial}{\partial \sigma^{\mu}} =: D \quad \rightsquigarrow \, \text{ de Rham diff.}$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
000000				
AKS7 cons	truction			

```
[Alexandrov,Kontsevich,Schwartz,Zaboronsky '97]
```

• Fields are maps between source and target manifolds:

Source manifold: $(\mathcal{W}, \mathcal{Q}_{\mathcal{W}}, \mu)$

1. $\mathcal{W} = \mathcal{T}[1]\Sigma_d$ dg-manifold, 'superworldsheet' coordinates are $\hat{z}^{\hat{z}} = (\sigma^{\mu}, \theta^{\mu})$, where $\sigma^{\mu} \in \Sigma_d$ even; $\theta^{\mu} \in T\Sigma_d$ odd 2. $Q_{\mathcal{W}}$ cohomological vector field a) $Q_{\mathcal{W}}$ have degree 1 b) $\mathcal{L}^2_{Q_{\mathcal{W}}} = 0$

the choice: $Q_{\mathcal{W}} = \theta^{\mu} \frac{\partial}{\partial \sigma^{\mu}} =: \boldsymbol{D} \quad \rightsquigarrow \text{ de Rham diff.}$

3. μ is invariant under $Q_{\mathcal{W}}$ the choice: $\mu = d^d \hat{z} = d^d \sigma d^d \theta$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0●00000	000	0000		00
AKSZ constru	ction			

AKSZ 0●00000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
AKSZ construc	ction			

1. ${\mathcal M}$ symplectic dg-manifold w/ degree d-1

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
000000	000	0000	0000	00
AKSZ constru	ction			

- 1. $\mathcal M$ symplectic dg-manifold w/ degree d-1
- 2. ω symplectic form w/ degree $d+1 \Rightarrow \{.,.\}$ Poisson bracket

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0●00000	000	0000	0000	00
AKSZ constru	ction			

- 1. ${\mathcal M}$ symplectic dg-manifold w/ degree d-1
- 2. ω symplectic form w/ degree $d+1 \Rightarrow \{.,.\}$ Poisson bracket
- 3. Q_{γ} cohomological vector field (degree 1, $\mathcal{L}^{2}_{Q_{\gamma}} = 0$) and also Hamiltonian: $\iota_{Q_{\gamma}}\omega = d\gamma \implies Q_{\gamma} = \{\gamma, .\}$ $\mathcal{L}^{2}_{Q_{\gamma}} = 0 \iff \{\gamma, \gamma\} = 0$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0●00000	000	0000	0000	00
AKSZ constru	ction			

- 1. ${\mathcal M}$ symplectic dg-manifold w/ degree d-1
- 2. ω symplectic form w/ degree $d+1 \Rightarrow \{.,.\}$ Poisson bracket
- 3. Q_{γ} cohomological vector field (degree 1, $\mathcal{L}^{2}_{Q_{\gamma}} = 0$) and also Hamiltonian: $\iota_{Q_{\gamma}}\omega = d\gamma \implies Q_{\gamma} = \{\gamma, .\}$ $\mathcal{L}^{2}_{Q_{\gamma}} = 0 \iff \{\gamma, \gamma\} = 0$

The space of fields is the mapping space

 $\mathcal{M} = \mathsf{Map}ig(\mathcal{T}[1]\Sigma_d\,,\,\mathcal{M}ig) \quad \Rightarrow \quad \mathsf{also a QP-manifold}$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0●00000	000	0000	0000	
AKSZ constru	ction			

- 1. ${\mathcal M}$ symplectic dg-manifold w/ degree d-1
- 2. ω symplectic form w/ degree $d+1 \Rightarrow \{.,.\}$ Poisson bracket
- 3. Q_{γ} cohomological vector field (degree 1, $\mathcal{L}^{2}_{Q_{\gamma}} = 0$) and also Hamiltonian: $\iota_{Q_{\gamma}}\omega = d\gamma \implies Q_{\gamma} = \{\gamma, .\}$ $\mathcal{L}^{2}_{Q_{\gamma}} = 0 \iff \{\gamma, \gamma\} = 0$

The space of fields is the mapping space

$$\mathcal{M} = \mathsf{Map}ig(\mathcal{T}[1]\Sigma_d\,,\,\mathcal{M}ig) \quad \Rightarrow \quad \mathsf{also a QP-manifold}$$

a coordinate $\phi \in \mathcal{M}$ corresponds to a field

$$\phi^{|\phi|} \phi(\sigma,\theta) = \phi^{(0)}(\sigma) + \phi^{(1)}{}_{\mu}(\sigma)\theta^{\mu} + \ldots + \frac{1}{d!} \phi^{(d)}{}_{\mu_1\ldots\mu_d}\theta^{\mu_1}\ldots\theta^{\mu_d}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
00●0000	000	0000	0000	00
AKSZ constr	ruction			

Target QP-manifold \longleftrightarrow QP-manifold of superfields

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
00●0000	000	0000		00
AKSZ constru	ction			

Target QP-manifold	\longleftrightarrow	QP-manifold of superfields
$\omega = \mathrm{d} q^{a} \wedge \mathrm{d} p_{a}$	\longleftrightarrow	$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \delta oldsymbol{q}^{\mathfrak{s}}(\hat{z}) \delta oldsymbol{p}_{\mathfrak{s}}(\hat{z})$

AKSZ 00●0000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
AKSZ constru	ction			

Target QP-mani	fold \longleftrightarrow	QP-manifold of superfields
$\omega = \mathrm{d} q^a \wedge \mathrm{d} p$	$a \longleftrightarrow$	$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \delta oldsymbol{q}^{\scriptscriptstyle \partial}(\hat{z}) \delta oldsymbol{p}_{\scriptscriptstyle \partial}(\hat{z})$
$\{.,.\}$ Poisson b	$racket \longleftrightarrow$	$(.,.)_{ m BV}$ BV bracket

AKSZ 00●0000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
AKSZ constru	ction			

Target QP-manifold	\longleftrightarrow	QP-manifold of superfields
$\omega = \mathrm{d} q^{a} \wedge \mathrm{d} p_{a}$	\longleftrightarrow	$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \delta oldsymbol{q}^{\scriptscriptstyle a}(\hat{z}) \delta oldsymbol{p}_{\scriptscriptstyle a}(\hat{z})$
{.,.} Poisson bracket	\longleftrightarrow	$(.,.)_{\mathrm{BV}}$ BV bracket
$artheta=q^{a}\wedge\mathrm{d}p_{a}~~\mathrm{s.t.}~~\mathrm{d}artheta=\omega$	\longleftrightarrow	$oldsymbol{\mathcal{S}}_{ ext{kin}} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} oldsymbol{q}^{a}(\hat{z}) oldsymbol{D} oldsymbol{p}_{a}(\hat{z})$
symplectic potential		kinetic term of the action

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
00●0000	000	0000	0000	00
AKSZ constru	ction			

Target QP-manifold	\longleftrightarrow	QP-manifold of superfields
$\omega = \mathrm{d} q^{s} \wedge \mathrm{d} p_{s}$	\longleftrightarrow	$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \delta oldsymbol{q}^{\mathfrak{s}}(\hat{z}) \delta oldsymbol{p}_{\mathfrak{s}}(\hat{z})$
{.,.} Poisson bracket	\longleftrightarrow	$(.,.)_{ m BV}$ BV bracket
$artheta=q^{s}\wedge\mathrm{d}p_{s}~~\mathrm{s.t.}~~\mathrm{d}artheta=\omega$	\longleftrightarrow	$m{\mathcal{S}}_{ ext{kin}} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} m{q}^{s}(\hat{z}) m{D} m{p}_{s}(\hat{z})$
symplectic potential		kinetic term of the action
$\gamma = \gamma\left(q^{s}(\hat{z}), p_{s}(\hat{z}) ight)$	\longleftrightarrow	$m{\mathcal{S}}_{ ext{int}} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \gamma\left(m{q}^a, m{p}_a ight)$
Hamiltonian		interaction term

full Hamiltonian: $\boldsymbol{\mathcal{S}} = \boldsymbol{\mathcal{S}}_{\mathrm{kin}} + \boldsymbol{\mathcal{S}}_{\mathrm{int}}$

AKSZ 00●0000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
AKSZ constru	ction			

Target QP-manifold	\longleftrightarrow	QP-manifold of superfields
$\omega = \mathrm{d} q^{a} \wedge \mathrm{d} p_{a}$	\longleftrightarrow	$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} oldsymbol{\delta} oldsymbol{q}^{\mathfrak{s}}(\hat{z}) oldsymbol{\delta} oldsymbol{ ho}_{\mathfrak{s}}(\hat{z})$
{.,.} Poisson bracket	\longleftrightarrow	$(.,.)_{ m BV}$ BV bracket
$artheta=q^{s}\wedge\mathrm{d}p_{s}~~\mathrm{s.t.}~~\mathrm{d}artheta=\omega$	\longleftrightarrow	$oldsymbol{\mathcal{S}}_{ ext{kin}} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} oldsymbol{q}^{\mathfrak{a}}(\hat{z}) oldsymbol{D} oldsymbol{p}_{\mathfrak{a}}(\hat{z})$
symplectic potential		kinetic term of the action
$\gamma = \gamma\left(q^{s}(\hat{z}), p_{s}(\hat{z}) ight)$	\longleftrightarrow	$oldsymbol{\mathcal{S}}_{ ext{int}} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \gamma\left(oldsymbol{q}^a, oldsymbol{p}_a ight)$
Hamiltonian		interaction term
		full Hamiltonian: ${m {\cal S}}={m {\cal S}}_{\rm kin}+{m {\cal S}}_{ m int}$
$\{\gamma,\gamma\}=0$	\longleftrightarrow	$(oldsymbol{\mathcal{S}},oldsymbol{\mathcal{S}})_{ m BV}={\sf 0}$ master eq.

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
00●0000	000	0000		00
AKSZ const	ruction			

Target QP-manifold	\longleftrightarrow	QP-manifold of superfields
$\omega = \mathrm{d} q^{a} \wedge \mathrm{d} p_{a}$	\longleftrightarrow	$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \delta oldsymbol{q}^{\mathfrak{s}}(\hat{z}) \delta oldsymbol{ ho}_{\mathfrak{s}}(\hat{z})$
{.,.} Poisson bracket	\longleftrightarrow	$(.,.)_{ m BV}$ BV bracket
$artheta= oldsymbol{q}^{s}\wedge\mathrm{d}oldsymbol{p}_{s}~~\mathrm{s.t.}~~\mathrm{d}artheta=\omega$	\longleftrightarrow	$oldsymbol{\mathcal{S}}_{ ext{kin}} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} oldsymbol{q}^{s}(\hat{z}) oldsymbol{D} oldsymbol{p}_{s}(\hat{z})$
symplectic potential		kinetic term of the action
$\gamma = \gamma \left(q^{a}(\hat{z}), p_{a}(\hat{z}) ight)$	\longleftrightarrow	$oldsymbol{\mathcal{S}}_{\mathrm{int}} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \gamma \left(oldsymbol{q}^s, oldsymbol{p}_s ight)$
Hamiltonian		interaction term
		full Hamiltonian: $oldsymbol{\mathcal{S}} = oldsymbol{\mathcal{S}}_{\mathrm{kin}} + oldsymbol{\mathcal{S}}_{\mathrm{int}}$
$\{\gamma,\gamma\}=0$	\longleftrightarrow	$(oldsymbol{\mathcal{S}},oldsymbol{\mathcal{S}})_{ m BV}={\sf 0}$ master eq.
${\cal Q}_\gamma=\{\gamma,.\}$	\longleftrightarrow	$oldsymbol{Q} = (oldsymbol{\mathcal{S}},.)_{ ext{BV}}$ BV-BRST trans.

AKSZ 000€000	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
Gauge fixing o	f AKSZ models			

ullet Theory is not specified yet: we need to choose fields ϕ^a and antifields ϕ^+_a

$$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \, \delta \phi^+_a(\hat{z}) \, \delta \phi^a(\hat{z})$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000				
Gauge fixin	g of AKS7 models			

• Theory is not specified yet: we need to choose fields ϕ^a and antifields ϕ^a_a

$$oldsymbol{\omega} = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \, \delta \phi^+_a(\hat{z}) \, \delta \phi^a(\hat{z})$$

• A gauge fixing fermion $\Psi[\phi]$ fix the antifields

$$\phi^+_a(\hat{z}) = (-1)^{|a|\,(d+1)} \, rac{ec{\delta} \Psi}{\delta \phi^a(\hat{z})} \qquad \Rightarrow \qquad \omega|_\Psi = 0$$

• Theory is not specified yet: we need to choose fields ϕ^a and antifields ϕ^+_a

$$\omega = \int_{\mathcal{T}[1]\Sigma_d} \mathrm{d}^d \hat{z} \, \delta \phi^+_a(\hat{z}) \, \delta \phi^a(\hat{z})$$

• A gauge fixing fermion $\Psi[\phi]$ fix the antifields

$$\phi^+_a(\hat{z}) = (-1)^{|a|\,(d+1)} \, rac{ec{\delta} \Psi}{\delta \phi^a(\hat{z})} \qquad \Rightarrow \qquad \omega|_\Psi = 0$$

ullet In general: choice of a Lagrangian submanifold ${\cal L}$ with $\omega|_{{\cal L}}=0$

AKSZ 0000€00	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
Dimensional r	eduction to boun	dary		

• Split the fields to normal ϕ_t and transverse $\widehat{\phi}$ modes wrt. the boundary $\partial \Sigma_d$ as

$$\phi(\sigma, \theta) = \widehat{\phi}(\sigma, \widehat{\theta}) + \phi_t(\sigma, \widehat{\theta}) \theta^t$$

AKSZ 0000●00	Topological strings 000	DFT approach 0000	GG formulation	Conclusion
Dimensional re	duction to boundary	y		

• Split the fields to normal ϕ_t and transverse $\widehat{\phi}$ modes wrt. the boundary $\partial \Sigma_d$ as

$$\phi(\sigma, heta) = \widehat{\phi}(\sigma, \widehat{ heta}) + \phi_t(\sigma, \widehat{ heta}) \, heta^t$$

- ullet Then ϕ_t or $\widehat{\phi}$ is gauge fixed
 - \rightsquigarrow different choice gives different boundary theories
| AKSZ
00000●0 | Topological strings
000 | DFT approach
0000 | GG formulation | Conclusion |
|------------------------|-----------------------------------|----------------------|----------------|------------|
| Example 1 P | oisson sigma-model | | | |

Source: superworldsheet (2D): $\mathcal{T}[1]\Sigma_2$

AKSZ 00000●0	Topological strings 000	DFT approach 0000	GG formulation	Conclusion 00
Example 1	- Poisson sigma-m	odel		
Source: s	uperworldsheet (2D):	$T[1]\Sigma_2$		
Target: ${\cal N}$	$\mathcal{M}=\mathcal{T}^*[1]M$ with co	ordinates X^i even; χ_i	; odd	

Target: $\mathcal{M} = \mathcal{T}^*[1]\mathcal{M}$ with coordinates X^i even; χ_i odd

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X^i$$
 and $\gamma = rac{1}{2} \pi^{ij}(X) \chi_i \chi_j$

Target: $\mathcal{M} = \mathcal{T}^*[1]\mathcal{M}$ with coordinates \check{X}^i even; χ_i odd

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X^i$$
 and $\gamma = rac{1}{2} \pi^{ij}(X) \chi_i \chi_j$

• Master equation

$$\{\gamma,\gamma\} = 0 \qquad \longleftrightarrow \qquad \text{Poisson condition for } \pi \quad (\pi^{[i|I}\partial_I \pi^{[jk]} = 0)$$

Target: $\mathcal{M} = \mathcal{T}^*[1]\mathcal{M}$ with coordinates \check{X}^i even; $\check{\chi}_i$ odd

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X^i$$
 and $\gamma = rac{1}{2} \pi^{ij}(X) \chi_i \chi_j$

Master equation

 $\{\gamma,\gamma\} = 0 \qquad \longleftrightarrow \qquad \text{Poisson condition for } \pi \quad (\pi^{[i|l}\partial_l \pi^{[jk]} = 0)$

• Derived bracket for degree zero functions f(X) and g(X)

 $\{\{\gamma, f\}, g\} = \{f, g\}_{\pi}$ Poisson bracket of π

Target: $\mathcal{M} = \mathcal{T}^*[1]\mathcal{M}$ with coordinates \check{X}^i even; $\check{\chi}_i$ odd

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X^i$$
 and $\gamma = rac{1}{2} \pi^{ij}(X) \chi_i \chi_j$

Master equation

 $\{\gamma,\gamma\} = 0 \qquad \longleftrightarrow \qquad \text{Poisson condition for } \pi \quad (\pi^{[i|\prime}\partial_l \pi^{[jk]} = 0)$

• Derived bracket for degree zero functions f(X) and g(X)

$$\{\{\gamma, f\}, g\} = \{f, g\}_{\pi}$$
 Poisson bracket of π

Action constructed by AKSZ

$$oldsymbol{\mathcal{S}}^{(2)}_{\pi}\,=\,\int_{\mathcal{T}[1]\Sigma_{2}}\,\Big(oldsymbol{\chi}_{i}\,oldsymbol{D}oldsymbol{X}^{i}\,+\,rac{1}{2}\,\pi^{ij}(oldsymbol{X})\,oldsymbol{\chi}_{i}\,oldsymbol{\chi}_{j}\Big)$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
000000●	000	0000		00
Example 2 C	ourant sigma-mode			

AKSZ 000000●	Topological strings 000	DFT approach 0000	GG formulation	Conclusion 00
Example 2.	- Courant sigma-m	odel		
Source:	superworldvolume (3D): <i>Τ</i> [1]Σ ₃		

Target: $\mathcal{M} = \mathcal{T}^*[2]E[1]M$ with coordinates X^i ; \hat{F}_i ; ζ^l ;

Target: $\mathcal{M} = T^*[2]E[1]M$ with coordinates X^i ; \hat{F}_i ; ζ^l ;

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}F_i \wedge \mathrm{d}X^i + \frac{1}{2}\eta_{IJ}\,\mathrm{d}\zeta^I \wedge \mathrm{d}\zeta^I \qquad \eta_{IJ} \text{ pairing}$$

$$\gamma = \frac{1}{2}\,\underbrace{\rho_I^i(X)}_{\text{anchor}}F_i\zeta^I + \frac{1}{3!}\underbrace{\mathcal{T}_{IJK}(X)}_{\text{twist}}\zeta^I\zeta^J\zeta^K$$

Target: $\mathcal{M} = T^*[2]E[1]M$ with coordinates X^i ; \tilde{F}_i ; ζ^l ;

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}F_i \wedge \mathrm{d}X^i + \frac{1}{2}\eta_{IJ}\,\mathrm{d}\zeta^I \wedge \mathrm{d}\zeta^I \qquad \eta_{IJ} \text{ pairing}$$
$$\gamma = \frac{1}{2}\,\underbrace{\rho_I^i(X)}_{\text{anchor}}F_i\zeta^I + \frac{1}{3!}\underbrace{\mathcal{T}_{IJK}(X)}_{\text{twist}}\zeta^I\zeta^J\zeta^K$$

Master equation

 $\{\gamma, \gamma\} = 0 \qquad \longleftrightarrow \qquad \text{Axioms of Courant algebroid on } E \text{ for } (\rho, \eta, T)$

Target: $\mathcal{M} = T^*[2]E[1]M$ with coordinates X^i ; \hat{F}_i ; ζ^l ;

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}F_i \wedge \mathrm{d}X^i + \frac{1}{2}\eta_{IJ}\,\mathrm{d}\zeta^I \wedge \mathrm{d}\zeta^I \qquad \eta_{IJ} \text{ pairing}$$
$$\gamma = \frac{1}{2}\,\underbrace{\rho_I^i(X)}_{\text{anchor}}F_i\zeta^I + \frac{1}{3!}\underbrace{T_{IJK}(X)}_{\text{twist}}\zeta^I\zeta^J\zeta^K$$

Master equation

 $\{\gamma, \gamma\} = 0 \qquad \longleftrightarrow \qquad Axioms of Courant algebroid on E for <math>(\rho, \eta, T)$

• Dorfman bracket, pairing and anchor for degree 1 functions e_1 and e_2 $[e_1, e_2]_D = \{\{e_1, \gamma\}, e_2\}, \qquad \langle e_1, e_2 \rangle = \{e_1, e_2\} \qquad \rho(e) = \{e, \{\gamma, \cdot\}\}$

Target: $\mathcal{M} = T^*[2]E[1]M$ with coordinates X^i ; F_i ; ζ^l ;

• Symplectic structure and general Hamiltonian

$$\omega = \mathrm{d}F_i \wedge \mathrm{d}X^i + \frac{1}{2}\eta_{IJ}\,\mathrm{d}\zeta^I \wedge \mathrm{d}\zeta^I \qquad \eta_{IJ} \text{ pairing}$$
$$\gamma = \frac{1}{2}\,\underbrace{\rho_I^i(X)}_{\text{anchor}}F_i\zeta^I + \frac{1}{3!}\underbrace{T_{IJK}(X)}_{\text{twist}}\zeta^I\zeta^J\zeta^K$$

Master equation

 $\{\gamma, \gamma\} = 0 \qquad \longleftrightarrow \qquad \text{Axioms of } Courant \ algebroid \ on \ E \ for \ (\rho, \eta, T)$

- Dorfman bracket, pairing and anchor for degree 1 functions e_1 and e_2 $[e_1, e_2]_D = \{\{e_1, \gamma\}, e_2\}, \qquad \langle e_1, e_2 \rangle = \{e_1, e_2\} \qquad \rho(e) = \{e, \{\gamma, \cdot\}\}$
- Action constructed by AKSZ

$$\boldsymbol{\mathcal{S}}_{\mathrm{C}}^{(3)} = \int_{\mathcal{T}[1]\Sigma_{3}} \left(\boldsymbol{F}_{i} \boldsymbol{D} \boldsymbol{X}^{i} - \eta_{IJ} \boldsymbol{\zeta}^{I} \boldsymbol{D} \boldsymbol{\zeta}^{J} + \rho_{I}^{i}(\boldsymbol{X}) \boldsymbol{F}_{i} \boldsymbol{\zeta}^{i} + \frac{1}{3!} \mathcal{T}_{IJK}(\boldsymbol{X}) \boldsymbol{\zeta}^{I} \boldsymbol{\zeta}^{J} \boldsymbol{\zeta}^{K} \right)$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Topological	string theory			

• Appear in type II *Calabi-Yau compactifications* (superpotentials, BPS black holes)

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Topologica	string theory			

- Appear in type II *Calabi-Yau compactifications* (superpotentials, BPS black holes)
- Natural question:

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
	000			
Topologica	l string theory			

- Appear in type II *Calabi-Yau compactifications* (superpotentials, BPS black holes)
- Natural question:

• How to define topological strings?

$$\mathcal{N}=2$$
 sigma-model $\&$ coupled to gravity \Biggrntering \Biggntering \longrightarrow type II string theory

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
	000			
Topologica	l string theory			

- Appear in type II *Calabi-Yau compactifications* (superpotentials, BPS black holes)
- Natural question:

• How to define topological strings? $\mathcal{N} = 2 \text{ sigma-model}$ & coupled to gravity topological sigma-model & coupled to gravity \mathcal{L} topological string theory

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
	000			
Topologica	l string theory			

- Appear in type II *Calabi-Yau compactifications* (superpotentials, BPS black holes)
- Natural question:

- How to define topological strings?
 - $\begin{array}{c} \mathcal{N}=2 \mbox{ sigma-model} \\ \& \mbox{ coupled to gravity} \end{array} \end{array} \right\} \longrightarrow \mbox{ type II string theory} \\ \hline \mbox{ topological sigma-model} \\ \& \mbox{ coupled to gravity} \end{array} \right\} \longrightarrow \mbox{ topological string theory}$

• Procedure to get the topological sigma-model: \rightsquigarrow topological twisting $\mathcal{N}=2$ sigma-model $\xrightarrow{\text{twist}}$ topological sigma-model

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
	000			
Topologica	string theory			

- Appear in type II *Calabi-Yau compactifications* (superpotentials, BPS black holes)
- Natural question:

- How to define topological strings?
 - $\begin{array}{c} \mathcal{N} = 2 \text{ sigma-model} \\ \& \text{ coupled to gravity} \end{array} \end{array} \right\} \longrightarrow \qquad \text{type II string theory} \\ \begin{array}{c} \text{topological sigma-model} \\ \& \text{ coupled to gravity} \end{array} \right\} \longrightarrow \qquad \text{topological string theory}$

• Procedure to get the topological sigma-model: \rightsquigarrow topological twisting $\mathcal{N} = 2$ sigma-model $\xrightarrow{\text{twist}}$ topological sigma-model

• Two non-equivalent twists:

 \sim A- and B-models

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000	0000	
Topologica	l S-duality			

• Originates from *S*-duality of type IIB strings

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	○●○	0000		00
Topologica	l S-duality			

- Originates from S-duality of type IIB strings
- Weak/strong coupling duality (on the same CY)

A-model $\stackrel{s}{\longleftrightarrow}$ B-model

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
T				
Topologica	l S-duality			

- Originates from S-duality of type IIB strings
- Weak/strong coupling duality (on the same CY)

A-model	$\stackrel{s}{\longleftrightarrow}$	B-model	
g A	$\stackrel{\rm S}{\longleftrightarrow}$	$rac{1}{g_{ m B}}$	couplings
$k_{ m A}$	$\stackrel{\rm S}{\longleftrightarrow}$	$rac{1}{k_{ m B}}$	Kähler forms

[Nekrasov,Ooguri,Vafa '04]

aksz	Topological strings	DFT approach	GG formulation	Conclusion
0000000	○○●	0000		00
A- and B-mo	odels			

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
A- and B-n	nodels			

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X_0^i$$
 and $\gamma = \frac{1}{2}\pi^{ij}(X)\chi_i\chi_j$

$$\begin{split} \{\gamma,\gamma\} &= 0 & \longleftrightarrow \quad \text{Poisson condition for } \pi \quad (\pi^{[i|l}\partial_l \pi^{[jk]} = 0) \\ \boldsymbol{\mathcal{S}}_{\pi}^{(2)} &= \int_{\mathcal{T}[\mathbf{1}]\Sigma_{\mathbf{2}}} \left(\boldsymbol{\chi}_i \, \boldsymbol{\mathcal{D}} \boldsymbol{X}^i \, + \, \frac{1}{2} \, \pi^{ij}(\boldsymbol{X}) \, \boldsymbol{\chi}_i \, \boldsymbol{\chi}_j \right) \quad \pi \ \to \ \text{K\"ahler str.} \end{split}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
A- and B-r	nodels			

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X_{\mathfrak{o}}^i$$
 and $\gamma = \frac{1}{2}\pi^{ij}(X)\chi_i\chi_j$

$$\begin{aligned} \{\gamma,\gamma\} &= 0 & \longleftrightarrow & \text{Poisson condition for } \pi \quad (\pi^{[i]\prime}\partial_{l}\pi^{[jk]} = 0) \\ \boldsymbol{\mathcal{S}}_{\pi}^{(2)} &= \int_{\mathcal{T}[\mathbf{1}]\Sigma_{\mathbf{2}}} \left(\boldsymbol{\chi}_{i} \, \boldsymbol{\mathcal{D}}\boldsymbol{X}^{i} \, + \, \frac{1}{2} \, \pi^{ij}(\boldsymbol{X}) \, \boldsymbol{\chi}_{i} \, \boldsymbol{\chi}_{j}\right) \quad \pi \ \to \ \mathsf{K\"ahler str.} \end{aligned}$$

• B-model: Complex structure sigma-model ($\mathcal{M} = T^*[1]T^*M$ doubled)

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
A- and B-r	nodels			

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X_{\mathfrak{o}}^i \qquad \text{and} \qquad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j$$

$$\begin{aligned} \{\gamma,\gamma\} &= 0 & \longleftrightarrow & \text{Poisson condition for } \pi \quad (\pi^{[i]\prime}\partial_{l}\pi^{[jk]} = 0) \\ \boldsymbol{\mathcal{S}}_{\pi}^{(2)} &= \int_{\mathcal{T}[\mathbf{1}]\Sigma_{\mathbf{2}}} \left(\boldsymbol{\chi}_{i} \, \boldsymbol{\mathcal{D}}\boldsymbol{X}^{i} \, + \, \frac{1}{2} \, \pi^{ij}(\boldsymbol{X}) \, \boldsymbol{\chi}_{i} \, \boldsymbol{\chi}_{j}\right) \quad \pi \ \to \ \mathsf{K\"ahler str.} \end{aligned}$$

• B-model: Complex structure sigma-model ($\mathcal{M} = T^*[1]T^*M$ doubled)

$$\omega = \mathrm{d}_{\chi_i} \wedge \mathrm{d}_{\mathbf{0}}^{\chi_i} + \mathrm{d}_{\widetilde{\chi}_i}^{\chi_i} \wedge \mathrm{d}_{\widetilde{\chi}_i}^{\widetilde{\chi}_i} \quad \text{and} \quad \gamma = J_j^i \, \chi_i \, \widetilde{\chi}^j \, - \, \partial_j J_k^i \, \widetilde{\chi}_i \, \widetilde{\chi}^j \, \widetilde{\chi}^k$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
A- and B-r	nodels			

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X_{\mathbf{0}}^i \qquad \text{and} \qquad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j$$

$$\{\gamma, \gamma\} = 0 \qquad \longleftarrow \qquad \text{Poisson condition for } \pi \quad (\pi^{[i]} \partial_l \pi^{[jk]} = 0)$$
$$\boldsymbol{\mathcal{S}}_{\pi}^{(2)} = \int_{\mathcal{T}[1]\Sigma_2} \left(\boldsymbol{\chi}_i \, \boldsymbol{\mathcal{D}} \boldsymbol{X}^i + \frac{1}{2} \pi^{ij}(\boldsymbol{X}) \, \boldsymbol{\chi}_i \, \boldsymbol{\chi}_j \right) \qquad \pi \quad \rightarrow \quad \text{K\"ahler str.}$$

• B-model: Complex structure sigma-model ($\mathcal{M} = T^*[1]T^*M$ doubled)

$$\omega = \mathrm{d}_{\chi_i} \wedge \mathrm{d}_{\mathbf{0}}^{X^i} + \mathrm{d}_{\widetilde{\chi}_i}^{i} \wedge \mathrm{d}_{\widetilde{\chi}_i}^{\widetilde{X}_i} \qquad \text{and} \qquad \gamma = J_j^i \, \chi_i \, \widetilde{\chi}^j - \partial_j J_k^i \, \widetilde{\chi}_i \, \widetilde{\chi}^j \, \widetilde{\chi}^k$$

 $\{\gamma,\gamma\}=0\qquad\longleftrightarrow$ Integrability condition for the complex structure J

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
A- and B-r	nodels			

$$\omega = \mathrm{d}\chi_i \wedge \mathrm{d}X_{\mathfrak{o}}^i \qquad \text{and} \qquad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j$$

$$\{\gamma, \gamma\} = 0 \qquad \longleftrightarrow \qquad \text{Poisson condition for } \pi \quad (\pi^{[i]} \partial_{l} \pi^{[jk]} = 0)$$
$$\boldsymbol{\mathcal{S}}_{\pi}^{(2)} = \int_{\mathcal{T}[1]\Sigma_{2}} \left(\boldsymbol{\chi}_{i} \, \boldsymbol{\mathcal{D}} \boldsymbol{X}^{i} + \frac{1}{2} \pi^{ij}(\boldsymbol{\mathcal{X}}) \, \boldsymbol{\chi}_{i} \, \boldsymbol{\chi}_{j} \right) \qquad \pi \quad \forall \text{ K\"ahler str.}$$

• B-model: Complex structure sigma-model ($M = T^*[1]T^*M$ doubled)

$$\omega = \mathrm{d}_{\chi_i} \wedge \mathrm{d}_{\mathbf{0}}^{\chi_i} + \mathrm{d}_{\widetilde{\chi}_i}^{\chi_i} \wedge \mathrm{d}_{\widetilde{\chi}_i}^{\widetilde{\chi}_i} \quad \text{and} \quad \gamma = J_j^i \, \chi_i \, \widetilde{\chi}^j \, - \, \partial_j J_k^i \, \widetilde{\chi}_i \, \widetilde{\chi}^j \, \widetilde{\chi}^k$$

 $\{\gamma,\gamma\}=0\qquad\longleftrightarrow$ Integrability condition for the complex structure J

$$\boldsymbol{\mathcal{S}}_{J}^{(2)} = \int_{\mathcal{T}[1]\boldsymbol{\Sigma}_{2}} \left(\boldsymbol{\chi}_{i} \, \boldsymbol{\mathcal{D}} \boldsymbol{X}^{i} - \widetilde{\boldsymbol{\mathcal{X}}}_{i} \, \boldsymbol{\mathcal{D}} \widetilde{\boldsymbol{\chi}}^{i} + J^{i}{}_{j}(\boldsymbol{\mathcal{X}}) \, \boldsymbol{\chi}_{i} \, \widetilde{\boldsymbol{\chi}}^{j} + \partial_{j} J^{i}{}_{k}(\boldsymbol{\mathcal{X}}) \, \widetilde{\boldsymbol{\mathcal{X}}}_{i} \, \widetilde{\boldsymbol{\chi}}^{j} \, \widetilde{\boldsymbol{\chi}}^{k} \right)$$

[Ikeda, Tokunaga '07]

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
	000		0000	00
Doubled Po	isson sigma-model	for A/B-models		

• Poisson sigma-model on doubled target space: $\mathcal{M} = \mathcal{T}^*[1]\mathcal{T}^*M$

coordinates:
$$\overset{\mathbf{o}}{X}^{I} = \begin{pmatrix} \chi^{i} \\ \widetilde{\chi}_{i} \end{pmatrix}$$
 $\overset{\mathbf{i}}{\chi}_{I} = \begin{pmatrix} \chi_{i} \\ \widetilde{\chi}^{i} \end{pmatrix}$ \rightsquigarrow $O(d, d)$ str. defined

0000		
del for A/B-models		
	•••• del for A/B-models	odel for A/B-models

• Poisson sigma-model on doubled target space: $\mathcal{M} = T^*[1]T^*M$

coordinates:
$$\overset{\mathbf{o}}{X}^{I} = \begin{pmatrix} X^{i} \\ \widetilde{X}_{i} \end{pmatrix}$$
 $\overset{\mathbf{i}}{\chi}_{I} = \begin{pmatrix} \chi_{i} \\ \widetilde{\chi}^{i} \end{pmatrix}$ \rightsquigarrow $O(d, d)$ str. defined

• Symplectic structure

$$\omega = \mathrm{d}\chi_{I} \wedge \mathrm{d}X^{I} = \mathrm{d}X^{i} \wedge \mathrm{d}\chi_{i} + \mathrm{d}\widetilde{X}_{i} \wedge \mathrm{d}\widetilde{\chi}^{i}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Doubled Po	olsson sigma-model	tor A/B-models		

• Poisson sigma-model on doubled target space: $\mathcal{M} = \mathcal{T}^*[1]\mathcal{T}^*\mathcal{M}$

coordinates:
$$\overset{\mathbf{o}}{X}^{I} = \begin{pmatrix} X^{i} \\ \widetilde{X}_{i} \end{pmatrix} \qquad \overset{\mathbf{i}}{\chi}_{I} = \begin{pmatrix} \chi_{i} \\ \widetilde{\chi}^{i} \end{pmatrix} \quad \rightsquigarrow \quad O(d,d) \text{ str. defined}$$

• Symplectic structure

$$\omega = \mathrm{d}\chi_{I} \wedge \mathrm{d}X^{I} = \mathrm{d}X^{i} \wedge \mathrm{d}\chi_{i} + \mathrm{d}\widetilde{X}_{i} \wedge \mathrm{d}\widetilde{\chi}^{i}$$

• Hamiltonian

$$\gamma = \frac{1}{2} \,\Omega^{IJ}(X) \,\chi_I \,\chi_J \qquad \Rightarrow \quad \Omega^{[I|L} \partial_L \Omega^{JK]} = 0$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
D LL LD				
Doubled Pc	olsson sigma-model	tor A/B-models		

• Poisson sigma-model on doubled target space: $\mathcal{M} = T^*[1]T^*M$

coordinates:
$$\overset{\mathbf{o}}{X'} = \begin{pmatrix} X^i \\ \widetilde{\chi}_i \end{pmatrix}$$
 $\overset{\mathbf{i}}{\chi_I} = \begin{pmatrix} \chi_i \\ \widetilde{\chi}^i \end{pmatrix}$ \rightsquigarrow $O(d, d)$ str. defined

• Symplectic structure

$$\omega = \mathrm{d}\chi_{I} \wedge \mathrm{d}X^{I} = \mathrm{d}X^{i} \wedge \mathrm{d}\chi_{i} + \mathrm{d}\widetilde{X}_{i} \wedge \mathrm{d}\widetilde{\chi}^{i}$$

Hamiltonian

$$\gamma = \frac{1}{2} \,\Omega^{IJ}(X) \,\chi_I \,\chi_J \qquad \Rightarrow \quad \Omega^{[I|L} \partial_L \Omega^{JK]} = 0$$

• The AKSZ action is

$$oldsymbol{\mathcal{S}}_{\Omega}^{(2)} = \int_{\mathcal{T}[1]\Sigma_2} \left(oldsymbol{\chi}_I \, oldsymbol{\mathcal{D}} oldsymbol{X}' \, + \, rac{1}{2} \, \Omega^{\prime \prime}(oldsymbol{\mathcal{X}}) \, oldsymbol{\chi}_I \, oldsymbol{\chi}_J
ight) \, .$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Doubled Poisson sigma-model for A/B-models				

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0●00	0000	00
Doubled Pois	son sigma-model	for A/B-models		

- Observation: it gives both the A- or B-models
- A-model

$$\Omega^{\prime J} = egin{pmatrix} \pi^{ij} & 0 \ 0 & 0 \end{pmatrix}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Doubled Pc	isson sigma-model	for A/B-models		

• A-model

$$\Omega^{IJ} = \begin{pmatrix} \pi^{IJ} & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Omega^{[I|L}\partial_L\Omega^{JK]} = 0 \qquad \Rightarrow$$

$$\pi^{[i|l}\partial_l\pi^{jk]} = 0$$

Poisson condition for π on M

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Doubled Po	oisson sigma-model	tor A/B-models		

• A-model

$$\Omega^{IJ} = \begin{pmatrix} \pi^{IJ} & 0 \\ 0 & 0 \end{pmatrix}$$

 $\Omega^{[I|L} \partial_L \Omega^{JK]} = 0 \qquad \Rightarrow \qquad \pi^{[i|I} \partial_I \pi^{jk]} = 0$ Poisson condition for π on M

B-model

$$\Omega^{IJ} = \begin{pmatrix} 0 & J^{i}{}_{j} \\ -J^{j}{}_{i} & -2\partial_{[i}J^{k}{}_{j]}\widetilde{X}_{k} \end{pmatrix}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Doubled Pa	oisson sigma-model	tor A/B-models		

• A-model

$$\Omega^{IJ} = \begin{pmatrix} \pi^{IJ} & 0 \\ 0 & 0 \end{pmatrix}$$

 $\Omega^{[l|L}\partial_L\Omega^{JK]} = 0 \qquad \Rightarrow \qquad \begin{array}{l} \pi^{[i|l}\partial_l\pi^{jk]} = 0 \\ \text{Poisson condition for } \pi \text{ on } M \end{array}$

B-model

 $\Omega^{[I|L}\partial_I\Omega^{JK]} = 0$

$$\Omega^{IJ} = \begin{pmatrix} 0 & J^{i}{}_{j} \\ -J^{j}{}_{i} & -2\partial_{[i}J^{k}{}_{j]}\widetilde{X}_{k} \end{pmatrix}$$

$$\int_{[i|}^{\prime} \partial_{i} J_{[j]}^{k} - J_{i}^{k} \partial_{[i} J_{j]}^{\prime} = 0$$

Integrability condition for J on M
AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Doubled Po	oisson sigma-model	tor A/B-models		

- Observation: it gives both the A- or B-models
- A-model

$$\Omega^{IJ} = \begin{pmatrix} \pi^{IJ} & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Omega^{[I|L}\partial_L\Omega^{JK]} = 0 \qquad \Rightarrow \qquad \begin{array}{c} \pi^{[I|I}\partial_I\pi^{jk]} = 0 \\ \text{Poisson condition for } \pi \text{ on } M \end{array}$$

B-model

$$\Omega^{IJ} = \begin{pmatrix} 0 & J^{i}{}_{j} \\ -J^{j}{}_{i} & -2\partial_{[i}J^{k}{}_{j]}\widetilde{X}_{k} \end{pmatrix}$$
$$\Omega^{[I|L}\partial_{L}\Omega^{JK]} = 0 \qquad \Rightarrow \qquad \begin{array}{l} J^{I}{}_{[i|}\partial_{I}J^{k}{}_{|j]} - J^{k}{}_{I}\partial_{[i}J^{I}{}_{j]} = 0 \\ \text{Integrability condition for } J \text{ on } M \end{array}$$

• DFT-like description, but how to introduce GG and fluxes?

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Membrane l	evel			

• We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Membrane	level			

- We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$
- Contravariant Courant sigma-model

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion	
0000000	000	0000	0000	00	
Membrane level					

- We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$
- Contravariant Courant sigma-model

$$\omega = \mathrm{d}^{\mathbf{2}}_{F_{I}} \wedge \mathrm{d}^{\mathbf{0}}_{X'} + \mathrm{d}^{\mathbf{1}}_{X_{I}} \wedge \mathrm{d}^{\mathbf{0}}_{\psi'}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Mambrana	loval			

- We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$
- Contravariant Courant sigma-model

$$\omega = \mathrm{d} \vec{F}_I \wedge \mathrm{d} \vec{X}^I + \mathrm{d} \chi_I^1 \wedge \mathrm{d} \psi^I$$

$$\gamma = \Omega^{IJ} F_{I} \chi_{J} - \frac{1}{2} \partial_{I} \Omega^{JK} \psi^{I} \chi_{J} \chi_{K} + \frac{1}{3!} \mathcal{R}^{IJK} \chi_{I} \chi_{J} \chi_{K}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Mambrana	loval			

- We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$
- Contravariant Courant sigma-model

$$\omega = \mathrm{d} F_I \wedge \mathrm{d} X^I + \mathrm{d} \chi_I^1 \wedge \mathrm{d} \psi^I$$

$$\gamma = \Omega^{IJ} F_I \chi_J - \frac{1}{2} \partial_I \Omega^{JK} \psi^I \chi_J \chi_K + \frac{1}{3!} \mathcal{R}^{IJK} \chi_I \chi_J \chi_K$$
$$\{\gamma, \gamma\} = 0 \quad \longleftrightarrow \quad [\Omega, \Omega]_{\mathrm{S}} = 0 \quad \text{and} \quad [\Omega, \mathcal{R}]_{\mathrm{S}} = 0$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Mambrana	laval			

- We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$
- Contravariant Courant sigma-model

$$\omega = \mathrm{d} F_I \wedge \mathrm{d} X^I + \mathrm{d} \chi_I^1 \wedge \mathrm{d} \psi^I$$

$$\gamma = \Omega^{IJ} F_I \chi_J - \frac{1}{2} \partial_I \Omega^{JK} \psi^I \chi_J \chi_K + \frac{1}{3!} \mathcal{R}^{IJK} \chi_I \chi_J \chi_K$$
$$\{\gamma, \gamma\} = 0 \quad \longleftrightarrow \quad [\Omega, \Omega]_{\mathrm{S}} = 0 \quad \text{and} \quad [\Omega, \mathcal{R}]_{\mathrm{S}} = 0$$

 \Rightarrow defines the Poisson Courant algebroid on $E = TM \oplus T^*M$ with

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Mambrana	laval			

- We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$
- Contravariant Courant sigma-model

$$\omega = \mathrm{d} F_I \wedge \mathrm{d} X^I + \mathrm{d} \chi_I^1 \wedge \mathrm{d} \psi^I$$

$$\gamma = \Omega^{IJ} F_I \chi_J - \frac{1}{2} \partial_I \Omega^{JK} \psi^I \chi_J \chi_K + \frac{1}{3!} \mathcal{R}^{IJK} \chi_I \chi_J \chi_K$$

$$\{\gamma,\gamma\}=0\quad\longleftrightarrow\quad [\Omega,\Omega]_{\rm S}=0\quad\text{and}\quad [\Omega,\mathcal{R}]_{\rm S}=0$$

 \Rightarrow defines the Poisson Courant algebroid on $E = TM \oplus T^*M$ with

$$\begin{split} \langle A + \alpha, B + \beta \rangle &= \iota_A \beta + \iota_B \alpha \quad \text{pairing} \\ \rho(A + \alpha) &= \iota_\alpha \Omega \quad \text{anchor} \\ [A + \alpha, B + \beta]_D &= [\alpha, \beta]_\Omega + \mathcal{L}^\Omega_\alpha Y - \iota_\beta \, \mathrm{d}_\Omega X - \iota_\alpha \iota_\beta \mathcal{R} \quad \text{Dorfman br.} \end{split}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Mambrana	loval			

- We introduce a worldvolume Σ_3 theory which gives back the double Poisson sigma-model on the boundary $\Sigma_2 = \partial \Sigma_3$
- Contravariant Courant sigma-model

$$\omega = \mathrm{d} F_I \wedge \mathrm{d} X^I + \mathrm{d} \chi_I^1 \wedge \mathrm{d} \psi^I$$

$$\gamma = \Omega^{IJ} F_I \chi_J - \frac{1}{2} \partial_I \Omega^{JK} \psi^I \chi_J \chi_K + \frac{1}{3!} \mathcal{R}^{IJK} \chi_I \chi_J \chi_K$$

$$\{\gamma,\gamma\}=0\quad\longleftrightarrow\quad [\Omega,\Omega]_{\rm S}=0\quad\text{and}\quad [\Omega,\mathcal{R}]_{\rm S}=0$$

 \Rightarrow defines the Poisson Courant algebroid on $E = TM \oplus T^*M$ with

$$\begin{array}{ll} \langle A + \alpha, B + \beta \rangle = \iota_A \beta + \iota_B \alpha & \text{pairing} \\ \rho(A + \alpha) = \iota_\alpha \Omega & \text{anchor} \\ [A + \alpha, B + \beta]_D = [\alpha, \beta]_\Omega + \mathcal{L}^{\Omega}_{\alpha} Y - \iota_\beta \, \mathrm{d}_\Omega X - \iota_\alpha \iota_\beta \mathcal{R} & \text{Dorfman br.} \end{array}$$

• Higher formulation of a Poisson structure Ω with possible twists $\mathcal R$!

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion	
		0000			
Mombrono loval					
wembrane	level				

$$\begin{split} \boldsymbol{\mathcal{S}}_{\Omega,\mathcal{R}}^{(3)} &= \int_{\mathcal{T}[1]\boldsymbol{\Sigma}_{3}} \left(\boldsymbol{F}_{I} \, \boldsymbol{D} \boldsymbol{X}^{I} - \boldsymbol{\chi}_{I} \, \boldsymbol{D} \psi^{I} + \Omega^{IJ}(\boldsymbol{X}) \, \boldsymbol{F}_{I} \, \boldsymbol{\chi}_{J} \right. \\ &\left. - \frac{1}{2} \, \partial_{I} \Omega^{JK}(\boldsymbol{X}) \, \psi^{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} + \frac{1}{3!} \, \mathcal{R}^{IJK}(\boldsymbol{X}) \, \boldsymbol{\chi}_{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \right) \end{split}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion		
		0000				
Membrane lev	Membrane level					

$$\begin{split} \boldsymbol{\mathcal{S}}_{\Omega,\mathcal{R}}^{(3)} &= \int_{\mathcal{T}[1]\Sigma_{3}} \left(\boldsymbol{F}_{I} \, \boldsymbol{D} \boldsymbol{X}^{\prime} \, - \, \boldsymbol{\chi}_{I} \, \boldsymbol{D} \psi^{\prime} \, + \, \Omega^{\prime \prime \prime}(\boldsymbol{X}) \, \boldsymbol{F}_{I} \, \boldsymbol{\chi}_{J} \right. \\ &\left. - \, \frac{1}{2} \, \partial_{I} \Omega^{\prime \prime \prime}(\boldsymbol{X}) \, \psi^{\prime} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \, + \, \frac{1}{3!} \, \mathcal{R}^{\prime \prime \prime \prime}(\boldsymbol{X}) \, \boldsymbol{\chi}_{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \right) \end{split}$$

• How does it give the doubled Poisson sigma-model?

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion		
		0000				
Membrane lev	Membrane level					

$$\begin{split} \boldsymbol{\mathcal{S}}_{\Omega,\mathcal{R}}^{(3)} &= \int_{\mathcal{T}[1]\Sigma_{3}} \left(\boldsymbol{F}_{I} \, \boldsymbol{D} \boldsymbol{X}^{\prime} - \boldsymbol{\chi}_{I} \, \boldsymbol{D} \boldsymbol{\psi}^{I} + \Omega^{IJ}(\boldsymbol{X}) \, \boldsymbol{F}_{I} \, \boldsymbol{\chi}_{J} \right. \\ &\left. - \frac{1}{2} \, \partial_{I} \Omega^{JK}(\boldsymbol{X}) \, \boldsymbol{\psi}^{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} + \frac{1}{3!} \, \mathcal{R}^{IJK}(\boldsymbol{X}) \, \boldsymbol{\chi}_{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \right) \end{split}$$

• How does it give the doubled Poisson sigma-model?

In the partial gauge

$$m{F}_I = m{D} m{\chi}_I$$
 and $m{\psi}^I = -m{D} m{X}^I$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Membrane	level			

$$\begin{split} \boldsymbol{\mathcal{S}}_{\Omega,\mathcal{R}}^{(3)} &= \int_{\mathcal{T}[1]\Sigma_{3}} \left(\boldsymbol{F}_{I} \, \boldsymbol{D} \boldsymbol{X}^{\prime} \, - \, \boldsymbol{\chi}_{I} \, \boldsymbol{D} \psi^{I} \, + \, \Omega^{IJ}(\boldsymbol{X}) \, \boldsymbol{F}_{I} \, \boldsymbol{\chi}_{J} \right. \\ &\left. - \, \frac{1}{2} \, \partial_{I} \Omega^{JK}(\boldsymbol{X}) \, \psi^{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \, + \, \frac{1}{3!} \, \mathcal{R}^{IJK}(\boldsymbol{X}) \, \boldsymbol{\chi}_{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \right) \end{split}$$

• How does it give the doubled Poisson sigma-model?

In the partial gauge

$$m{F}_I = m{D} m{\chi}_I$$
 and $m{\psi}^I = -m{D} m{X}^I$

$$\longrightarrow \omega_{\mathrm{gf}} = \oint_{\mathcal{T}[\mathbf{1}]\partial\Sigma_{\mathbf{3}}} \delta X' \delta \chi_{I}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Membrane	level			

I

$$\begin{split} \boldsymbol{\mathcal{S}}_{\Omega,\mathcal{R}}^{(3)} &= \int_{\mathcal{T}[1]\boldsymbol{\Sigma}_{3}} \left(\boldsymbol{F}_{I} \, \boldsymbol{D} \boldsymbol{X}^{I} \, - \, \boldsymbol{\chi}_{I} \, \boldsymbol{D} \boldsymbol{\psi}^{I} \, + \, \Omega^{IJ}(\boldsymbol{X}) \, \boldsymbol{F}_{I} \, \boldsymbol{\chi}_{J} \right. \\ &\left. - \, \frac{1}{2} \, \partial_{I} \Omega^{JK}(\boldsymbol{X}) \, \boldsymbol{\psi}^{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \, + \, \frac{1}{3!} \, \mathcal{R}^{IJK}(\boldsymbol{X}) \, \boldsymbol{\chi}_{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \right) \end{split}$$

• How does it give the doubled Poisson sigma-model?

we reduce the normal modes

The partial gauge

$$F_{l} = D\chi_{l}$$
 and $\psi^{l} = -DX^{l}$
 $\longrightarrow \omega_{gf} = \oint_{\mathcal{T}[1]\partial\Sigma_{3}} \delta X^{l} \delta \chi_{l}$
 $\Sigma_{2} = \partial\Sigma_{3} \longrightarrow \widehat{\phi}$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Membrane	level			

$$\begin{split} \boldsymbol{\mathcal{S}}_{\Omega,\mathcal{R}}^{(3)} &= \int_{\mathcal{T}[1]\boldsymbol{\Sigma}_{3}} \left(\boldsymbol{F}_{I} \, \boldsymbol{D} \boldsymbol{X}^{I} \, - \, \boldsymbol{\chi}_{I} \, \boldsymbol{D} \boldsymbol{\psi}^{I} \, + \, \Omega^{IJ}(\boldsymbol{X}) \, \boldsymbol{F}_{I} \, \boldsymbol{\chi}_{J} \right. \\ &\left. - \, \frac{1}{2} \, \partial_{I} \Omega^{JK}(\boldsymbol{X}) \, \boldsymbol{\psi}^{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \, + \, \frac{1}{3!} \, \mathcal{R}^{IJK}(\boldsymbol{X}) \, \boldsymbol{\chi}_{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \right) \end{split}$$

• How does it give the doubled Poisson sigma-model?

• It allows the definition of fluxes (DFT-like)

 $\mathcal{R}^{IJK} \longrightarrow H_{ijk}, F^{i}{}_{jk}, Q^{ij}{}_{k}, R^{ijk}$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
		0000		
Membrane	level			

$$\begin{split} \boldsymbol{\mathcal{S}}_{\Omega,\mathcal{R}}^{(3)} &= \int_{\mathcal{T}[1]\boldsymbol{\Sigma}_{3}} \left(\boldsymbol{F}_{I} \, \boldsymbol{D} \boldsymbol{X}^{I} \, - \, \boldsymbol{\chi}_{I} \, \boldsymbol{D} \boldsymbol{\psi}^{I} \, + \, \Omega^{IJ}(\boldsymbol{X}) \, \boldsymbol{F}_{I} \, \boldsymbol{\chi}_{J} \right. \\ &\left. - \, \frac{1}{2} \, \partial_{I} \Omega^{JK}(\boldsymbol{X}) \, \boldsymbol{\psi}^{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \, + \, \frac{1}{3!} \, \mathcal{R}^{IJK}(\boldsymbol{X}) \, \boldsymbol{\chi}_{I} \, \boldsymbol{\chi}_{J} \, \boldsymbol{\chi}_{K} \right) \end{split}$$

• How does it give the doubled Poisson sigma-model?

• It allows the definition of fluxes (DFT-like)

 $\mathcal{R}^{IJK} \quad \longrightarrow \quad H_{ijk}, \ F^{i}{}_{jk}, \ Q^{ij}{}_{k}, \ R^{ijk} \qquad \quad [\Omega,\mathcal{R}]_{\mathrm{S}} = 0 \quad \rightsquigarrow \text{ Bianchi id.}$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	●000	
Projection to	GG			

• We have a DFT description. Next: reduce the doubling to arrive at GG

aksz	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	●000	00
Projection t	o GG			

- We have a DFT description. Next: reduce the doubling to arrive at GG
- The natural method in the theory of DFT algebroids is the **DFT projection**:

Project
$$\chi_I$$
 and ψ' to $e'_+ = \psi' + \eta'^J \chi_J =: (q^i, p_i)$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Projection to	GG			

- We have a DFT description. Next: reduce the doubling to arrive at GG
- The natural method in the theory of DFT algebroids is the **DFT projection**:

Project
$$\chi_I$$
 and ψ' to $e'_+ = \psi' + \eta'^J \chi_J =: (q^i, p_i)$

• The resulting AKSZ theory is not well defined (no master eq.)

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	●000	00
Projection to	o GG			

- We have a DFT description. Next: reduce the doubling to arrive at GG
- The natural method in the theory of DFT algebroids is the **DFT projection**:

Project
$$\chi_I$$
 and ψ' to $e'_+ = \psi' + \eta'^J \chi_J =: (q^i, p_i)$

- The resulting AKSZ theory is not well defined (no master eq.)
- We choose

$$\Omega^{IJ} = \begin{pmatrix} \pi^{ij} & J^{i}{}_{j} \\ -J^{j}{}_{i} & 0 \end{pmatrix}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	●000	00
Projection to	o GG			

- We have a DFT description. Next: reduce the doubling to arrive at GG
- The natural method in the theory of DFT algebroids is the **DFT projection**:

Project
$$\chi_I$$
 and ψ' to $e'_+ = \psi' + \eta'^J \chi_J =: (q^i, p_i)$

- The resulting AKSZ theory is not well defined (no master eq.)
- We choose

$$\Omega^{IJ} = \begin{pmatrix} \pi^{ij} & J^{i}{}_{j} \\ -J^{j}{}_{i} & 0 \end{pmatrix}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	●000	00
Projection to	o GG			

- We have a DFT description. Next: reduce the doubling to arrive at GG
- The natural method in the theory of DFT algebroids is the **DFT projection**:

Project
$$\chi_I$$
 and ψ' to $e'_+ = \psi' + \eta'^J \chi_J =: (q^i, p_i)$

- The resulting AKSZ theory is not well defined (no master eq.)
- We choose

$$\Omega^{IJ} = \begin{pmatrix} \pi^{ij} & J^{i}{}_{j} \\ -J^{j}{}_{i} & 0 \end{pmatrix}$$

 \bullet We impose the master eq. on $\Omega~(\rightsquigarrow$ SC?)

$$\Rightarrow \quad \mathbb{J}'_{J} = \eta_{JK} \, \Omega^{IK} = \begin{pmatrix} J^{i}{}_{j} & \pi^{ij} \\ 0 & -J^{j}{}_{i} \end{pmatrix} \quad \text{generalized complex structure}$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0●00	
Generalized	complex structure	and A-/B-models		

• The integrability conditions for
$$\mathbb{J}'_J = \begin{pmatrix} J^i{}_j & \pi^{ij} \\ 0 & -J^j{}_i \end{pmatrix}$$
 are

$$\pi^{[i|I} \partial_{I} \pi^{jk} = 0$$

$$J_{i}^{I} \partial_{I} \pi^{jk} + 2 \pi^{jl} \partial_{[i} J_{i]}^{k} + \pi^{kl} \partial_{I} J_{i}^{j} - J_{I}^{j} \partial_{i} \pi^{lk} = 0$$

$$J_{[i|}^{I} \partial_{I} J_{|j]}^{k} - J_{I}^{k} \partial_{[i} J_{j]}^{l} = 0$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	○●○○	
Generalized	complex structure	and A-/B-models		

• The integrability conditions for
$$\mathbb{J}'_J = \begin{pmatrix} J^i{}_j & \pi^{ij} \\ 0 & -J^j{}_i \end{pmatrix}$$
 are

$$\pi^{[i|I} \partial_{I} \pi^{jk} = 0$$

$$J_{i}^{I} \partial_{I} \pi^{jk} + 2 \pi^{jI} \partial_{[i} J_{i]}^{k} + \pi^{kI} \partial_{I} J_{i}^{J} - J_{I}^{J} \partial_{i} \pi^{lk} = 0$$

$$J_{[i|}^{I} \partial_{I} J_{|j]}^{k} - J_{I}^{k} \partial_{[i} J_{j]}^{I} = 0$$

Algebroid for
$$\mathbb{J}$$

 $\{\gamma, \gamma\} = 0$

 \Rightarrow

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
			0000	
Generalized	complex structure	and A /R models		

• The integrability conditions for
$$\mathbb{J}'_J = \begin{pmatrix} J^i{}_j & \pi^{ij} \\ 0 & -J^j{}_i \end{pmatrix}$$
 are

$$\pi^{[i|l} \partial_l \pi^{jk} = 0$$

$$J_i^l \partial_l \pi^{jk} + 2 \pi^{jl} \partial_{[i} J_{[i]}^k + \pi^{kl} \partial_l J_{[i]}^j - J_{[i]}^j \partial_i \pi^{lk} = 0 \qquad \Rightarrow \qquad \begin{cases} A | \text{gebroid for } \mathbb{J} \\ \{\gamma, \gamma\} = 0 \end{cases}$$

$$J_{[i|}^l \partial_l J_{[j]}^k - J_{[i]}^k \partial_{[i} J_{j]}^l = 0$$

• The AKSZ action is

$$\boldsymbol{\mathcal{S}}_{\pi,J}^{(3)} = \int_{\mathcal{T}[1]\Sigma_{3}} \left(\boldsymbol{F}_{i} \boldsymbol{D} \boldsymbol{X}^{i} - \boldsymbol{p}_{i} \boldsymbol{D} \boldsymbol{q}^{i} + \pi^{ij} \boldsymbol{F}_{i} \boldsymbol{p}_{j} + \boldsymbol{J}^{i}_{j} \boldsymbol{F}_{i} \boldsymbol{q}^{j} \right. \\ \left. - \frac{1}{2} \partial_{i} \pi^{jk} \boldsymbol{q}^{i} \boldsymbol{p}_{j} \boldsymbol{p}_{k} + \partial_{i} \boldsymbol{J}^{k}_{j} \boldsymbol{q}^{i} \boldsymbol{q}^{j} \boldsymbol{q}_{k} \right)$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Reduction t	o A-/B-models			

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
			0000	
Reduction t	o A_/B_models			

A-model (J = 0):

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
			0000	
Reduction t	o A_/B_models			

A-model (J = 0): $F_I = Dp_I$ and q' = -DX'

we need just transverse modes: $\widehat{\pmb{X}}^i, \widehat{\pmb{\chi}}_i$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
			0000	
Reduction t	$o A_{-}/B_{-}$ models			

A-model (J = 0): $F_I = Dp_I$ and q' = -DX'

we need just transverse modes: $\widehat{\pmb{X}}^i, \widehat{\pmb{\chi}}_i$

B-model ($\pi = 0$):

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00
Reduction t	A / B models			

A-model (J = 0): $F_I = Dp_I$ and q' = -DX'

we need just transverse modes: $\widehat{\pmb{X}}^i, \widehat{\pmb{\chi}}_i$

B-model ($\pi = 0$):

we need both normal and transverse modes: $\widehat{\boldsymbol{X}}^{i}, \widehat{\boldsymbol{q}}^{i}, (\boldsymbol{p}_{t})_{i}, (\boldsymbol{F}_{t})_{i}$

 $\Sigma_2 = \partial \Sigma_3$

Σ٦

aksz 0000000	Topological strings 000	DFT approach 0000	GG formulation 000●	Conclusion
Topological	l S-duality from gen	eralized complex	structure	

$$p_i \ \longmapsto \ \lambda \, p_i \qquad ext{and} \qquad q^i \ \longmapsto \ rac{1}{\lambda} \, q^i$$

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
			0000	
		10 I I I I		
lopological	S-duality from gen	eralized complex	structure	

$$p_i \longmapsto \lambda p_i$$
 and $q^i \longmapsto \frac{1}{\lambda} q^i$

$$\gamma_{\pi,J}^{\lambda} = \lambda \pi^{ij} F_i p_j - \frac{\lambda}{2} \partial_i \pi^{jk} q^i p_j p_k + \frac{1}{\lambda} J^i{}_j F_i q^j + \frac{1}{\lambda} \partial_i J^k{}_j q^i q^j p_k$$

AKSZ 0000000	Topological strings	DFT approach 0000	GG formulation ○○○●	Conclusion
Topological S	huality from ran	oralized complex (structure	

$$p_i \longmapsto \lambda p_i$$
 and $q^i \longmapsto rac{1}{\lambda} q^i$

$$p_i \longmapsto \lambda p_i$$
 and $q^i \longmapsto \frac{1}{\lambda} q^i$

$$p_i \longmapsto \lambda p_i$$
 and $q^i \longmapsto \frac{1}{\lambda} q^i$

$$\gamma_{\pi,J}^{\lambda} = \lambda \pi^{ij} F_i p_j - \frac{\lambda}{2} \partial_i \pi^{jk} q^i p_j p_k + \frac{1}{\lambda} J^i{}_j F_i q^j + \frac{1}{\lambda} \partial_i J^k{}_j q^i q^j p_k$$
$$\overset{\lambda \gg 1}{\swarrow} \qquad \qquad \searrow^{\lambda \ll 1}$$
$$\gamma_{\pi} = \pi^{ij} F_i p_j - \frac{1}{2} \partial_i \pi^{jk} q^j p_j p_k \qquad \gamma_J = J^j{}_j F_i q^j + \partial_i J^k{}_j q^i q^j p_k$$

$$p_i \longmapsto \lambda p_i$$
 and $q^i \longmapsto \frac{1}{\lambda} q^i$

• The Hamiltonian scales as

$$\gamma_{\pi} = \pi^{ij} F_i p_j - \frac{1}{2} \partial_i \pi^{jk} q^i p_j p_k \qquad \gamma_J = J^i{}_j F_i q^j + \partial_i J^k{}_j q^j q^j p_k$$

• This scaling duality can be lifted up to the level of the AKSZ actions:

$${oldsymbol{\mathcal{S}}}^{(2)}_{\pi} \quad \stackrel{\lambda \gg 1}{\longleftarrow} \quad {oldsymbol{\mathcal{S}}}^{(3)}_{\pi,J} \quad \stackrel{\lambda \ll 1}{\longrightarrow} \quad {oldsymbol{\mathcal{S}}}^{(2)}_{J}$$

 The symplectic structure dqⁱ ∧ dp_i has a diffeomorphism invariance (i.e. canonical transformation)

$$p_i \longmapsto \lambda p_i$$
 and $q^i \longmapsto \frac{1}{\lambda} q^i$

• The Hamiltonian scales as

$$\gamma_{\pi} = \pi^{ij} F_i p_j - \frac{1}{2} \partial_i \pi^{jk} q^i p_j p_k \qquad \gamma_J = J^i{}_j F_i q^j + \partial_i J^k{}_j q^i q^j p_k$$

• This scaling duality can be lifted up to the level of the AKSZ actions:

$$\mathcal{S}_{\pi}^{(2)} \xleftarrow{\lambda \gg 1} \mathcal{S}_{\pi,J}^{(3)} \xrightarrow{\lambda \ll 1} \mathcal{S}_{J}^{(2)}$$

A-model B-model

 The symplectic structure dqⁱ ∧ dp_i has a diffeomorphism invariance (i.e. canonical transformation)

$$p_i \longmapsto \lambda p_i$$
 and $q^i \longmapsto \frac{1}{\lambda} q^i$

• The Hamiltonian scales as

$$\gamma_{\pi,J}^{\lambda} = \lambda \pi^{ij} F_i p_j - \frac{\lambda}{2} \partial_i \pi^{jk} q^i p_j p_k + \frac{1}{\lambda} J^i{}_j F_i q^j + \frac{1}{\lambda} \partial_i J^k{}_j q^i q^j p_k$$
$$\overset{\lambda \gg 1}{\swarrow} \qquad \qquad \searrow^{\lambda \ll 1}$$

$$\gamma_{\pi} = \pi^{ij} F_i p_j - \frac{1}{2} \partial_i \pi^{jk} q^i p_j p_k \qquad \gamma_J = J^i{}_j F_i q^j + \partial_i J^k{}_j q^j q^j p_k$$

• This scaling duality can be lifted up to the level of the AKSZ actions:

aksz	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		○●
Outlook				

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		⊖●
Outlook				

 \rightsquigarrow Relation to GG/flux compactification?

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		○●
Outlook				

 \rightsquigarrow Relation to GG/flux compactification?

 \rightsquigarrow Relation to topological string amplitudes?

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		⊖●
Outlook				

 \rightsquigarrow Relation to GG/flux compactification?

 \rightsquigarrow Relation to topological string amplitudes?

• Relation to generalized Calabi-Yau?

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		⊖●
Outlook				

 \rightsquigarrow Relation to GG/flux compactification?

 \rightsquigarrow Relation to topological string amplitudes?

- Relation to generalized Calabi-Yau?
- Study further the new Courant algebroid for generalized complex str. (twist?).

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000		⊖●
Outlook				

 \sim Relation to GG/flux compactification?

 \rightsquigarrow Relation to topological string amplitudes?

- Relation to generalized Calabi-Yau?
- Study further the new Courant algebroid for generalized complex str. (twist?).
- Generalized complex str. (S-duality) + Mirror symmetry (T-duality) ?

AKSZ	Topological strings	DFT approach	GG formulation	Conclusion
0000000	000	0000	0000	00

Thank you for your attention!

