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Coisotropic Submanifolds

Coisotropic submanifolds play a distinguished role in Poisson geometry:

Lagrangian submanifolds of symplectic manifolds,
level sets of moment maps,
morphisms of Poisson manifolds,
branes in Poisson σ-models.

In Hamiltonian Mechanics

coisotropic submanifolds = first class contraints
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The Reduced Phase Space

Characteristic Distribution

Let (P, ω) be a symplectic manifold, C ⊂ P a coisotropic submanifold.
The distribution

K :=
〈

X f |C : f vanishes on C
〉

is an involutive distribution on C.

Reduced Phase Space

Physically, the degrees of freedom along K are gauges and should be
quotiented out:

Pred := C/K

is the true physical phase space. But Pred might be singular.
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Singular Reduction

A way out non-smoothness is thinking of Pred algebraically, putting

C∞(Pred) := { f ∈ C∞(C) : X( f ) = 0 for all X ∈ Γ(K)} .

Proposition

C∞(Pred) is a Poisson algebra in a natural way.

C∞(Pred) might be too small to be useful!

Remark

The commutative algebra C∞(Pred) is “cohomologically resolved” by
the leaf-wise de Rham complex Ω•(K) := Γ(∧•K∗):

0→ C∞(Pred) ↪→ C∞(C)→ Ω1(K)→ · · · → Ωi(K)→ · · · .
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Homological Reduction

Ω•(K) can be thought of as a desingularization of the commutative al-
gebra C∞(Pred). How about the Poisson algebra structure?

Theorem [Oh & Park 2005], [Cattaneo & Felder 2007]
1 Ω•(K) is an L∞-algebra in a canonical way (up to L∞-isomorphisms);
2 the binary bracket induces the Poisson bracket on C∞(Pred);
3 the multibrackets are multiderivations (P∞-algebra).

Quantization of Coisotropic Submanifolds

[Cattaneo & Felder 2007] use
the P∞-algebra of C, and
an adaptation of Formality,

to quantize C∞(Pred) up to anomalies.
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Contact Manifolds

The Aim of the Talk
is discussing the Contact Geometry analogue of the P∞-algebra of a
coisotropic submanifold in a symplectic manifold.

Definition

A contact manifold is a manifold P + a contact distribution, i.e. a codimen-
sion 1 distribution H satisfying a maximal non-integrability condition:

RH : H × H → TP/H, (X, Y) 7→ [X, Y]mod H is non-degenerate.

Darboux Theorem

Locally, there are coordinates (xi, u, pi) such that H is spanned by

Di := ∂
∂xi + pi

∂
∂u , ∂

∂pi
.
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The Jacobi Bracket

Let (P, H) be a contact manifold. Then L := TP/H is a line bundle.

Remark
1 There is a canonical vector space isomorphism

Γ(L)
∼=−→ {infinitesimal symmetries of H} , λ 7→ Xλ;

2 this induces a Lie bracket {−,−} on Γ(L), the Jacobi bracket:

X{λ,µ} = [Xλ, Xµ];

3 locally Γ(L) ∼= C∞(P) and

X f =
∂ f
∂pi

Di − Di f ∂
∂pi
− f ∂

∂u ,

{ f , g} = Di f ∂g
∂pi
− Dig

∂ f
∂pi

+ f ∂g
∂u − g ∂ f

∂u .
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Contact Geometry and Mechanics

Contact Geometry is a language for equilibrium thermodynamics and
thermodynamic processes are described by the flow of contact vector fields.

Contact Geometry is also a language for dissipative systems.

An Example: Damped Newton Mechanics

On a contact manifold M3 with Darboux coordinates (x, u, p), and

f = p2

2m + V(q) + γu,

the flow of the contact vector field X f is

ẋ = p
m , u̇ = p2

2m −V(q)− γu, ṗ = − ∂V(q)
∂q − γp,

which reproduces the Damped Newton Equation: ẍ = −γẋ− 1
m

∂V(q)
∂q .
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Coisotropic Submanifolds

Let (P, H) be a contact manifold, and let L := TP/H.

Definition
A submanifold C ⊂ P is coisotropic if the contact vector field Xλ is
tangent to C for every λ ∈ Γ(L) vanishing on C.

Characteristic Distribution
Let C ⊂ P be a coisotropic submanifold.

1 The distribution

K := 〈Xλ|C : λ vanishes on C〉

is an involutive distribution on C.
2 The restricted line bundle L|C is equipped with a canonical flat

partial connection ∇ along K:

∇Xλ |C µ|C := {λ, µ}|C.
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The Reduced Contact Phase Space

We would like to quotient out the degrees of freedom along K, keeping
the information on the line bundle!

L

��

L|C //oo

��

Lred := L|C/∇

��

P C //oo Pred := C/K

Remark
Sometimes, Pred is a smooth manifold and there is a well-defined line
bundle Lred → Pred such that L|C is the pull-back, and flat sections are
pull-back sections. But, in general, this is not the case!
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Singular Contact Reduction

A way out non-smoothness is thinking of Lred → Pred algebraically:

C∞(Pred) := { f ∈ C∞(C) : X( f ) = 0 for all X ∈ Γ(K)} ,
Γ(Lred) := {λ ∈ Γ(L|C) : ∇Xλ = 0 for all X ∈ Γ(K)} .

Proposition

(C∞(Pred), Γ(Lred)) is a Jacobi algebra in a natural way:

Γ(Lred) is a C∞(Pred)-module;
Γ(Lred) is a Lie algebra with (induced) brackets {−,−}red;
{−,−}red is a(n algebraic) bi-derivation, i.e.

{λ, f µ}red = f {λ, µ}red + Xλ( f )µ, λ, µ ∈ Γ(Lred), f ∈ C∞(Pred),

for some derivation Xλ of C∞(Pred).

As in the symplectic case, (C∞(Pred), Γ(Lred)) might be too small!
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Contact Homological Reduction

Remark

The C∞(Pred)-module Γ(Lred) is “resolved” by the leaf-wise de Rham
complex with coefficients in L|C: Ω•(K, L|C) := Γ(∧•K∗ ⊗ L|C):

0→ Γ(Lred) ↪→ Γ(L|C)→ Ω1(K, L|C)→ · · · → Ωi(K, L|C)→ · · · .

Ω•(K, L) can be thought of as a desingularization of the module Γ(Lred).
How about the Jacobi algebra structure?

Theorem [Lê, Oh, Tortorella & V 2014]
1 Ω•(K, L|C) is an L∞-algebra in a canonical way;
2 the binary bracket induces the bracket {−,−}red on Γ(Lred);
3 the multibrackets are multiderivations (J∞-algebra).

The L∞-algebra Ω•(K, L|C) controls deformations of C.
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L∞-Algebras

An L∞-algebra is a Lie algebra up to homotopy. Let V be a graded space.

Definition

An L∞-algebra structure in V is a sequence of operations:

ln : ∧nV −→ V[2− n]

satisfying the following coherence conditions
1 l21(u) = 0
2 l1l2(u, v) = l2(l1u, v)± l2(u, l1v)
3 l2(u, l2(v, w)) + 	 =

l1l3(u, v, w)− l3(l1u, v, w)∓ l3(u, l1v, w)∓ l3(u, v, l1w)

4 · · ·

H(V, l1) is a honest (graded) Lie algebra!
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T. Voronov’s Construction

V-data

A graded Lie algebra (L, [−,−]),
a Maurer-Cartan element ∆ ∈ L,
an abelian subalgebra a ⊂ L,
a linear projector P : L → a, such that kerP is a subalgebra.

Theorem [T. Voronov 2005]

Let (L, ∆, a,P) be V-data. The higher derived brackets:

ln(u1, u2, . . . , un) := ±P[[· · · [[∆, u1], u2], · · · ], un]

give a the structure of an L∞-algebra.

Remark [Cattaneo & Felder 2007]

One can construct V-data from a coisotropic submanifold.

Luca Vitagliano Contact Homological Reduction 19 / 26



Coisotropic Reduction
Contact Geometry and Mechanics

Contact Homological Reduction
Proof of the Main Theorem

The Schouten-Jacobi Algebra of Multiderivations

Let (P, H) be a contact manifold and {−,−} the Jacobi bracket.

The Schouten-Jacobi Algebra

Let L = TP/H. Skew-symmetric multiderivations

Γ(L)× · · · × Γ(L)→ Γ(L)

form a graded Lie algebra D•(L) with the Gerstenhaber bracket [−,−].

D•(L) is a line bundle version of the Schouten algebra of multivectors.

Remark

{−,−} can be seen as a Maurer-Cartan element ∆ in D•(L).

We are half-way from a set of V-data!
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V-Data from Coisotropic Submanifolds

Let (P, H) be a contact manifold, C ⊂ P a coisotropic submanifold.

Proposition

There is a canonical projection P : D•(L)→ Ω•(K, L|C).

We need additional data to complete our set of V-data:

a tubular neighborhood P ⊃ U τ−→ C,

an identification L ⊃ L|U
∼=−→ τ∗L|C.

Proposition

The additional data determine an inclusion

I : Ω•(K, L|C)→ D•(L|U);

the tuple (D•(L|U), ∆, imI,P) is a set of V-data.
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J∞-Algebras from Coisotropic Submanifolds

Theorem
1 The multibrackets

ln(ω1, ω2, . . . , ωn) := ±P[[· · · [[∆, Iω1], Iω2], · · · ], Iωn]

give Ω•(C, L|C) the structure of an L∞-algebra;
2 l1 is the leaf-wise differential;
3 l2 induces {−,−}red in Γ(Lred) = H0(C, L|C);
4 the ln are multiderivations (J∞-algebra).

The L∞-algebra (Ω•(C, L|C), {ln}) is independent of the additional data up
to L∞-isomorphisms.

Luca Vitagliano Contact Homological Reduction 22 / 26



Coisotropic Reduction
Contact Geometry and Mechanics

Contact Homological Reduction
Proof of the Main Theorem

Coisotropic Neighborhood Theorem

The L∞-algebra of a coisotropic submanifold C does only depend on
the intrinsic geometry of C.

Assume: C is not Legendrian, and HC := H ∩ TC has constant rank.

Theorem

HC knows everything about an appropriate neighborhood of C.

Corollary

The L∞-algebra (Ω•(C, L|C), {ln}) does only depend on HC.

Choose a distribution W on C complementary to K. Then

ln = O
(

Rn−2
W

)
for n > 1,

where RW : W ×W → TC/W = K is the curvature of W.
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Perspectives

Fedosov quantization of contact manifolds has been achieved by
[Boutet de Monvel 1995] via the symplectization trick: contact man-
ifolds are equivalent to homogeneous symplectic manifolds.

It would be natural to look at the quantization of a coisotropic
submanifold in a contact manifold as in [Cattaneo & Felder 2007]
(Quantization of dissipative systems with constraints?!).

More generally, quantizing Jacobi manifolds and their coisotropic
submanifolds might have an interest.
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Thank you!
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