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String Geometry < T T T T >

Strings see geometry in different ways than particles do
T-duality: T:R— R =1/R

String theory on S! of radius R is physically equivalent to string
theory on S! of radius 1/R (automorphism of CFT)

Exchanges discrete momentum p and winding w
Exchanges S! coordinate x with dual S! coordinate X

Acts on a “doubled circle” with coordinates (x, X):

Strings “see” a doubled geometry
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String Geometry 7 T >

[ Ly |

For a d-torus T¢ with background fields (g, B), worldsheet theory is
S= / o Ej(x) 0y x a_ x| E=g+8B

T-duality symmetry O(d, d; Z):

;o 1 a b _
E _(aE+b)cE+d , c d € 0(d,d;7)

Acts on d discrete momenta and d winding numbers:
String theory “sees” doubled torus T3¢

More generally, if M is a T9-bundle, then string theory “sees” torus
bundle with doubled torus fibres T2

T-duality O(d, d;Z) C GL(2d,Z) acts geometrically



Generalized Geometry
(Hitchin '02; Gualtieri '04)

> (g, B) satisfy field equations that determine a CFT

> Reproduced from target space theory (d = 10):

Ssucralg, B] = / d /g (R(g) - = H2> , H=dB

Low energy effective theory = supergravity
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Generalized Geometry
(Hitchin '02; Gualtieri '04)

(g, B) satisfy field equations that determine a CFT
Reproduced from target space theory (d = 10):

Ssucralg, B] = / A% g (R(g) - /—/2) , H=dB
Low energy effective theory = supergravity

(g,B) and (g’, B’) give same CFT if related by:

S1. Diffeomorphisms and B-field gauge transformations

S2. T-duality

S1. captured as transition functions in Generalized Geometry
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» String Hamiltonian h = %HU P! P/ with:
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Generalized Geometry

String Hamiltonian h = %HU P! P/ with:

—Bg'B Bg! w'
H(ng)—<g_g—ng gg—1> ) P_<Pi>

Generalized Geometry doubles tangent bundle
™ —TM=TM® T*M

with structure of Courant algebroid, twisted by B-field

({0 1
=11 o
bracket of sections is the Courant bracket

O(d, d)-structure (fibre metric of TM),

H(g,B) € O(d,d)/O(d) x O(d) Generalized metric on TM,
P section of TM
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Generalized Geometry

String Hamiltonian h = %HU P! P/ with:

—Bg'B Bg! w'
H(ng)—<g_g—ng gg—1> ) P_<Pi>

Generalized Geometry doubles tangent bundle
™ —TM=TM® T*M

with structure of Courant algebroid, twisted by B-field

({0 1
=11 o
bracket of sections is the Courant bracket

O(d, d)-structure (fibre metric of TM),

H(g,B) € O(d,d)/O(d) x O(d) Generalized metric on TM,
P section of TM

S2. not a manifest symmetry: T-duality is an isomorphism between
(twisted) Courant algebroids of T9-bundles (Cavalcanti & Gualtieri '10)



Non-Geometric Backgrounds

> New features of T-duality when H =dB # 0

d
» Prototypical examples come from torus bundles M Tw
(with H-flux [H] € H3(M,Z))



Non-Geometric Backgrounds

> New features of T-duality when H =dB # 0

d
» Prototypical examples come from torus bundles M Tw
(with H-flux [H] € H3(M,Z))

» Eg. W=S5' M = twisted torus, H = 0:

Twisted torus T-fold

o .

st st

Patching: Diffeos Patching: T-duality



Generalized Flux Backgrounds

M = T3 with H-flux H=mdxAdyAdz, B=mxdy Adz gives

geometric and non-geometric fluxes (Hull '05; Shelton, Taylor & Wecht '05; ...

T, . T: .s T .
H,"k — f' ik — Q’Jk —k> RUk
ly Ji

(T3, H-flux): [H] = m

]

Nilfold (f) T-fold (Q)
T,
m| sl —
T2 51

T-fold (R)

)
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Double Field Theory

(Siegel '93; Hull & Zwiebach '09; Hohm, Hull & Zwiebach '10)

Duality-covariantization of supergravity:
O(d, d) symmetry is manifest

Consequence of string field theory on torus T7:

Fourier

P(pw) —— P(x, %)
Strings see doubled spacetime M — M = M x M:
XI = (Xi,)?;) y 8, = (8,-78")

Needed to describe non-geometric backgrounds and generalized
T-duality; doubled geometry is physical and dynamical

O(d, d)-structure 7 / generalized metric H(g, B)



Double Field Theory
Einstein-Hilbert type action from generalized Ricci scalar R(H):
Soer{H] = [ 4% R(H)

Invariance under generalized Lie derivative: §.H” = LMY

Strong constraint: 8'®8; = 0 (worldsheet level matching)
Solutions select polarisations defining d-dimensional ‘physical’ null
submanifolds of doubled space, DFT reduces to supergravity in
different duality frames related by O(d, d)-transformations

Supergravity frame: 9; = 0 (w' = 0), Sprr[H] — Ssucralg, B]
C-bracket: Closure [L¢;,Le,] = Lie, ) after strong constraint:
[er, e2]? = e okes — %ef eri — (€1 ¢ €2)

Reduces to Courant bracket after polarisation



Para-Hermitian Geometry

» Problems with Double Field Theory:

> Global formulation of doubled target space geometry lacking
> Flat metric 1 too restrictive

> Precise geometric relation with Generalized Geometry not clear
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Para-Hermitian Geometry

» Problems with Double Field Theory:

> Global formulation of doubled target space geometry lacking
> Flat metric 1 too restrictive
> Precise geometric relation with Generalized Geometry not clear

» Para-Hermitian Geometry: A “real version” of complex Hermitian
geometry, addresses these issues (Hull '04; Vaisman '12;

Freidel, Rudolph & Svoboda '17; Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18;
Marotta & Sz '18; Mori, Sasaki & Shiozawa '19; ...)

» Other applications of para-Hermitian geometry:

» Formulation of N' = 2 vector multiplets in Euclidean spacetimes
(Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)

> Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)



Para-Hermitian Manifolds
» Para-complex structure K : TM — TM on 2d-dim manifold M
with K? = 41, whose +1 eigenbundles L4 have same rank d:

K|, =+1 with projections Py =1 (1 +K)

» Splits TM =1L, & L_, integrability of L, and L_ independent
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Para-Hermitian Manifolds
Para-complex structure K : TM — TM on 2d-dim manifold M
with K? = 41, whose +1 eigenbundles L4 have same rank d:
K|, =+1 with projections Py =1 (1 +K)

Splits TM =L, @& L_, integrability of L; and L_ independent

Para-Hermitian structure (K, n): metric  with signature (d, d)
satisfying compatibility K™ nK = —n

Fundamental 2-form w = 1 K (almost symplectic);
if symplectic (dw = 0) then (K, n) para-Kahler structure

L+ maximally isotropic with respect to 17 and w
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» Cotangent bundle: M = T*M, Darboux coordinates X' = (x', p;),
9y = (8;,9'), canonical symplectic 2-form wy = dp; A dx’
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Example: Phase Spaces

Cotangent bundle: M = T*M, Darboux coordinates X! = (x', p;),
9y = (8;,9'), canonical symplectic 2-form wy = dp; A dx’

m: T*M — M sits in exact sequence:
00—V — T(T'M) — «°(TM) — 0
where V = ker(dr) = Span{d'}

Splitting by a non-linear connection C defines T(T*M) = V @ He,
with Hc = Span{h; = 9; + C; ¥}

Para-complex structure on T*M: Kc¢|y. =+1, Kely =-1



Example: Phase Spaces

Cotangent bundle: M = T*M, Darboux coordinates X! = (x', p;),
9y = (8;,9'), canonical symplectic 2-form wy = dp; A dx’

m: T*M — M sits in exact sequence:
00—V — T(T'M) — «°(TM) — 0
where V = ker(dr) = Span{d'}

Splitting by a non-linear connection C defines T(T*M) = V @ He,
with Hc = Span{h; = 9; + C; ¥}

Para-complex structure on T*M: Kc¢|y. =+1, Kely =-1

wo-compatible para-Kahler structure on T*M:
nc = wo Kc is an O(d, d)-metric iff C is symmetric



Example: Phase Space Dynamics |

» M = R3 = configuration space of an electric charge moving in a
magnetic field B (sourced by magnetic charges)
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» M = R3 = configuration space of an electric charge moving in a
magnetic field B (sourced by magnetic charges)

» Para-Hermitian manifold (T*M, Kg,ng):

» T(T"M) =V & Hg where o
V = ker(dn) = Span{8'} , Hg = Span{h; = 9; — ejx B/ 5}

> Kglny =+1, Kglv = -1

» Flat metric: ns(Hg, Hg) = ns(V,V) =0



Example: Phase Space Dynamics |

» M = R3 = configuration space of an electric charge moving in a
magnetic field B (sourced by magnetic charges)
» Para-Hermitian manifold (T*M, Kg,75):

» T(T"M) =V & Hg where o
V = ker(dn) = Span{8'} , Hg = Span{h; = 9; — ejx B/ 5}

> Kglny =+1, Kglv = -1
» Flat metric: ns(Hg, Hg) = ns(V,V) =0
» Fundamental 2-form: wg =ng Kg = dp; A dx’ + 2k Bk dx’ A dxd

gives magnetic Poisson brackets:

{(x,x}s=0, {x,p}e=0;, {pi.p}ts=2¢uB"
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Example: Phase Space Dynamics |

M = R3 = configuration space of an electric charge moving in a
magnetic field B (sourced by magnetic charges)

Para-Hermitian manifold (T*M, Kg,ns):

» T(T"M) =V & Hg where o
V = ker(dn) = Span{8'} , Hg = Span{h; = 9; — ejx B/ 5}

> Kglwg =+1, Kglv =—1
» Flat metric: ns(Hg, Hg) = ns(V,V) =0

Fundamental 2-form: wg =ng Kg =dp; A dx’ + 2k Bk dx’ A dxd
gives magnetic Poisson brackets:

{(x,x}s=0, {x,p}e=0;, {pi.p}ts=2¢uB"

Para-Kahler iff Maxwell's equations: 9,8 = 0



Para-Hermitian Connections

» Para-Hermitian connection: Connection V on a para-Hermitian
manifold (M, K, n) preserving eigenbundles Ly: VK =Vn =0

» E.g. Levi-Civita connection of 7: V'C para-Hermitian iff (M, K, n)
is para-Kahler (w = n K symplectic)

» Canonical para-Hermitian connection on any para-Hermitian
manifold:
ven=p . vep, + P VP
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D-Bracket

Canonical D-bracket on TM compatible with K:

n(IX, Y1k, 2) = 0(VE"Y = V"X, Z) + 0(VZ"X, Y)
with [Ls,L+]R C Ly (Dirac structures), metric-compatible, . ..
(TM,n,[-,-1R) is a metric algebroid
Canonical because projection of Lie bracket of vector fields:

[P+(X), P(Y)Ik = P=([P=(X), P=(Y)])

C-bracket: [X, Y]% = 3 ([X, YIR —[Y. X]I2)

Reduces to C-bracket of DFT in flat limit: n = <0]1 g) , Ve =d



Weak Integrability and Fluxes

» If (K,n) and (K’,n) are para-Hermitian structures on M, then K’ is
D-integrable with respect to K if [L, L ]R C L/,

> Fluxes measure (lack of) D-integrability of para-Hermitian structures



Weak Integrability and Fluxes

» If (K,n) and (K’,n) are para-Hermitian structures on M, then K’ is
D-integrable with respect to K if [L, L ]R C L/,

> Fluxes measure (lack of) D-integrability of para-Hermitian structures
» B, -transformation of (K,n)on TM =L, & L_:

ebr = < L O> € O(d,d) where By : Ly — L_ with
B, 1

TZ(B+(X)7 Y) = —W(X, B+(Y)) = b (X, Y)
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Weak Integrability and Fluxes

If (K,n) and (K’,n) are para-Hermitian structures on M, then K’ is
D-integrable with respect to K if [L, L ]R C L/,

Fluxes measure (lack of) D-integrability of para-Hermitian structures
B -transformation of (K,n) on TM =L, & L_:

eBr = < 1 O> € O(d,d) where By : Ly — L_ with
B, 1

TZ(B+(X)7 Y) = —W(X, B+(Y)) = b (X, Y)

K — Kg, = eB+ Ke=B+ where (Kg, ,7) is another para-Hermitian
structure with fundamental 2-form wg, =nKg, =w +2b,

D-integrability controlled by covariant H-flux (Lie algebroid 3-form)



Example: Phase Space Dynamics Il

» Canonical para-Kahler structure on M = T*M (C = 0):

Ko=0,@dx — 8 ®dp; ., wo=dp; Adx'



Example: Phase Space Dynamics Il

» Canonical para-Kahler structure on M = T*M (C = 0):

Ko=0,@dx — 8 ®dp; ., wo=dp; Adx'
» Ko — Kp via By-transformation B} = g B/ Hk ® dx/
» Fundamental 2-form: wg = wg + 2 by with

by =0 By =g B dx' Adx*
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Example: Phase Space Dynamics Il

Canonical para-Kahler structure on M = T*M (C = 0):
Ko=0,@dx — 8 ®dp; ., wo=dp; Adx'
Ko — Kg via B -transformation Bi = g B/ Hk ® dx/
Fundamental 2-form: wp = wg + 2 by with
by =0 By =g B dx' Adx*
D-bracket and H-flux:

[hi. hillk, = Di(eju B') 0 = n~* (dbs (b, hy))



Para-Quaternionic Manifolds

» Generalized metric on a para-Hermitian manifold (M, K, 7):
Riemannian metric H on M satisfying compatibility
nIH=HTtyp , wlH=-HTw
> I=H 1w , J=n'H , K=n"tw
define para-Quaternionic structure on M:

I=JK=—-KJ
|JK =—-1 J=I1K=—-KI
K=Jl=—-KI



Para-Quaternionic Manifolds

» Generalized metric on a para-Hermitian manifold (M, K, n):
Riemannian metric H on M satisfying compatibility

nrH=H"y , wTH=-H'w

> I=H 1w , J=n'H , K=n"tw
define para-Quaternionic structure on M:

—KJ
—K1

JK
I K
JI=—-KI

I

IJK=-1 J

K

» (n,w,H) is a Born geometry, DFT is a limit of Born geometry:

> Flat space limit: n = (g %) . H(g) = (83 g91>
-

> B, -transformation gives DFT generalized metric:

(e7P) H(gi)e™® =H(g,B) (g=8g+, B=b)



Recovering Physical Spacetime

» Polarization: Choice of para-Hermitian structure (K,7) on M
(splitting TM =L, @ L_ into maximally isotropic sub-bundles)

» Strong constraint: Compatibility condition of Dirac structures
(Ly, L) in metric algebroid, such that TM is Courant algebroid
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Recovering Physical Spacetime

Polarization: Choice of para-Hermitian structure (K,n) on M
(splitting TM =L, @ L_ into maximally isotropic sub-bundles)

Strong constraint: Compatibility condition of Dirac structures
(Ly, L) in metric algebroid, such that TM is Courant algebroid

If L, is (Frobenius) integrable, then L, = TM for a d-dim
Lagrangian foliation M of M (if also L_ integrable then L_ = T M)

0(d, d)-metric 7: TM — T*M identifies L_ =1} =T*M

TM =5 TM=TM® T*M under X — P (X) +n(P-(X))



Recovering Physical Spacetime
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Recovers Generalized Geometry: Gives (standard) Courant algebroid
on M, with P,-projected C-bracket — Courant bracket on TM



Recovering Physical Spacetime

Polarization: Choice of para-Hermitian structure (K,n) on M
(splitting TM =L, @ L_ into maximally isotropic sub-bundles)

Strong constraint: Compatibility condition of Dirac structures
(Ly, L) in metric algebroid, such that TM is Courant algebroid

If L, is (Frobenius) integrable, then L, = TM for a d-dim
Lagrangian foliation M of M (if also L_ integrable then L_ = T M)

0(d, d)-metric 7: TM — T*M identifies L_ =1} =T*M
TM "5 TM=TM® T*M under X — P, (X) +n(P_(X))

Recovers Generalized Geometry: Gives (standard) Courant algebroid
on M, with P,-projected C-bracket — Courant bracket on TM

Change of polarization:
(K,n) — (Ko,m), Ky =0"1K9, 9e€0(dd)
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» H = 3d Heisenberg group with Drinfel'd double T*H = H x R3,
basis {Z;, Z"};:X%z of left-invariant vector fields on T(T*H)
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basis {Z;, Z"};:X%z of left-invariant vector fields on T(T*H)

» (M, K,n): M =T*H/A where A C T*H = discrete cocompact
subgroup, K(Z)) = +Z; K(Z')=—2Z', and 1 induced from duality
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Example: Doubled Twisted Torus
(Hull & Reid-Edwards '07; Dall’Agata, Prezas, Samtleben & Trigiante '07; Marotta & Sz '18)

» H = 3d Heisenberg group with Drinfel'd double T*H = H x R3,
basis {Z, Zi};:x%z of left-invariant vector fields on T(T*H)

» (M,K.,n): M =T*H/A where A C T*H = discrete cocompact
subgroup, K(Z)) = +Z; K(Z')=—2Z', and 1 induced from duality
pairing between Lie(H) and R3

» Born geometry: ‘H = left-invariant metric on T*H for which
{Z;,Z"} orthonormal

» Nilfold polarization:
Z,Z)=mZ,, [Z,2=mZ%, [Z,,2] = —mZ* (mEZ)

1 0 0
0 —mx 1-',-(m><)2

> Weakly integrable: [Z, Z,JR = mZ, (no H-flux)



Example: Doubled Twisted Torus
» H-flux polarization: There is a B -transformation preserving 7 and
mapping K to the splitting:
2L 2Z) = -mZ7 12, Z)=mZ" | (2,2 = m 2"
> In this new polarization:
» H(g',B'): g =1, b, =mxdyAdz

> Hflux: [Z/,Z]]R =0 " (dbi(Z], Z))) = mey Z'*

i &j i &



Example: Doubled Twisted Torus

» H-flux polarization: There is a B -transformation preserving 7 and

mapping K to the splitting:
2. Z) = -mZ"% . [2.Z)=mZ" . [2,.Z] = m 2"
> In this new polarization:
» H(g',B'): gi=1, b, =mxdyAdz

> Hflux: [Z/,Z]]R =0 " (dbi(Z], Z))) = mey Z'*

i &)

» This change of polarization gives usual T-dual backgrounds —
We can go on and obtain all geometric and non-geometric frames in
the T-duality chain:

Ti i
H;jk f Jjk




