
Poisson-Lie T-duality, Courant algebroids, and
their higher analogs

Pavol Ševera
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What is Poisson-Lie T-duality?
[Klimčı́k, Š. 1995]

T-duality

Two different spacetimes M1,2 can be equivalent from the string
theory perspective
Requires an action of U(1) (or of a torus) on M1 by isometries

Poisson-Lie T-duality

• A non-Abelian generalization (symmetry is hidden, no Killing
vector fields)
• M1 and M2 give isomorphic Hamiltonian systems (up to finitely

many degrees of freedom)

M1 and M2 (exact CAs) are shadows of the same “ideal world”
(non-exact CA + a generalized metric)
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Courant algebroids, or “generalized geometry”
[Liu, Weinstein, Xu 1997]

Courant algebroid: vector bundle E → M, symmetric pairing 〈 , 〉
anchor map ρ : E → TM, bracket [ , ] : Γ(E)× Γ(E)→ Γ(E) such that
(∀s, t, u ∈ Γ(E))

[s, [t, u]] = [[s, t], u] + [t, [s, u]]

ρ(s)〈t, u〉 = 〈[s, t], u〉+ 〈t, [s, u]〉
〈s, [t, t]〉 = 〈[s, t], t〉.

Examples

• Lie algebras with invariant symmetric pairing (M = point)
• exact CAs (classified by H3(M,R))

0→ T∗M
ρt

−→ E
ρ−→ TM → 0
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2d σ-models and generalized metrics

Generalized metric in a CA E → M:
a subbundle V+ ⊂ E, maximally positive-definite w.r.t. 〈, 〉

A generalized metric in an exact CA E → M
= a Riemannian metric g and a closed 3-form H

2d σ-model
Ingredients: (M, g, H): g a Riemannian metric, H ∈ Ω3(M)closed
Σ a surface with a Lorentzian metric

S(f ) =
∫
Σ

g(∂+f ,∂−f ) +
∫

Y
f ∗H (f : Σ→ M, ∂Y = Σ)
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CAs and Hamiltonian systems

• A CA E → M ; an∞-dim symplectic manifold LCAE
• A generalized metric V+ ⊂ E ; a function HV+ on LCAE

If E is exact, we get the σ-model:

LCAE ∼= T∗(LM) (the phase space of the σ-model)
HV+ = the Hamiltonian of the σ-model

A better explanation: a boundary field theory
of an AKSZ model (see later)
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Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

• a CA Ẽ → M̃ (not exact), Ṽ+ ⊂ Ẽ a gen. metric
• a surjective submersion f : M → M̃ and a compatible exact CA

structure on E := f ∗Ẽ → M (not unique !)
• pulled-back generalized metric: V+ := f ∗Ṽ+ ⊂ E,

gives rise to (g, H) on M

PL T-duality

If (M1, g1, H1) and (M2, g2, H2) are obtained by pulling back the same
gen. metric Ṽ+ ⊂ Ẽ then the corresponding 2-dim σ-models are
(almost) isomorphic as Hamiltonian systems

. . . because they are (almost) isomorphic to (LCAẼ,HṼ+
)
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How to construct CA pullbacks

No spectators (i.e. M̃ = point, Ẽ = d a Lie algebra)

• g ⊂ d a Lagrangian Lie subalgebra (g⊥ = g)
• M = D/G, E = d×M, the anchor given by the action of d

General M̃ (= spectators)

• A principal D-bundle P→ M̃
• Vanishing 1st Pontryagin class:
〈F, F〉/2 = dC (C ∈ Ω3(M̃)) gives a transitive CA Ẽ → M̃
• M = P/G

A multiplicative gerbe over D trivial on G, acting on a gerbe on P

D a torus: the usual (Abelian) T-duality
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• g ⊂ d a Lagrangian Lie subalgebra (g⊥ = g)
• M = D/G, E = d×M, the anchor given by the action of d

General M̃ (= spectators)

• A principal D-bundle P→ M̃
• Vanishing 1st Pontryagin class:
〈F, F〉/2 = dC (C ∈ Ω3(M̃)) gives a transitive CA Ẽ → M̃
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“Quantum questions” - joint work with Fridrich Valach
[arXiv:1610.09004, arXiv:1810.07763]

σ-models:
is PL T-duality compatible with the renormalization group flow?

d
dt g = Ric

– looking for suitable flow of generalized metrics in general CAs

string theory:

other massless fields besides (g, H): dilaton, RR-fields, gauge fields.
Do they make sense for arbitrary CAs? Is PL T-duality compatible
with SUGRA equations?
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Laplacian and the generalized string effective action

Laplacian

E → M a CA and V+ ⊂ E a generalized metric ;

a natural Laplacian acting on half-densities on M

∆V+ = 4 Lρ(ea)Lρ(ea) +
1
6

+

+

+

+
1
2

+

−

+

(ea an ON basis of V+)
exact CAs: ∆V+ = 2∆g −

1
2 R + 1

4 H2

Generalized string effective action S(V+,σ) = −1
2

∫
M σ∆V+

σ

exact CAs: the (bosonic) string effective action (σ = e−φµ1/2
g )

transitive CAs (with ρ : V+
∼= TM): type I SUGRA action
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Generalized Ricci flow
The gradient flow of S(V+,σ) in the space of generalized metrics in
E (with a fixed σ):

Generalized Ricci flow (of a generalized metric)
d
dt V+ = TV+ : V+ → V− 〈TV+u, v〉 = GRicV+,div(u, v)

GRicV+,div(u, v) := div[v, u]+ − v · div u − TrV+ [[ · , v]−, u]+

where div u := 2σ−1Lρ(u)σ

More generally div : Γ(E)→ C∞(M) such that div(fu) = f div u + ρ(u)f
[Alekseev,Xu 2001], [Garcia-Fernandes 2016].

Different choices of σ or div give the same flows
up to (inner) automorphisms of the CA.

Other definitions of GRic: [Coimbra, Strickland-Constable, Waldram 2011],
[Garcia-Fernandez 2014], [Jurčo, Vysoký 2016] (using auxiliary data)
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PL T-duality is compatible with the renorm. group flow

• If E is exact, the GRicci flow is the renormalization group flow
(Ricci flow) of (g, H)

• GRic is compatible with CA pullbacks (if we pull back div)

• Hence, Poisson-Lie T-duality is compatible with the
renormalization group flow

10 / 17



PL T-duality and string background equations
without RR fields

Generalized string background equations

EOM of S: ∆V+σ = 0, GRicV+,σ = 0 (exact CAs: bosonic string
background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

Ṽ+ ⊂ Ẽ

, a half-density σ̃

M
f−→ M̃, E := f ∗Ẽ a CA pullback

an invariant fibrewise half-density τ
Lρ(f ∗u)τ = 0 ∀u ∈ Γ(Ẽ)

(
⇒ ∆V+(τ f ∗σ̃) = τ f ∗∆Ṽ+

σ̃
)

Example: Ẽ = d (M̃ = pt), M = D/G: τ exists iff G is unimodular

PL T-duality for string background equations

(Ṽ+, σ̃) satisfies the GSBE iff (V+ := f ∗Ṽ+, σ := τ f ∗σ̃) does

Another approach: [Jurčo, Vysoký 2018]
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Example: Ẽ = d (M̃ = pt), M = D/G: τ exists iff G is unimodular

PL T-duality for string background equations
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Type II: RR fields and generating Dirac operators

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact
CAs

RR-field: an E-spinor half-density F which is V+-self-dual and
DF = 0 (D is the Dirac generating operator of [Alekseev, Xu 2001])

(Pseudo)Action: S(V+,σ, F) = −
1
2

∫(
σ∆V+σ− 1

8(F, ∗V+F)
)

PL T-duality for type II SUGRA:

(Ṽ+, σ̃, F̃) is a solution of the EOM in Ẽ iff
(V+ = f ∗Ṽ+, σ = τ f ∗σ̃, F = τ f ∗F̃) is a solution in E = f ∗Ẽ

If no τ exists we get a solution of modified type II SUGRA of [Tseytlin,

Wulff 2016], [Arutyunov, Frolov, Hoare, Roiban, Tseytlin 2016] (σ replaced by div)
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DF = 0 (D is the Dirac generating operator of [Alekseev, Xu 2001])

(Pseudo)Action: S(V+,σ, F) = −
1
2

∫(
σ∆V+σ− 1

8(F, ∗V+F)
)

PL T-duality for type II SUGRA:

(Ṽ+, σ̃, F̃) is a solution of the EOM in Ẽ iff
(V+ = f ∗Ṽ+, σ = τ f ∗σ̃, F = τ f ∗F̃) is a solution in E = f ∗Ẽ

If no τ exists we get a solution of modified type II SUGRA of [Tseytlin,

Wulff 2016], [Arutyunov, Frolov, Hoare, Roiban, Tseytlin 2016] (σ replaced by div)
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1 What is Poisson-Lie T-duality?

2 Ricci flow and string effective action

3 Higher dualities



Back to the worldsheet perspective and higher dualities
Joint work in progress with Ján Pulmann and Fridrich Valach

The problem

Abelian T-duality has an easy higher dimensional version:
(higher) electric-magnetic duality. How to extend it to a non-abelian
(Poisson-Lie) generalization?

13 / 17



Duality from boundary field theories
A “sandwich field theory” on a n-dim Σ

Σ× I

Σ

a n + 1-dim TFT

Λ: a topological boundary condition

a (non-topological) boundary field theory

Duality of sandwiches

Different choices of Λ give “dual” field theories on Σ.
If Λ1 and Λ2 are classically different but quantum-mechanically
equal, we get a true duality (equivalence of theories).

Abelian Chern-Simons ; (Abelian) T-duality
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AKSZ sandwich (classical BV picture)
or ideal worlds and their shadows revisited

Ideal world (TFT + a boundary field theory)

• A dg symplectic manifold X, degωX = n (e.g. a CA (n = 2))
• An n-dimensional Σ
• A dg Lagrangian submanifold L ⊂ Maps(T[1]Σ, X)

(e.g. a generalized metric)

Casting a shadow (a topological boundary condition)

A dg Lagrangian submanifold Λ ⊂ X
(or a dg Lagrangian map Λ→ X)

The resulting model

AKSZ model on Σ× I with the boundary conditions L and Λ

Different choices of Λ’s ; mutually dual models
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Example: PL T-duality without spectators

A BV description of the σ-model with the target D/G
given by V+ ⊂ d

Σ a surface with a (pseudo)Riemannian metric
X = d[1] ; Chern-Simons S(A) =

∫
Y

(
1
2

〈
A, dA

〉
+ 1

6

〈
[A, A], A

〉)
A ∈ Ω(Σ× I, d)[1] = Maps(T[1](Σ× I), d[1])

Σinn

Σ

A|Σinn ∈ Ω(Σinn, g)[1]

A|Σ ∈ L

L =
{

A ∈ Ω1(Σ, d) | ∗A = RA
}
⊕Ω2(Σ, d) ⊂ Ω(Σ, d)

(R : d→ d the reflection wrt. V+) Λ = g[1] ⊂ d[1] = X
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How to do calculations
• Resolve Λ ↪→ X to a (quasi-isomorphic) submersion Λ ′ → X
• The sandwich is equivalent to the (much smaller) BV manifold

Maps(T[1]Σ,Λ ′)×Maps(T[1]Σ,X) L

Example (PL T-duality)

g[1] ⊂ d[1] is resolved to d[1]× D/G→ d[1]
(and thus the target D/G appears)

In general this gives a (higher) gauge theory
in 1st order BV formalism
(fields + ghosts = the homotopy fiber of Λ ↪→ X)

Getting a physically interesting (higher) gauge theory is one of many
open problems (and so is combining with supersymmetry)

THANKS FOR YOUR ATTENTION!
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