Poisson-Lie T-duality, Courant algebroids, and their higher analogs

Pavol Ševera

Outline

2 Ricci flow and string effective action

3 Higher dualities

Outline

2 Ricci flow and string effective action

3 Higher dualities

What is Poisson-Lie T-duality? [Klimčík, Š. 1995]

T-duality

Two different spacetimes $M_{1,2}$ can be equivalent from the string theory perspective Requires an action of U(1) (or of a torus) on M_1 by isometries

What is Poisson-Lie T-duality? [Klimčík, Š. 1995]

T-duality

Two different spacetimes $M_{1,2}$ can be equivalent from the string theory perspective Requires an action of U(1) (or of a torus) on M_1 by isometries

Poisson-Lie T-duality

- A non-Abelian generalization (symmetry is hidden, no Killing vector fields)
- *M*₁ and *M*₂ give isomorphic Hamiltonian systems (up to finitely many degrees of freedom)

What is Poisson-Lie T-duality? [Klimčík, Š. 1995]

T-duality

Two different spacetimes $M_{1,2}$ can be equivalent from the string theory perspective Requires an action of U(1) (or of a torus) on M_1 by isometries

Poisson-Lie T-duality

- A non-Abelian generalization (symmetry is hidden, no Killing vector fields)
- *M*₁ and *M*₂ give isomorphic Hamiltonian systems (up to finitely many degrees of freedom)

 M_1 and M_2 (exact CAs) are shadows of the same "ideal world" (non-exact CA + a generalized metric)

Courant algebroids, or "generalized geometry" [Liu, Weinstein, Xu 1997]

Courant algebroid: vector bundle $E \to M$, symmetric pairing \langle , \rangle anchor map $\rho : E \to TM$, bracket $[,] : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ such that $(\forall s, t, u \in \Gamma(E))$

$$[s, [t, u]] = [[s, t], u] + [t, [s, u]]$$

$$\rho(s)\langle t, u \rangle = \langle [s, t], u \rangle + \langle t, [s, u] \rangle$$

$$\langle s, [t, t] \rangle = \langle [s, t], t \rangle.$$

Courant algebroids, or "generalized geometry" [Liu, Weinstein, Xu 1997]

Courant algebroid: vector bundle $E \to M$, symmetric pairing \langle , \rangle anchor map $\rho : E \to TM$, bracket $[,] : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ such that $(\forall s, t, u \in \Gamma(E))$

$$[s, [t, u]] = [[s, t], u] + [t, [s, u]]$$

$$\rho(s)\langle t, u \rangle = \langle [s, t], u \rangle + \langle t, [s, u] \rangle$$

$$\langle s, [t, t] \rangle = \langle [s, t], t \rangle.$$

Examples

- Lie algebras with invariant symmetric pairing (M = point)
- exact CAs (classified by $H^3(M, \mathbb{R})$)

$$0 \to T^*M \xrightarrow{\rho^t} E \xrightarrow{\rho} TM \to 0$$

$2d \sigma$ -models and generalized metrics

Generalized metric in a CA $E \rightarrow M$: a subbundle $V_+ \subset E$, maximally positive-definite w.r.t. \langle, \rangle

$2d \sigma$ -models and generalized metrics

Generalized metric in a CA $E \rightarrow M$: a subbundle $V_+ \subset E$, maximally positive-definite w.r.t. \langle, \rangle

A generalized metric in an *exact CA* $E \rightarrow M$ = a Riemannian metric g and a closed 3-form H

$2d \sigma$ -models and generalized metrics

Generalized metric in a CA $E \rightarrow M$: a subbundle $V_+ \subset E$, maximally positive-definite w.r.t. \langle, \rangle

A generalized metric in an *exact CA* $E \rightarrow M$ = a Riemannian metric g and a closed 3-form H

2d σ-model

Ingredients: (M, g, H): g a Riemannian metric, $H \in \Omega^3(M)_{\text{closed}}$ Σ a surface with a Lorentzian metric

$$S(f) = \int_{\Sigma} g(\partial_{+}f, \partial_{-}f) + \int_{Y} f^{*}H \qquad (f: \Sigma \to M, \ \partial Y = \Sigma)$$

CAs and Hamiltonian systems

- A CA $E \to M \sim$ an ∞ -dim symplectic manifold $L_{CA}E$
- A generalized metric $V_+ \subset E \rightsquigarrow$ a function \mathcal{H}_{V_+} on $L_{CA}E$

CAs and Hamiltonian systems

- A CA $E \to M \rightsquigarrow$ an ∞ -dim symplectic manifold $L_{CA}E$
- A generalized metric $V_+ \subset E \rightsquigarrow$ a function \mathcal{H}_{V_+} on $L_{CA}E$

If *E* is exact, we get the σ -model:

 $L_{CA}E \cong T^*(LM)$ (the phase space of the σ -model) \mathcal{H}_{V_+} = the Hamiltonian of the σ -model

CAs and Hamiltonian systems

- A CA $E \to M \rightsquigarrow$ an ∞ -dim symplectic manifold $L_{CA}E$
- A generalized metric $V_+ \subset E \rightsquigarrow$ a function \mathcal{H}_{V_+} on $L_{CA}E$

If *E* is exact, we get the σ -model:

 $L_{CA}E \cong T^*(LM)$ (the phase space of the σ -model) \mathcal{H}_{V_+} = the Hamiltonian of the σ -model

A better explanation: a boundary field theory of an AKSZ model (see later)

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a CA $\tilde{E} \to \tilde{M}$ (not exact), $\tilde{V}_+ \subset \tilde{E}$ a gen. metric
- a surjective submersion f : M → M̃ and a compatible exact CA structure on E := f* Ẽ → M (not unique !)
- pulled-back generalized metric: V₊ := f^{*} V₊ ⊂ E, gives rise to (g, H) on M

Poisson-Lie T-duality

Backgrounds (M, g, H) of Poisson-Lie type

- a CA $\tilde{E} \to \tilde{M}$ (not exact), $\tilde{V}_+ \subset \tilde{E}$ a gen. metric
- a surjective submersion f : M → M̃ and a compatible exact CA structure on E := f* Ẽ → M (not unique !)
- pulled-back generalized metric: V₊ := f^{*} V₊ ⊂ E, gives rise to (g, H) on M

PL T-duality

If (M_1, g_1, H_1) and (M_2, g_2, H_2) are obtained by pulling back the same gen. metric $\tilde{V}_+ \subset \tilde{E}$ then the corresponding 2-dim σ -models are (almost) isomorphic as Hamiltonian systems

... because they are (almost) isomorphic to $(L_{CA}\tilde{E}, \mathcal{H}_{\tilde{V}_{+}})$

How to construct CA pullbacks

No spectators (i.e. $\tilde{M} = \text{point}, \tilde{E} = \mathfrak{d}$ a Lie algebra)

- $\mathfrak{g} \subset \mathfrak{d}$ a Lagrangian Lie subalgebra ($\mathfrak{g}^{\perp} = \mathfrak{g}$)
- $M = D/G, E = \mathfrak{d} \times M$, the anchor given by the action of \mathfrak{d}

How to construct CA pullbacks

No spectators (i.e. $\tilde{M} = \text{point}, \tilde{E} = \mathfrak{d}$ a Lie algebra)

• $\mathfrak{g} \subset \mathfrak{d}$ a Lagrangian Lie subalgebra ($\mathfrak{g}^{\perp} = \mathfrak{g}$)

• M = D/G, $E = \mathfrak{d} \times M$, the anchor given by the action of \mathfrak{d}

General \tilde{M} (= spectators)

- A principal *D*-bundle $P \rightarrow \tilde{M}$
- Vanishing 1st Pontryagin class: $\langle F, F \rangle / 2 = dC \ (C \in \Omega^3(\tilde{M}))$ gives a transitive CA $\tilde{E} \to \tilde{M}$
- M = P/G

A multiplicative gerbe over D trivial on G, acting on a gerbe on P

D a torus: the usual (Abelian) T-duality

Outline

() What is Poisson-Lie T-duality?

2 Ricci flow and string effective action

3 Higher dualities

"Quantum questions" - joint work with Fridrich Valach [arXiv:1610.09004, arXiv:1810.07763]

σ-models:

is PL T-duality compatible with the renormalization group flow?

$$\frac{d}{dt}g = \operatorname{Ric}$$

- looking for suitable flow of generalized metrics in general CAs

"Quantum questions" - joint work with Fridrich Valach [arXiv:1610.09004, arXiv:1810.07763]

σ-models:

is PL T-duality compatible with the renormalization group flow?

$$\frac{d}{dt}g = \operatorname{Ric}$$

- looking for suitable flow of generalized metrics in general CAs

string theory:

other massless fields besides (g, H): dilaton, RR-fields, gauge fields. Do they make sense for arbitrary CAs? Is PL T-duality compatible with SUGRA equations?

Laplacian

 $E \rightarrow M$ a CA and $V_+ \subset E$ a generalized metric $\sim a$ natural Laplacian acting on half-densities on M

Laplacian

 $E \rightarrow M$ a CA and $V_+ \subset E$ a generalized metric \sim a natural Laplacian acting on half-densities on *M*

$$\Delta_{V_{+}} = 4L_{\rho(e_{a})}L_{\rho(e_{a})} + \frac{1}{6} \underbrace{\bigoplus_{\oplus}}_{\oplus} + \frac{1}{2} \underbrace{\bigoplus_{\oplus}}_{\oplus}$$

 $(e_a \text{ an ON basis of } V_+)$

Laplacian

 $E \rightarrow M$ a CA and $V_+ \subset E$ a generalized metric \sim a natural Laplacian acting on half-densities on *M*

$$\Delta_{V_{+}} = 4L_{\rho(e_{a})}L_{\rho(e_{a})} + \frac{1}{6} \underbrace{(\textcircled{\oplus})}_{\oplus} + \frac{1}{2} \underbrace{(\textcircled{\oplus})}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\oplus)}_{\oplus} + \underbrace{(\oplus)}_{\oplus}$$

 $(e_a \text{ an ON basis of } V_+)$

exact CAs: $\Delta_{V_+} = 2\Delta_g - \frac{1}{2}R + \frac{1}{4}H^2$

Laplacian

 $E \rightarrow M$ a CA and $V_+ \subset E$ a generalized metric $\sim a$ natural Laplacian acting on half-densities on M

$$\Delta_{V_{+}} = 4L_{\rho(e_{a})}L_{\rho(e_{a})} + \frac{1}{6} \underbrace{(\textcircled{\oplus})}_{\oplus} + \frac{1}{2} \underbrace{(\textcircled{\oplus})}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\textcircled\oplus)}_{\oplus} + \underbrace{(\oplus)}_{\oplus} + \underbrace{(\oplus)}_{\oplus}$$

 $(e_a \text{ an ON basis of } V_+)$

exact CAs:
$$\Delta_{V_+} = 2\Delta_g - \frac{1}{2}R + \frac{1}{4}H^2$$

Generalized string effective action $S(V_+, \sigma) = -\frac{1}{2} \int_M \sigma \Delta_{V_+} \sigma$ exact CAs: the (bosonic) string effective action ($\sigma = e^{-\phi} \mu_g^{1/2}$) transitive CAs (with $\rho : V_+ \cong TM$): type I SUGRA action

The **gradient flow** of $S(V_+, \sigma)$ in the space of generalized metrics in *E* (with a fixed σ):

The **gradient flow** of $S(V_+, \sigma)$ in the space of generalized metrics in *E* (with a fixed σ):

Generalized Ricci flow (of a generalized metric)

 $\frac{d}{dt}V_{+} = T_{V_{+}}: V_{+} \to V_{-} \qquad \langle T_{V_{+}}u, v \rangle = \operatorname{GRic}_{V_{+},\operatorname{div}}(u, v)$ $\operatorname{GRic}_{V_{+},\operatorname{div}}(u, v) := \operatorname{div}[v, u]_{+} - v \cdot \operatorname{div} u - \operatorname{Tr}_{V_{+}}[[\cdot, v]_{-}, u]_{+}$ where div $u := 2 \sigma^{-1} L_{\rho(u)} \sigma$

The **gradient flow** of $S(V_+, \sigma)$ in the space of generalized metrics in *E* (with a fixed σ):

Generalized Ricci flow (of a generalized metric)

 $\frac{d}{dt}V_{+} = T_{V_{+}}: V_{+} \to V_{-} \qquad \langle T_{V_{+}}u, v \rangle = \operatorname{GRic}_{V_{+},\operatorname{div}}(u, v)$ $\operatorname{GRic}_{V_{+},\operatorname{div}}(u, v) := \operatorname{div}[v, u]_{+} - v \cdot \operatorname{div} u - \operatorname{Tr}_{V_{+}}[[\cdot, v]_{-}, u]_{+}$ where div $u := 2 \sigma^{-1} L_{\rho(u)} \sigma$

More generally div : $\Gamma(E) \to C^{\infty}(M)$ such that div $(fu) = f \operatorname{div} u + \rho(u)f$ [Alekseev,Xu 2001], [Garcia-Fernandes 2016].

The **gradient flow** of $S(V_+, \sigma)$ in the space of generalized metrics in *E* (with a fixed σ):

Generalized Ricci flow (of a generalized metric)

 $\frac{d}{dt}V_{+} = T_{V_{+}}: V_{+} \to V_{-} \qquad \langle T_{V_{+}}u, v \rangle = \operatorname{GRic}_{V_{+},\operatorname{div}}(u, v)$ $\operatorname{GRic}_{V_{+},\operatorname{div}}(u, v) := \operatorname{div}[v, u]_{+} - v \cdot \operatorname{div} u - \operatorname{Tr}_{V_{+}}[[\cdot, v]_{-}, u]_{+}$ where div $u := 2 \sigma^{-1} L_{\rho(u)} \sigma$

More generally div : $\Gamma(E) \to C^{\infty}(M)$ such that div(fu) = f div $u + \rho(u)f$ [Alekseev,Xu 2001], [Garcia-Fernandes 2016].

Different choices of σ or div give the same flows up to (inner) automorphisms of the CA.

The **gradient flow** of $S(V_+, \sigma)$ in the space of generalized metrics in *E* (with a fixed σ):

Generalized Ricci flow (of a generalized metric)

 $\frac{d}{dt}V_{+} = T_{V_{+}}: V_{+} \to V_{-} \qquad \langle T_{V_{+}}u, v \rangle = \operatorname{GRic}_{V_{+},\operatorname{div}}(u, v)$ $\operatorname{GRic}_{V_{+},\operatorname{div}}(u, v) := \operatorname{div}[v, u]_{+} - v \cdot \operatorname{div} u - \operatorname{Tr}_{V_{+}}[[\cdot, v]_{-}, u]_{+}$ where div $u := 2 \sigma^{-1} L_{\rho(u)} \sigma$

More generally div : $\Gamma(E) \to C^{\infty}(M)$ such that div(fu) = f div $u + \rho(u)f$ [Alekseev,Xu 2001], [Garcia-Fernandes 2016].

Different choices of σ or div give the same flows up to (inner) automorphisms of the CA.

Other definitions of GRic: [Coimbra, Strickland-Constable, Waldram 2011], [Garcia-Fernandez 2014], [Jurčo, Vysoký 2016] (using auxiliary data) PL T-duality is compatible with the renorm. group flow

- If *E* is exact, the GRicci flow is the renormalization group flow (Ricci flow) of (*g*, *H*)
- GRic is compatible with CA pullbacks (if we pull back div)
- Hence, Poisson-Lie T-duality is compatible with the renormalization group flow

Generalized string background equations

EOM of *S*: $\Delta_{V_+} \sigma = 0$, $\text{GRic}_{V_+,\sigma} = 0$ (exact CAs: bosonic string background equations; some transitive CAs: type I/heterotic)

Generalized string background equations

EOM of *S*: $\Delta_{V_+} \sigma = 0$, $\text{GRic}_{V_+,\sigma} = 0$ (exact CAs: bosonic string background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

$$ilde{V}_+ \subset ilde{E}$$
 $M \xrightarrow{f} ilde{M}, E := f^* ilde{E}$ a CA pullback

Generalized string background equations

EOM of *S*: $\Delta_{V_+} \sigma = 0$, $\text{GRic}_{V_+,\sigma} = 0$ (exact CAs: bosonic string background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

 $\tilde{V}_+ \subset \tilde{E}$, a half-density $\tilde{\sigma}$

$$M \xrightarrow{f} \tilde{M}, E := f^* \tilde{E}$$
 a CA pullback

Generalized string background equations

EOM of *S*: $\Delta_{V_+} \sigma = 0$, $\text{GRic}_{V_+,\sigma} = 0$ (exact CAs: bosonic string background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

 $\widetilde{V}_{+} \subset \widetilde{E}$, a half-density $\widetilde{\sigma}$ $M \xrightarrow{f} \widetilde{M}$, $E := f^{*}\widetilde{E}$ a CA pullback an invariant fibrewise half-density τ $L_{\rho(f^{*}u)}\tau = 0 \quad \forall u \in \Gamma(\widetilde{E}) \quad (\Rightarrow \Delta_{V_{+}}(\tau f^{*}\widetilde{\sigma}) = \tau f^{*}\Delta_{\widetilde{V}_{+}}\widetilde{\sigma})$

Example: $\tilde{E} = \mathfrak{d}$ ($\tilde{M} = pt$), M = D/G: τ exists iff G is unimodular

Generalized string background equations

EOM of *S*: $\Delta_{V_+} \sigma = 0$, $\text{GRic}_{V_+,\sigma} = 0$ (exact CAs: bosonic string background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

 $\tilde{V}_+ \subset \tilde{E}$, a half-density $\tilde{\sigma}$ $M \xrightarrow{f} \tilde{M}, E := f^*\tilde{E}$ a CA pullback an invariant fibrewise half-density τ $L_{\rho(f^*u)}\tau = 0 \quad \forall u \in \Gamma(\tilde{E}) \quad (\Rightarrow \Delta_{V_+}(\tau f^*\tilde{\sigma}) = \tau f^*\Delta_{\tilde{V}_+}\tilde{\sigma})$

Example: $\tilde{E} = \mathfrak{d}$ ($\tilde{M} = pt$), M = D/G: τ exists iff G is unimodular

PL T-duality for string background equations $(\tilde{V}_+, \tilde{\sigma})$ satisfies the GSBE iff $(V_+ := f^* \tilde{V}_+, \sigma := \tau f^* \tilde{\sigma})$ does

Generalized string background equations

EOM of *S*: $\Delta_{V_+} \sigma = 0$, $\text{GRic}_{V_+,\sigma} = 0$ (exact CAs: bosonic string background equations; some transitive CAs: type I/heterotic)

PL T-duality setup with a dilaton

 $\tilde{V}_+ \subset \tilde{E}$, a half-density $\tilde{\sigma}$ $M \xrightarrow{f} \tilde{M}, E := f^* \tilde{E}$ a CA pullback an invariant fibrewise half-density τ $L_{\rho(f^*u)}\tau = 0 \quad \forall u \in \Gamma(\tilde{E}) \quad (\Rightarrow \Delta_{V_+}(\tau f^* \tilde{\sigma}) = \tau f^* \Delta_{\tilde{V}_+} \tilde{\sigma})$

Example: $\tilde{E} = \mathfrak{d}$ ($\tilde{M} = pt$), M = D/G: τ exists iff G is unimodular

PL T-duality for string background equations $(\tilde{V}_+, \tilde{\sigma})$ satisfies the GSBE iff $(V_+ := f^* \tilde{V}_+, \sigma := \tau f^* \tilde{\sigma})$ does

Another approach: [Jurčo, Vysoký 2018]

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact CAs

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact CAs

RR-field: an *E*-spinor half-density *F* which is V_+ -self-dual and DF = 0 (*D* is the Dirac generating operator of [Alekseev, Xu 2001])

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact CAs

RR-field: an *E*-spinor half-density *F* which is V_+ -self-dual and DF = 0 (*D* is the Dirac generating operator of [Alekseev, Xu 2001])

(Pseudo)Action:
$$S(V_+, \sigma, F) = -\frac{1}{2} \int \left(\sigma \Delta_{V_+} \sigma - \frac{1}{8} (F, *_{V_+} F) \right)$$

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact CAs

RR-field: an *E*-spinor half-density *F* which is V_+ -self-dual and DF = 0 (*D* is the Dirac generating operator of [Alekseev, Xu 2001])

(Pseudo)Action:
$$S(V_+, \sigma, F) = -\frac{1}{2} \int \left(\sigma \Delta_{V_+} \sigma - \frac{1}{8} (F, *_{V_+} F) \right)$$

PL T-duality for type II SUGRA:

$$(\tilde{V}_+, \tilde{\sigma}, \tilde{F})$$
 is a solution of the EOM in \tilde{E} iff
 $(V_+ = f^* \tilde{V}_+, \sigma = \tau f^* \tilde{\sigma}, F = \tau f^* \tilde{F})$ is a solution in $E = f^* \tilde{E}$

Stolen from [Coimbra, Strickland-Constable, Waldram 2011] in the case of exact CAs

RR-field: an *E*-spinor half-density *F* which is V_+ -self-dual and DF = 0 (*D* is the Dirac generating operator of [Alekseev, Xu 2001])

(Pseudo)Action:
$$S(V_+, \sigma, F) = -\frac{1}{2} \int \left(\sigma \Delta_{V_+} \sigma - \frac{1}{8} (F, *_{V_+} F) \right)$$

PL T-duality for type II SUGRA:

$$(\tilde{V}_+, \tilde{\sigma}, \tilde{F})$$
 is a solution of the EOM in \tilde{E} iff
 $(V_+ = f^* \tilde{V}_+, \sigma = \tau f^* \tilde{\sigma}, F = \tau f^* \tilde{F})$ is a solution in $E = f^* \tilde{E}$

If no τ exists we get a solution of modified type II SUGRA of [Tseytlin, Wulff 2016], [Arutyunov, Frolov, Hoare, Roiban, Tseytlin 2016] (σ replaced by div)

Outline

() What is Poisson-Lie T-duality?

2 Ricci flow and string effective action

3 Higher dualities

Back to the worldsheet perspective and higher dualities

Joint work in progress with Ján Pulmann and Fridrich Valach

The problem

Abelian T-duality has an easy higher dimensional version: (higher) electric-magnetic duality. How to extend it to a non-abelian (Poisson-Lie) generalization?

Duality from boundary field theories

A "sandwich field theory" on a *n*-dim Σ

Duality from boundary field theories

A "sandwich field theory" on a *n*-dim Σ

Duality of sandwiches

Different choices of Λ give "dual" field theories on Σ . If Λ_1 and Λ_2 are classically different but quantum-mechanically equal, we get a true duality (equivalence of theories).

Abelian Chern-Simons ~> (Abelian) T-duality

or ideal worlds and their shadows revisited

Ideal world (TFT + a boundary field theory)

- A dg symplectic manifold *X*, deg $\omega_X = n$ (e.g. a CA (n = 2))
- An *n*-dimensional Σ
- A dg Lagrangian submanifold L ⊂ Maps(T[1]Σ, X) (e.g. a generalized metric)

or ideal worlds and their shadows revisited

Ideal world (TFT + a boundary field theory)

- A dg symplectic manifold *X*, deg $\omega_X = n$ (e.g. a CA (n = 2))
- An *n*-dimensional Σ
- A dg Lagrangian submanifold *L* ⊂ Maps(*T*[1]Σ, *X*) (e.g. a generalized metric)

Casting a shadow (a topological boundary condition)

A dg Lagrangian submanifold $\Lambda \subset X$ (or a dg Lagrangian map $\Lambda \to X$)

or ideal worlds and their shadows revisited

Ideal world (TFT + a boundary field theory)

- A dg symplectic manifold *X*, deg $\omega_X = n$ (e.g. a CA (n = 2))
- An *n*-dimensional Σ
- A dg Lagrangian submanifold L ⊂ Maps(T[1]Σ, X) (e.g. a generalized metric)

Casting a shadow (a topological boundary condition)

A dg Lagrangian submanifold $\Lambda \subset X$ (or a dg Lagrangian map $\Lambda \to X$)

The resulting model

AKSZ model on $\Sigma \times I$ with the boundary conditions \mathcal{L} and Λ

or ideal worlds and their shadows revisited

Ideal world (TFT + a boundary field theory)

- A dg symplectic manifold *X*, deg $\omega_X = n$ (e.g. a CA (n = 2))
- An *n*-dimensional Σ
- A dg Lagrangian submanifold L ⊂ Maps(T[1]Σ, X) (e.g. a generalized metric)

Casting a shadow (a topological boundary condition)

A dg Lagrangian submanifold $\Lambda \subset X$ (or a dg Lagrangian map $\Lambda \to X$)

The resulting model

AKSZ model on $\Sigma \times I$ with the boundary conditions \mathcal{L} and Λ

Different choices of Λ 's \rightsquigarrow mutually dual models

A BV description of the σ -model with the target D/G given by $V_+ \subset \mathfrak{d}$

A BV description of the σ -model with the target D/G given by $V_+ \subset \mathfrak{d}$

 Σ a surface with a (pseudo)Riemannian metric

A BV description of the σ -model with the target D/G given by $V_+ \subset \mathfrak{d}$

 Σ a surface with a (pseudo)Riemannian metric $X = \mathfrak{d}[1] \rightsquigarrow$ Chern-Simons $S(A) = \int_Y \left(\frac{1}{2}\langle A, dA \rangle + \frac{1}{6}\langle [A, A], A \rangle \right)$ $A \in \Omega(\Sigma \times I, \mathfrak{d})[1] = \text{Maps}(T[1](\Sigma \times I), \mathfrak{d}[1])$

A BV description of the σ -model with the target D/G given by $V_+ \subset \mathfrak{d}$

 Σ a surface with a (pseudo)Riemannian metric $X = \mathfrak{d}[1] \rightsquigarrow$ Chern-Simons $S(A) = \int_Y \left(\frac{1}{2}\langle A, dA \rangle + \frac{1}{6}\langle [A, A], A \rangle \right)$ $A \in \Omega(\Sigma \times I, \mathfrak{d})[1] = \text{Maps}(T[1](\Sigma \times I), \mathfrak{d}[1])$

 $\mathcal{L} = \left\{ A \in \Omega^1(\Sigma, \mathfrak{d}) \mid *A = RA \right\} \oplus \Omega^2(\Sigma, \mathfrak{d}) \subset \Omega(\Sigma, \mathfrak{d})$ (*R* : $\mathfrak{d} \to \mathfrak{d}$ the reflection wrt. *V*₊) $\Lambda = \mathfrak{g}[1] \subset \mathfrak{d}[1] = X$

- Resolve $\Lambda \hookrightarrow X$ to a (quasi-isomorphic) submersion $\Lambda' \to X$
- The sandwich is equivalent to the (much smaller) BV manifold Maps(T[1]Σ, Λ') ×_{Maps(T[1]Σ,X)} L

- Resolve $\Lambda \hookrightarrow X$ to a (quasi-isomorphic) submersion $\Lambda' \to X$
- The sandwich is equivalent to the (much smaller) BV manifold Maps(T[1]Σ, Λ') ×_{Maps(T[1]Σ,X)} L

Example (PL T-duality)

 $\mathfrak{g}[1] \subset \mathfrak{d}[1]$ is resolved to $\mathfrak{d}[1] \times D/G \to \mathfrak{d}[1]$ (and thus the target D/G appears)

- Resolve $\Lambda \hookrightarrow X$ to a (quasi-isomorphic) submersion $\Lambda' \to X$
- The sandwich is equivalent to the (much smaller) BV manifold Maps(T[1]Σ, Λ') ×_{Maps(T[1]Σ,X)} L

Example (PL T-duality)

 $\mathfrak{g}[1] \subset \mathfrak{d}[1]$ is resolved to $\mathfrak{d}[1] \times D/G \to \mathfrak{d}[1]$ (and thus the target D/G appears)

In general this gives a (higher) gauge theory in 1st order BV formalism (fields + ghosts = the homotopy fiber of $\Lambda \hookrightarrow X$)

- Resolve $\Lambda \hookrightarrow X$ to a (quasi-isomorphic) submersion $\Lambda' \to X$
- The sandwich is equivalent to the (much smaller) BV manifold Maps(T[1]Σ, Λ') ×_{Maps(T[1]Σ,X)} L

Example (PL T-duality)

 $\mathfrak{g}[1] \subset \mathfrak{d}[1]$ is resolved to $\mathfrak{d}[1] \times D/G \to \mathfrak{d}[1]$ (and thus the target D/G appears)

In general this gives a (higher) gauge theory in 1st order BV formalism (fields + ghosts = the homotopy fiber of $\Lambda \hookrightarrow X$)

Getting a physically interesting (higher) gauge theory is one of many open problems (and so is combining with supersymmetry)

- Resolve $\Lambda \hookrightarrow X$ to a (quasi-isomorphic) submersion $\Lambda' \to X$
- The sandwich is equivalent to the (much smaller) BV manifold Maps(T[1]Σ, Λ') ×_{Maps(T[1]Σ,X)} L

Example (PL T-duality)

 $\mathfrak{g}[1] \subset \mathfrak{d}[1]$ is resolved to $\mathfrak{d}[1] \times D/G \to \mathfrak{d}[1]$ (and thus the target D/G appears)

In general this gives a (higher) gauge theory in 1st order BV formalism (fields + ghosts = the homotopy fiber of $\Lambda \hookrightarrow X$)

Getting a physically interesting (higher) gauge theory is one of many open problems (and so is combining with supersymmetry)

THANKS FOR YOUR ATTENTION!