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[Klimgik, S. 1995]

T-duality

Two different spacetimes M| ; can be equivalent from the string
theory perspective
Requires an action of U(1) (or of a torus) on M; by isometries

Poisson-Lie T-duality

® A non-Abelian generalization (symmetry is hidden, no Killing
vector fields)

® M, and M, give isomorphic Hamiltonian systems (up to finitely
many degrees of freedom)

M, and M, (exact CAs) are shadows of the same “‘ideal world”
(non-exact CA + a generalized metric)
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Courant algebroids, or “generalized geometry”
[Liu, Weinstein, Xu 1997]

Courant algebroid: vector bundle E — M, symmetric pairing (, )
anchor map p : E — TM, bracket [, ] : T'(E) x I'(E) — T'(E) such that
Vs, t,u € T(E))
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Courant algebroids, or “generalized geometry”
[Liu, Weinstein, Xu 1997]

Courant algebroid: vector bundle E — M, symmetric pairing (, )
anchor map p : E — TM, bracket [, ] : T'(E) x I'(E) — T'(E) such that
Vs, t,u € T(E))

Examples

® Lie algebras with invariant symmetric pairing (M = point)
e exact CAs (classified by H3 (M, R))

0-TM > E2TM =0
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2d o-models and generalized metrics

Generalized metric in a CA E — M:
a subbundle V. C E, maximally positive-definite w.r.t. (,)
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2d o-models and generalized metrics

Generalized metric in a CA E — M:
a subbundle V. C E, maximally positive-definite w.r.t. (,)

A generalized metric in an exact CA E — M
= a Riemannian metric g and a closed 3-form H

2d o-model

Ingredients: (M, g, H): g a Riemannian metric, H € Q3(M)cjosed
X a surface with a Lorentzian metric

S(f):Lg(aJrf,af)—l—Lf*H f:Z—>M,0Y=1I)
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CAs and Hamiltonian systems

® ACAE — M ~» an co-dim symplectic manifold Lca E

® A generalized metric V; C E ~» a function Hy, on LcsE
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CAs and Hamiltonian systems

® ACAE — M ~» an co-dim symplectic manifold Lca E

® A generalized metric V; C E ~» a function Hy, on LcsE

If E is exact, we get the o-model:

LcaE = T*(LM) (the phase space of the o-model)
Hy, = the Hamiltonian of the o-model

A better explanation: a boundary field theory
of an AKSZ model (see later)
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Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

e aCAE — M (notexact), V. C Ea gen. metric

® a surjective submersion f : M — M and a compatible exact CA
structure on E := f*E — M (not unique !)

e pulled-back generalized metric: V., = f*V, C E,
gives rise to (g, H) on M
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Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

e aCAE — M (notexact), V. C Ea gen. metric

® a surjective submersion f : M — M and a compatible exact CA
structure on E := f*E — M (not unique !)

e pulled-back generalized metric: V., = f*V, C E,
gives rise to (g, H) on M

PL T-duality

If (M1, g1,H;) and (M3, g2, H,) are obtained by pulling back the same
gen. metric V, C E then the corresponding 2-dim o-models are
(almost) isomorphic as Hamiltonian systems

... because they are (almost) isomorphic to (LcaE, J—f‘~,+)
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How to construct CA pullbacks

No spectators (i.e. M = point, E = d a Lie algebra)

® g C 0 a Lagrangian Lie subalgebra (g = g)
® M =D/G, E =0 x M, the anchor given by the action of 0
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How to construct CA pullbacks

No spectators (i.e. M = point, E = d a Lie algebra)

® g C 0 aLagrangian Lie subalgebra (g = g)
® M =D/G, E =0 x M, the anchor given by the action of 0

General M (= spectators)

e A principal D-bundle P — M

® Vanishing 1st Pontryagin class:
(F,F)/2 = dC (C € Q3(M)) gives a transitive CA E — M

e M=P/G

A multiplicative gerbe over D trivial on G, acting on a gerbe on P

D a torus: the usual (Abelian) T-duality J

6/17



Outline

@ Ricci flow and string effective action



“Quantum questions” - joint work with Fridrich Valach
[arXiv:1610.09004, arXiv:1810.07763]

o-models:

is PL T-duality compatible with the renormalization group flow?
% g = Ric

— looking for suitable flow of generalized metrics in general CAs
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“Quantum questions” - joint work with Fridrich Valach
[arXiv:1610.09004, arXiv:1810.07763]

o-models:

is PL T-duality compatible with the renormalization group flow?
% g =Ric

— looking for suitable flow of generalized metrics in general CAs

string theory:

other massless fields besides (g, H): dilaton, RR-fields, gauge fields.
Do they make sense for arbitrary CAs? Is PL T-duality compatible
with SUGRA equations?
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Laplacian and the generalized string effective action

Laplacian

E — M aCA and V C E a generalized metric ~»
a natural Laplacian acting on half-densities on M
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Laplacian and the generalized string effective action

Laplacian
E — M aCA and V C E a generalized metric ~»

a natural Laplacian acting on half-densities on M

1 1
Av, =4LoeyLote,) g +3

(e, an ON basis of V)
exact CAs: Ay, =2A, — IR+ 1H*
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Laplacian and the generalized string effective action

Laplacian

E — M aCA and V C E a generalized metric ~»
a natural Laplacian acting on half-densities on M

1
Av, =4Loe)Lote,) ¢ 5

(e, an ON basis of V)
exact CAs: Ay, =2A, — %R + iHZ

Generalized string effective action S(V,, 0) = —% [y, oAy, O

exact CAs: the (bosonic) string effective action (o0 = e ® p.é/ 2)

transitive CAs (with p : V. = TM): type I SUGRA action
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Generalized Ricci flow

The gradient flow of S(V, ¢) in the space of generalized metrics in
E (with a fixed o):
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GRicy, giv(u,v) :==div[v,uly —v-divu —Try, [[-,v]_, ul;

where divu := 2 G*ILQ(M)G
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Generalized Ricci flow

The gradient flow of S(V, ¢) in the space of generalized metrics in
E (with a fixed o):

Generalized Ricci flow (of a generalized metric)
%V+ =Ty, : Vi = V_ (Tv, u,v) = GRicy, giv(u,v)
GRicy, giv(u,v) :==div[v,uly —v-divu —Try, [[-,v]_, ul;

where divu ;=20 'L o

p(u)

More generally div : T'(E) — C*°(M) such that div(fu) = f divu + p(u)f
[Alekseev,Xu 2001], [Garcia-Fernandes 2016].

Different choices of ¢ or div give the same flows
up to (inner) automorphisms of the CA.

Other definitions of GRic: [Coimbra, Strickland-Constable, Waldram 2011],
[Garcia-Fernandez 2014], [Jurto, Vysoky 2016] (using auxiliary data)
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PL T-duality is compatible with the renorm. group flow

e If E is exact, the GRicci flow is the renormalization group flow
(Ricci flow) of (g, H)

® GRic is compatible with CA pullbacks (if we pull back div)

® Hence, Poisson-Lie T-duality is compatible with the
renormalization group flow
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PL T-duality and string background equations
without RR fields

Generalized string background equations

EOM of §: Ay, 0 = 0, GRicy, ; = 0 (exact CAs: bosonic string
background equations; some transitive CAs: type I/heterotic)
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PL T-duality and string background equations
without RR fields

Generalized string background equations

EOM of §: Ay, 0 = 0, GRicy, ; = 0 (exact CAs: bosonic string

background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

V. C E, ahalf-density & M L #1, E = f*E a CA pullback
an invariant fibrewise half-density T

LogryT=0 YueT(E) (= Ay, (1f*6) =1f*Ay, 0)

Example: E = 0 (M = pt), M = D/G: 7 exists iff G is unimodular

PL T-duality for string background equations

(V,, &) satisfies the GSBE iff (V; :=f*V,, 0 := 1f*&) does

Another approach: [Jurco, Vysoky 2018]
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Type II: RR fields and generating Dirac operators

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact
CAs
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Type II: RR fields and generating Dirac operators

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact
CAs

RR-field: an E-spinor half-density F which is V_ -self-dual and
DF = 0 (D is the Dirac generating operator of [Alekseev, Xu 2001])

(Pseudo)Action: S(V,,0,F) = —% J(GAV+G — %(F, *V+F)>
PL T-duality for type Il SUGRA:

(V,, &, F) is a solution of the EOM in E iff
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Type II: RR fields and generating Dirac operators

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact
CAs

RR-field: an E-spinor half-density F which is V_ -self-dual and
DF = 0 (D is the Dirac generating operator of [Alekseev, Xu 2001])

1
(Pseudo)Action: S(V,,0,F) = ~3 J(GAV+G— %(F, *V+F)>

PL T-duality for type Il SUGRA:

(V,, &, F) is a solution of the EOM in E iff
(Vi =f*Vy,0=1f*6, F = 1f*F)is asolution in E = f*E

If no T exists we get a solution of modified type II SUGRA of [Tseytlin,
Waulff 2016], [Arutyunov, Frolov, Hoare, Roiban, Tseytlin 2016] (O' replaced by diV)
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© Higher dualities



Back to the worldsheet perspective and higher dualities

Joint work in progress with Jan Pulmann and Fridrich Valach

The problem

Abelian T-duality has an easy higher dimensional version:
(higher) electric-magnetic duality. How to extend it to a non-abelian
(Poisson-Lie) generalization?
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Duality from boundary field theories
A “sandwich field theory” on a n-dim X

f /\: a topological boundary condition

Y xI —— an+ 1-dim TFT

_ "
a (non-topological) boundary field theory
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Duality from boundary field theories
A “sandwich field theory” on a n-dim X

f /\: a topological boundary condition

Y xI —— an+ 1-dim TFT

_ "
a (non-topological) boundary field theory

Duality of sandwiches

Different choices of A give “dual” field theories on X.
If A; and A, are classically different but quantum-mechanically
equal, we get a true duality (equivalence of theories).

Abelian Chern-Simons ~» (Abelian) T-duality
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AKSZ sandwich (classical BV picture)

or ideal worlds and their shadows revisited

Ideal world (TFT + a boundary field theory)

® A dg symplectic manifold X, deg wxy = n (e.g. a CA (n = 2))
® An n-dimensional X

® A dg Lagrangian submanifold £ C Maps(T[1]Z, X)
(e.g. a generalized metric)
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Ideal world (TFT + a boundary field theory)

® A dg symplectic manifold X, deg wxy = n (e.g. a CA (n = 2))
® An n-dimensional X

® A dg Lagrangian submanifold £ C Maps(T[1]Z, X)
(e.g. a generalized metric)

Casting a shadow (a topological boundary condition)

A dg Lagrangian submanifold A C X
(or a dg Lagrangian map A — X)

The resulting model

AKSZ model on £ x I with the boundary conditions £ and A

Different choices of A’s ~» mutually dual models J
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A BV description of the o-model with the target D/G
givenby V. C 0
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A BV description of the o-model with the target D/G
givenby V. C 0

Y a surface with a (pseudo)Riemannian metric
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Example: PL T-duality without spectators

A BV description of the o-model with the target D/G
givenby V. C 0

Y a surface with a (pseudo)Riemannian metric
X = 0[1] ~ Chern-Simons S(4) = [, (1(4.dA) + £(14,41,))
A€ Q(X x 1,0)[1] =Maps(T[1](Z x I),0[1])

i _ Als €L

! A|Z € Q(Zznnag)[l]

inn

L={AeQl(L,0)+A=RA} & Q*L,0) C Q(L,0)
(R : 0 — 0 the reflection wrt. V) A=glllColll =X
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How to do calculations

® Resolve A < X to a (quasi-isomorphic) submersion A’ — X

® The sandwich is equivalent to the (much smaller) BV manifold
Maps(T[1]1Z, A") Xmaps(r1112,x) £
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® The sandwich is equivalent to the (much smaller) BV manifold
Maps(T[1]1Z, A") Xmaps(r1112,x) £

Example (PL T-duality)

gll] C o[1] is resolved to 9[1] x D/G — d[1]
(and thus the target D/G appears)

In general this gives a (higher) gauge theory
in Ist order BV formalism
(fields + ghosts = the homotopy fiber of A — X)

Getting a physically interesting (higher) gauge theory is one of many
open problems (and so is combining with supersymmetry)

THANKS FOR YOUR ATTENTION!
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