Homological Reduction in Contact Geometry

Luca Vitagliano

University of Salerno, Italy

(based on joint work with: H. V. Lê, Y.-G. Oh, and A. Tortorella)

Quantum Structure of Space-time: Generalized Geometry and Symmetries,

Bayrischzell, April 12–16, 2019

Outline

2 Contact Geometry and Mechanics

Ontact Homological Reduction

Coisotropic Reduction

2 Contact Geometry and Mechanics

Contact Homological Reduction

Coisotropic Submanifolds

Coisotropic submanifolds play a distinguished role in Poisson geometry:

- Lagrangian submanifolds of symplectic manifolds,
- *level sets* of moment maps,
- morphisms of Poisson manifolds,
- *branes* in Poisson σ -models.

In Hamiltonian Mechanics

coisotropic submanifolds = first class contraints

The Reduced Phase Space

Characteristic Distribution

Let (P, ω) be a symplectic manifold, $C \subset P$ a coisotropic submanifold. The distribution

$$K := \left\langle X_f |_C : f \text{ vanishes on } C \right\rangle$$

is an involutive distribution on C.

Reduced Phase Space

Physically, the degrees of freedom along *K* are *gauges* and should be quotiented out:

$$P_{\rm red} := C/K$$

is the true *physical phase space*. But *P*_{red} might be *singular*.

Singular Reduction

A way out non-smoothness is *thinking of* P_{red} *algebraically*, putting

 $C^{\infty}(P_{\text{red}}) := \{ f \in C^{\infty}(C) : X(f) = 0 \text{ for all } X \in \Gamma(K) \}.$

Proposition

 $C^{\infty}(P_{\text{red}})$ is a Poisson algebra in a natural way.

 $C^{\infty}(P_{\text{red}})$ might be too small to be useful!

Remark

The commutative algebra $C^{\infty}(P_{\text{red}})$ is "cohomologically resolved" by the *leaf-wise de Rham complex* $\Omega^{\bullet}(K) := \Gamma(\wedge^{\bullet}K^*)$:

 $0 \to C^{\infty}(P_{\text{red}}) \hookrightarrow C^{\infty}(C) \to \Omega^{1}(K) \to \cdots \to \Omega^{i}(K) \to \cdots.$

Homological Reduction

 $\Omega^{\bullet}(K)$ can be thought of as a *desingularization* of the commutative algebra $C^{\infty}(P_{\text{red}})$. How about the Poisson algebra structure?

Theorem [Oh & Park 2005], [Cattaneo & Felder 2007]

- **9** $\Omega^{\bullet}(K)$ is an L_{∞} -algebra in a canonical way (up to L_{∞} -isomorphisms);
- **2** *the binary bracket induces the Poisson bracket on* $C^{\infty}(P_{red})$ *;*
- **(9)** the multibrackets are multiderivations (P_{∞} -algebra).

Quantization of Coisotropic Submanifolds

[Cattaneo & Felder 2007] use

- the P_{∞} -algebra of *C*, and
- an adaptation of Formality,

to quantize $C^{\infty}(P_{\text{red}})$ up to anomalies.

Outline

Coisotropic Reduction

2 Contact Geometry and Mechanics

Contact Homological Reduction

Contact Manifolds

The Aim of the Talk

is discussing the *Contact Geometry* analogue of the P_{∞} -algebra of a coisotropic submanifold in a symplectic manifold.

Definition

A contact manifold is a manifold P + a contact distribution, i.e. a codimension 1 distribution H satisfying a maximal non-integrability condition:

 $R_H: H \times H \to TP/H$, $(X, Y) \mapsto [X, Y] \mod H$ is non-degenerate.

Darboux Theorem

Locally, there are coordinates (x^i, u, p_i) such that *H* is spanned by

$$D_i := \frac{\partial}{\partial x^i} + p_i \frac{\partial}{\partial u}, \quad \frac{\partial}{\partial p_i}.$$

The Jacobi Bracket

Let (P, H) be a contact manifold. Then L := TP/H is a line bundle.

Remark

There is a canonical vector space isomorphism

 $\Gamma(L) \xrightarrow{\cong} \{ infinitesimal symmetries of H \}, \quad \lambda \mapsto X_{\lambda};$

() this induces a Lie bracket $\{-, -\}$ on $\Gamma(L)$, the *Jacobi bracket*:

 $X_{\{\lambda,\mu\}} = [X_{\lambda}, X_{\mu}];$

• locally $\Gamma(L) \cong C^{\infty}(P)$ and

$$X_{f} = \frac{\partial f}{\partial p_{i}} D_{i} - D_{i} f \frac{\partial}{\partial p_{i}} - f \frac{\partial}{\partial u},$$

$$\{f, g\} = D_{i} f \frac{\partial g}{\partial p_{i}} - D_{i} g \frac{\partial f}{\partial p_{i}} + f \frac{\partial g}{\partial u} - g \frac{\partial f}{\partial u}.$$

Contact Geometry and Mechanics

Contact Geometry is a language for *equilibrium thermodynamics* and *thermodynamic processes* are described by the flow of *contact vector fields*.

Contact Geometry is also a language for *dissipative systems*.

An Example: Damped Newton Mechanics

On a contact manifold M^3 with Darboux coordinates (x, u, p), and

 $f = \frac{p^2}{2m} + V(q) + \gamma u,$

the flow of the *contact vector field* X_f is

$$\dot{x} = \frac{p}{m}, \quad \dot{u} = \frac{p^2}{2m} - V(q) - \gamma u, \quad \dot{p} = -\frac{\partial V(q)}{\partial q} - \gamma p,$$

which reproduces the *Damped Newton Equation*: $\ddot{x} = -\gamma \dot{x} - \frac{1}{m} \frac{\partial V(q)}{\partial q}$.

Outline

Coisotropic Reduction

Contact Geometry and Mechanics

Ontact Homological Reduction

Coisotropic Submanifolds

Let (P, H) be a contact manifold, and let L := TP/H.

Definition

A submanifold $C \subset P$ is *coisotropic* if the contact vector field X_{λ} is tangent to *C* for every $\lambda \in \Gamma(L)$ vanishing on *C*.

Characteristic Distribution

Let $C \subset P$ be a coisotropic submanifold.

The distribution

 $K := \langle X_{\lambda} |_{C} : \lambda \text{ vanishes on } C \rangle$

is an involutive distribution on *C*.

O The restricted line bundle *L*|_C is equipped with a canonical flat *partial connection* ∇ along *K*:

 $\nabla_{X_{\lambda}|_{C}}\mu|_{C}:=\{\lambda,\mu\}|_{C}.$

The Reduced Contact Phase Space

We would like to quotient out the degrees of freedom along *K*, *keeping the information on the line bundle*!

$$L \longleftarrow L|_C \longrightarrow L_{\text{red}} := L|_C / \nabla$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P \longleftarrow C \longrightarrow P_{\text{red}} := C/K$$

Remark

Sometimes, P_{red} is a smooth manifold and there is a well-defined line bundle $L_{\text{red}} \rightarrow P_{\text{red}}$ such that $L|_C$ is the pull-back, and flat sections are pull-back sections. But, in general, *this is not the case*!

Singular Contact Reduction

A way out non-smoothness is *thinking of* $L_{red} \rightarrow P_{red}$ *algebraically*:

$$C^{\infty}(P_{\text{red}}) := \{ f \in C^{\infty}(C) : X(f) = 0 \text{ for all } X \in \Gamma(K) \}, \\ \Gamma(L_{\text{red}}) := \{ \lambda \in \Gamma(L|_{C}) : \nabla_{X} \lambda = 0 \text{ for all } X \in \Gamma(K) \}.$$

Proposition

 $(C^{\infty}(P_{red}), \Gamma(L_{red}))$ is a Jacobi algebra in a natural way:

• $\Gamma(L_{\text{red}})$ is a $C^{\infty}(P_{\text{red}})$ -module;

•
$$\Gamma(L_{red})$$
 is a Lie algebra with (induced) brackets $\{-,-\}_{red}$;

• $\{-,-\}_{red}$ is a(n algebraic) bi-derivation, i.e.

 $\{\lambda, f\mu\}_{\text{red}} = f\{\lambda, \mu\}_{\text{red}} + X_{\lambda}(f)\mu, \quad \lambda, \mu \in \Gamma(L_{\text{red}}), \ f \in C^{\infty}(P_{\text{red}}),$ for some derivation X_{λ} of $C^{\infty}(P_{\text{red}})$.

As in the symplectic case, $(C^{\infty}(P_{red}), \Gamma(L_{red}))$ might be too small!

Contact Homological Reduction

Remark

The $C^{\infty}(P_{\text{red}})$ -module $\Gamma(L_{\text{red}})$ is "resolved" by the *leaf-wise de Rham* complex with coefficients in $L|_C$: $\Omega^{\bullet}(K, L|_C) := \Gamma(\wedge^{\bullet}K^* \otimes L|_C)$:

 $0 \to \Gamma(L_{\mathrm{red}}) \hookrightarrow \Gamma(L|_{\mathcal{C}}) \to \Omega^{1}(K,L|_{\mathcal{C}}) \to \cdots \to \Omega^{i}(K,L|_{\mathcal{C}}) \to \cdots.$

 $\Omega^{\bullet}(K, L)$ can be thought of as a *desingularization* of the <u>module</u> $\Gamma(L_{red})$. How about the Jacobi algebra structure?

Theorem [Lê, Oh, Tortorella & V 2014]

- **O** $\Omega^{\bullet}(K, L|_{C})$ is an L_{∞} -algebra in a canonical way;
- **2** *the binary bracket induces the bracket* $\{-, -\}_{red}$ *on* $\Gamma(L_{red})$ *;*
- **(**) *the multibrackets are multiderivations* (J_{∞} *-algebra*).

The L_{∞} *-algebra* $\Omega^{\bullet}(K, L|_{C})$ *controls deformations of* C*.*

Outline

Coisotropic Reduction

2 Contact Geometry and Mechanics

Contact Homological Reduction

L_{∞} -Algebras

An L_{∞} -algebra is a *Lie algebra up to homotopy*. Let *V* be a graded space.

Definition

An L_{∞} -algebra structure in V is a sequence of operations:

 $\mathfrak{l}_n:\wedge^n V\longrightarrow V[2-n]$

satisfying the following coherence conditions

•
$$l_1^2(u) = 0$$

• $l_1 l_2(u, v) = l_2(l_1 u, v) \pm l_2(u, l_1 v)$
• $l_2(u, l_2(v, w)) + \bigcirc = l_1 l_3(u, v, w) - l_3(l_1 u, v, w) \mp l_3(u, l_1 v, w) \mp l_3(u, v, l_1 w)$
• ...

$H(V, \mathfrak{l}_1)$ is a honest (graded) Lie algebra!

T. Voronov's Construction

V-data

- A graded Lie algebra (ℒ, [−, −]),
- a Maurer-Cartan element $\Delta \in \mathcal{L}$,
- an abelian subalgebra $\mathfrak{a} \subset \mathcal{L}$,
- a linear projector $\mathfrak{P} : \mathcal{L} \to \mathfrak{a}$, such that ker \mathfrak{P} is a subalgebra.

Theorem [T. Voronov 2005]

Let $(\mathcal{L}, \Delta, \mathfrak{a}, \mathfrak{P})$ be V-data. The higher derived brackets:

$$\mathfrak{l}_n(u_1,u_2,\ldots,u_n):=\pm\mathfrak{P}[[\cdots[[\Delta,u_1],u_2],\cdots],u_n]$$

give a the structure of an L_{∞} -algebra.

Remark [Cattaneo & Felder 2007]

One can construct V-data from a coisotropic submanifold.

The Schouten-Jacobi Algebra of Multiderivations

Let (P, H) be a contact manifold and $\{-, -\}$ the *Jacobi bracket*.

The Schouten-Jacobi Algebra

Let L = TP/H. Skew-symmetric multiderivations

 $\Gamma(L) \times \cdots \times \Gamma(L) \to \Gamma(L)$

form a graded Lie algebra $\mathcal{D}^{\bullet}(L)$ with the *Gerstenhaber bracket* [-, -].

 $\mathcal{D}^{\bullet}(L)$ is a *line bundle version* of the Schouten algebra of multivectors.

Remark

 $\{-,-\}$ can be seen as a Maurer-Cartan element Δ in $\mathcal{D}^{\bullet}(L)$.

We are half-way from a set of V-data!

V-Data from Coisotropic Submanifolds

Let (P, H) be a contact manifold, $C \subset P$ a coisotropic submanifold.

Proposition

There is a canonical projection $\mathfrak{P} : \mathcal{D}^{\bullet}(L) \to \Omega^{\bullet}(K, L|_{\mathbb{C}}).$

We need *additional data* to complete our set of *V*-data:

- a tubular neighborhood $P \supset U \stackrel{\tau}{\longrightarrow} C$,
- an identification $L \supset L|_U \xrightarrow{\cong} \tau^* L|_C$.

Proposition

• The additional data determine an inclusion

```
\mathfrak{I}: \Omega^{\bullet}(K, L|_{C}) \to \mathcal{D}^{\bullet}(L|_{U});
```

• the tuple $(\mathcal{D}^{\bullet}(L|_U), \Delta, \operatorname{im} \mathfrak{I}, \mathfrak{P})$ is a set of *V*-data.

J_{∞} -Algebras from Coisotropic Submanifolds

Theorem

O The multibrackets

 $\mathfrak{l}_n(\omega_1,\omega_2,\ldots,\omega_n):=\pm\mathfrak{P}[[\cdots[[\Delta,\Im\omega_1],\Im\omega_2],\cdots],\Im\omega_n]$

give $\Omega^{\bullet}(C, L|_C)$ the structure of an L_{∞} -algebra;

- **2** l_1 *is the leaf-wise differential;*
- \mathfrak{l}_2 induces $\{-,-\}_{\mathrm{red}}$ in $\Gamma(L_{\mathrm{red}}) = H^0(C,L|_C)$;
- the l_n are multiderivations (J_{∞} -algebra).

The L_{∞} *-algebra* $(\Omega^{\bullet}(C, L|_{C}), {\mathfrak{l}_{n}})$ *is independent of the additional data up to* L_{∞} *-isomorphisms.*

Coisotropic Neighborhood Theorem

The L_{∞} -algebra of a coisotropic submanifold *C* does only depend on the *intrinsic geometry* of *C*.

Assume: *C* is not Legendrian, and $H_C := H \cap TC$ has constant rank.

Theorem

 $H_{\rm C}$ knows everything about an appropriate neighborhood of C.

Corollary

The L_{∞} *-algebra* $(\Omega^{\bullet}(C, L|_{C}), \{\mathfrak{l}_{n}\})$ *does only depend on* H_{C} *.*

Choose a distribution W on C complementary to K. Then

$$\mathfrak{l}_n = \mathcal{O}\left(R_W^{n-2}\right) \quad \text{for } n > 1,$$

where $R_W : W \times W \rightarrow TC/W = K$ is the *curvature* of *W*.

Perspectives

- *Fedosov quantization* of contact manifolds has been achieved by [Boutet de Monvel 1995] via the *symplectization trick*: contact manifolds are equivalent to homogeneous symplectic manifolds.
- It would be natural to look at the quantization of a coisotropic submanifold in a contact manifold as in [Cattaneo & Felder 2007] (Quantization of *dissipative systems with constraints?!*).
- More generally, quantizing *Jacobi manifolds* and their coisotropic submanifolds might have an interest.

References

- A.S. CATTANEO, AND G. FELDER, Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math. 208 (2007), 521–548.
- H.V. LÊ, Y.-G. OH, A. TORTORELLA, AND L.V., Deformations of coisotropic submanifolds in Jacobi manifolds, J. Sympl. Geom.16 (2018), 1051–1116.
- Y.-G. OH, AND J.-S. PARK, Deformations of coisotropic submanifolds and strong homotopy Lie algebroids, Invent. Math. 161 (2005), 287–360.

Thank you!