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Goal

Understand the interrelation of:
« Flux compactification of M-theory, incl. non-geometric fluxes (here for 7+4 dims.)
« Gauge structure of 4D sigma-models.

#« Higher algebroids and exceptional generalised geometry.



Why expect this?

For closed strings, a single set of equations describes:
« Geometric & non-geometric fluxes (and Bianchi Ids.) in string compactifications.
# Gauge structure for membrane sigma-models with generalised WZ-term.

« Axioms of a Courant algebroid, and O(d, d) generalised geometry of TM & T*M.
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Motivation: Flux Compactifications

In string theory, T-duality reveals unconventional backgrounds w/ non-geometric fluxes.
NSNS sector:  Hu, f*, @, R¥
RRsector (IIB):  Fi, Fu, Fym, P, PM", &c

Potentially useful for de Sitter vacua, moduli stabilization and model building.

Sourced by extended, non-perturbative, dynamical objects: exotic branes.



Motivation: Flux Compactifications

In string theory, T-duality reveals unconventional backgrounds w/ non-geometric fluxes.
NSNS sector:  Hu, f*, @, R¥
RRsector (IIB):  Fi, Fu, Fym, P, PM", &c

Potentially useful for de Sitter vacua, moduli stabilization and model building.

Sourced by extended, non-perturbative, dynamical objects: exotic branes.

What about M-theory?



Motivation: Sigma-Models

From a worldsheet perspective, the 3-form flux appears as WZ-term.

In general, all types of fluxes appear as WZ-terms in Courant sigma-models.

1-1 correspondence between such membrane sigma-models and Courant algebroids.
Hofman, Park '02; Ikeda '02; Roytenberg '06

Axiomatic organisation of the properties of the (twisted) Courant bracket of TM & T*M
Courant '90; Liu, Weinstein, Xu ‘95

X+&EY+n = [X, Y]+ Lxn—LyE—5d(exn —wvé) + HX, Y).

Which sigma-model could account for M-theory fluxes as WZ-terms in the same spirit?



Motivation: Geometry of Duality

The Courant bracket is “symmetric” under diffs and B-field gauge transformations.

A generalised geometry on TM @ T*M places g & B on equal footing. Hitchin '02; Guattieri ‘04

In M-theory, higher Courant bracket. O(d, d) — Cremmer-Julia groups (here SL(5)).

An exceptional generalised geometry for g and the C-fields. Hull '07; Pacheco, Waldram 08
TMa& NPT*Me AN’ T*Ma A°TM .

~» M-theory as generalised geometry / exceptional field theory where M is extended.
Coimbra, Strickland-Constable, Waldram ’11; Hohm, Samtleben 13 ...
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Higher Courant Bracket

General idea: Extend the tangent bundle TM over a manifold M (dim M = d) by p-forms
Hagiwara '02; Bi, Sheng '10; Zambon '10

Ep=TMa& A" T'M,
ME)>A=X+n with Xel(TM), neT(APT*M).
E, is endowed with a non-degenerate symmetric fiber pairing given by contraction
(X+m,Y+8) = (x€+uwm) e N7 TM;
for p = 1 it defines an O(d, d)-invariant metric, used e.g. in double field theory.
One can also define binary operations. Higher Dorfman bracket (gen’d Lie derivative)
(X+m)o(Y+8) =I[X, Y]+ Lx{ — vy,
or its antisymmetrization, a higher Courant bracket

[X+775Y+§]:[X7 Y]+£X§7['Y"77%d(LX‘£+LYT/)'



Properties

Modified Jacobi identity: (where A'(A, B, C) = 1 ([A, B], C) + cyclic(A, B, C))

[[A, B], C] + cyclic(A,B,C) =d N (A, B, C) ;

Homomorphism and modified Leibniz rule w.r.t. a (anchor) map p: E, — TM
plA; B] = [p(A), p(B)] ;
[A,fB] = f[A B]+ (p(A)f) B—df A (A B) .
Loc)(A, B) = ([C,Al + d(C, A), B) + (A, [C, B] + d(C, B)) .

The higher Courant bracket may be twisted by a (p + 2)-form H,
X+nY+En=[X+nY+E+weyH.
In closed string theory, p = 1 and the twist is identified with the NS-NS 3-form flux.



Generalised Geometry

When p =1, O(d, d) trafos: automorphisms, B-transforms & g-transforms Guattieri ‘04
When p =2 & d = 4, SL(5) trafos: SL(4), C-transforms, £2-transforms. Hui 07

X—&-nﬁ)X—i-n—&—LXC7 X+7]»£>X+77+L,,Q.

Generalised metrics #1 & H2 may be parametrized in terms of gand B & C
g-Bg'B -Bg g+3Cg'AgT'C —3Cg 'AgT
Hi= -1B = , He= 1 1 p /T 1 1 /=T ‘
g g -39 ANg ' C 597 NG
where g is a Riemannian metric on M and B a (Kalb-Ramond) 2-form, or C a 3-form.

The main players in string/membrane duality rotations, DFT/ExFT, &c.
Shapere, Wilczek '88; Giveon, Rabinovici, Veneziano '88; Duff '89; Tseytlin '90; Maharana, Schwarz '92; . ..
Duff '90; Hull '07; Berman, Perry '10; ...



General twists and M-theory

The most general bracket twists come in six types, denoted as (vector degree, form degree):
0,p+2), (1,2), (p+1,1), (pp+1), (2p,p), (2p+1,0).
For string theory, p = 1 gives four possibilities, identified with the corresponding fluxes

K i ik
Hp, Fi", Q, R"™.

What about M-theory? For M2-branes, the relevant structure is p = 2 (when d = 4):
0,4), (1,2), (3,1), (2,3), (42), (50).

The first one is a 4-form, the G-flux. What do the other five twists correspond to?



SL(5) M-Theory Fluxes

Strategy: consider a general basis of the extended bundle (indices: i, j flat, a, b curved.)

As in the string cae, see Halmagyi '09; Blumenhagen, Deser, Plauschinn, Rennecke '12
i 1 j k
ey = ea’(a,- +3 C,'jk dx’ A dx ) 5
ab . ja b1 i J 1 ik
e = e%e”(zdx' ANdX + 5 2% e) ,

and compute the higher Courant bracket, which is generally given as

cd c
[ea,6] = Gabcw€” + Fap €c,
[ea, ebc _ Fadebc ede + Qabc,d eq,
~ f
[eab’ ecd] _ Rab,cd,e 6o + Qefab,cd ee )

This may be done for any d. However, the physical case is d = 4, and it is very special.



SL(5) M-Theory Fluxes

First, there are trace relations, indicating that F and Q are not independent fluxes in 4D,
F_,','/Ik = ,:ijk , éim"k””’ = QM- % 5,[j Q.M 4 % 5,( Q™ (in holonomic basis)
Second, the 5-vector R turns out to be a mixed-symmetry tensor of type (1,4) in 4D.
The general local coordinate expressions for the remaining fluxes are found to be
Gabed = 4 V[2Cpeq)
Fab® = fap° — 1 Gapge 2%°,
Q. = % (aa Qbed 4 3 elbe g dl % ! 5[ab £, — % elbe Gaetg Qd]fg) ’
Rab.cde _ % $ralb yede] _ % rblaycde] _ % $reld pavel + % $rdle ryavel 7
where V% = %° v, and £,,° = 2 €% el Oiey) =: 2 INay° the purely geometric flux.

Agreement with results from SL(5) group theory. Biair, Malek '14



Bianchi Identities

What is more, there is a systematic way to derive the Bianchi identities for all fluxes.

They follow from the (modified) Jacobi identity for the higher Courant bracket. E.g.
[[ei, €], em] + cyclic(i,j, m) — 5 d(([ei, g], em) + cyclic(i,j, m)) =0,
in a holonomic frame, gives directly two of the eight (for general d) Bianchi identities
OmG = —3 Gopty Fraa™ — & Fiy” G 2 Gogyg Frn” = 0,

OmFin' = 5 0" Gimic = — Gkt Qm ™ — Fis” Foi
3

This is the M—theory analog of the string results of Blumenhagen, Deser, Plauschinn, Rennecke '12

They reproduce consistency conditions of M-theory on twisted tori. cf. Hull, Reid-Edwards '06



Exceptional Field Theory

Strings: Momenta & Windings ~» Coordinates x’ & Dual Coordinates %; ~» Double FT
Membranes: Momenta & Wrappings ~ x' = (x', %;) in 10 of SL(5) ~» Exceptional FT
Local symmetries in ExFT are generated by a generalized Lie derivative

LA = ¢l 0,A — Al oge! + Yig AN auEt,
where Y} is an invariant tensor of the U-duality group, controlling a section condition

Y 8®8,=0.

E.g. Y = n"ni for O(d, d), while Y, = €@ ez for SL(5), a=1,...,5, | =[ab].
Closure is associated to the SL(5) covariantization of the higher Courant bracket

[5517[’52] = [’[51752] ) II’£17€2]] = % (551 &2 — 55261) 0



Fluxes in ExFT

The corresponding fluxes in ExFT are determined as the Lie brackets of two derivations
As for DFT in Blumenhagen, Gao, Herschmann, Shukla '13

D=0+ 5 Cy &,

k _ 1 Jjk 1 ikl
The fluxes acquire new terms, as in DFT, for example
Gabed = 4 V(aCoed) + 2 Cerfa V' Chca) »
Fab® = fap° + Coeta I ®5° — § 2% Gabde + 3V Coab ,
where we defined the dual connection (dual derivative acting on vielbein)
I = e% el? e 8" |
and B ~ y ; _
V& Cote = 8% Cote — ['* Crto — '3 Copp — ™" Cor .

~+ systematic derivation of ExFT fluxes modulo the section condition.



Flux Representations

The fluxes exhaust the SL(5) representations 15 ¢ 40 @ 10, based on the embedding
tensor formalism for gaugings of 7D maximal supergravity. samtleben, Weidner ‘05

Their decompositions under the embedding SL(5) D> SL(4), read as
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Flux Representations

The fluxes exhaust the SL(5) representations 15 ¢ 40 @ 10, based on the embedding
tensor formalism for gaugings of 7D maximal supergravity. samtleben, Weidner ‘05

Their decompositions under the embedding SL(5) D> SL(4), read as

10 =4®6,
15 =104 @1,
40 =200 1006@4.
Correspondingly, the fluxes are identified as Gaseg, Fan®, Qal?Y, , Rabed.e

Blair, Malek '14; List, Malek, Syvari 17



Three equations, three viewpoints

Let us go back to the closed string theory case. There are three interesting equations:
n’plids=0,
010y —py8id =" Pk Ty =0,
4010 Ty +30™ T Tagn = 0,
where indices i,j,... runover 1,...,dwhile /,J,... runthrough 1,...,2d.

nuw is the O(d, d)-invariant metric & T corresponds to the 4 fluxes Hj, Fj*, Q*, R™.



Three equations, three viewpoints

These three equations may be interpreted in three different but related ways:
#« As fluxes and Bianchi identities in (duality twisted) string compactification.
# As the local form of the axioms of a Courant algebroid on E;.

#« As the gauge invariance & closure for the Courant sigma-model:

S[X,A F] = / (F,- AAX + Iy AP A AT — o y(X) AV A Fi+ A Tuk(X) AT A AT A AK) ,

X3

with p’J being the anchor components and Tk the X-pull-back of (ey, [e,, ex]).



Three equations, three viewpoints; the DFT case

Similarly, three equations that may be found in the flux formulation of double field theory

Geissbuhler, Marqués, Nunez, Penas '13

WoK L KL
e ity = ',
20 50 =™ M Taw = p@ o,
4" T +30"™ Tuw Ty = Zuwe

correspond to the gauge structure of a doubled membrane sigma-model

SDFT[X7 A7 F] = /

I3

(F, A X!+ Al A dA” = (p2)UAY A Fr+ L TuA A A A AK) .
Gauge symmetries and their closure (or the classical master equation), obstructed.

Obstructions vanish when a world volume analog of the strong constraint is satisfied.

“Algebroid” structure (properties of the C-bracket): Metric or DFT algebroid.
Vaisman ’12; A.Ch., Jonke, Khoo, Szabo "18; Mori, Sasaki, Shiozawa '19



Membranes?

Is there a set of equations that captures the following?
« The fluxes and Bianchi identities of SL(5) M-theory compactifications.
+ An algebroid structure related to the higher Courant bracket.

+ The gauge structure of a sigma-model for higher WZ terms.



Threebrane Sigma-Models

The starting point is a topological threebrane sigma-model with action functional
Ikeda, Uchino 10

S[X, a, A, F] = / (FAdX —aiAdA + pi(X)F A A + 1 S¥(X)ay Ay
4

+ I T (X)ar A AT ANAS £ L Gua(X) A AATAASAAY) .
Ingredients:
& Scalars X = (X') : ¥4 — M.
« Auxiliary 3-form F € Q3(Z4, X* T*M).

& 1-form A € Q'(X4, X" E) & 2-form a € Q3(T4, X*E*);
E being some vector bundle. E-indices /, J, .. ..

« Structure functions p, S, T, G of X(o).



Gauge symmetries

Invariance under gauge symmetries with 0-, 1- and 2-form parameters (€', ¢/, )):
oX = _pil ¢ ’
SA =de' + 8¢y - T A
Soy=d¢+p it + T GNA + Tk ay € + 1 G e/ A A A
5Fi=—dti+ 0 (€ F+6AA) =T e ayn A"

= % 0iGukL 6’ AJ N AK A AL TP % 8,-T'JK G A AJ A AK SIS 8,'8“ GNAay,
provided that...



Five equations

...provided that five conditions hold for the structure functions:
JsY =0,
P 198" + SV T 8T =0,
P10y —pydid — Pk T u=0,
3018 T iy + 8™ Grum — 3T TV = 0,
010Gk + Ty G = 0 .

Moreover, local form of the axioms for a structure called Lie algebroid up to homotopy.
Ikeda, Uchino '10

A special “H’-twisted Lie algebroid on E, with anchor, sym. 2-vector, E4-form & bracket.

Gritzmann ’'10; Gritzmann, Strobl “14”



Some Examples

& For E = TM, anchor being projection p'; = ¢6’;and S= T =0 ~ dG=0.
On-shell (with boundary metric term) describes M2-branes coupled to 3-form C:

Kokenyesi, Sinkovics, Szabo '18

SolX] = ?{ (3 gydX’ A xdX + L CiedX' A dXI A dXF) .
a%,
& For p'; = E/j(X) the “vielbein” for a twisted 4-torus, and T its geometric flux,
dE' = - T'wE/ AEF,
M-theory background on twisted torus, Hull, Reid-Edwards ‘06
So[X] :?{ 1gE AE .
o5,

Turning on G too, one gets the expected algebraic identity T"}; Gimn = 0 .



A different example

« Recall: In the Courant algebroid, a consistent choice is ct. Besso, Heller, lkeda, Watamura '15
py=(,n%, [MNs=0, Q=dn, [MRls=0.
This leads to a geometric R-flux model
San[X] = f 3oy — " g 11y dX A xdX
o)
+/ 3 R I I 1 dX A dX A dXE
23
« In the present setting, for E = T*M, and the choices (with 4-vector G):
pP=n’, TF=on" [NGs=0,
M2-branes in 4-form flux controlled by a 4-vector G,
So[X] = 7{ 3oy — I g 1) dX A wd X
9%,

+ / LG, I 11 1 dX A dX A dXE A dX
4



SL(5) fluxes from the five conditions?

In the above setting, it is not possible to obtain the rest of SL(5) fluxes.
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The structure of R indicates that T’ may contain it for enlarged /-index range.

The bundle index / should take 10 values; 4 of type /,j and six of paired type [i], [K/] -



SL(5) fluxes from the five conditions?

In the above setting, it is not possible to obtain the rest of SL(5) fluxes.
The structure of R indicates that T’ may contain it for enlarged /-index range.
The bundle index / should take 10 values; 4 of type /,j and six of paired type [i], [K/] -

A proposal is to consider the same model, but start with
E=E=TMaA*T'M.
For the anchor components we make a general choice, not just projection to TM,
(0') = ('), p") = (5}, 5 27 .
Setting S and G to zero, there is a non-trivial identification of T,,% with the SL(5) fluxes.

This is special; it requires an additional projection to SL(5) representations.



SL(5) fluxes as Wess-Zumino terms

Going back to the threebrane sigma-model, the E-valued fields now become:
A = (AL A) = (d,p;), (1-forms)
ar = (ai,a’) =: (pi,q"), (2-forms)

Apparent overabundance; but the flux identification says two additional things:

+ g’ is decomposable, i.e. g/ =g A ¢ .
*p=qAp;.
This leads to the sigma-model with WZ terms being the four types of M-theory fluxes
s= | (F,-/\dX"f 9 AP Add — g AQ Adpj+ FiAg + 3 2 F A pi
4
+QF’”fkq’Aq’AqkApferlGf/k/q’Aq’AqkAq’
$0™q Ng" ApPmAPK + 3R G /\pn,-/\p,-k/\p,,,,) .

Boundary metric terms are entries of 7, e.g. the characteristic g = g* ¢ — g" g* .
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Some open problems

Does this hold for larger U-duality groups?
M5-branes, extended bundles are not as simple as Ep. but known... Hull '07

Is there a sigma-model with extended base, not only bundle?
Manifest U-duality in the world volume is hard... puff, Lu, Percacci, Pope, Samtleben, Sezgin 15
Origin of the section condition?

M-theory R-flux shows signs of non-associativity, how to capture it here?
Gunaydin, Lust, Malek *16; Kupriyanov, Szabo '17
As in the previous step, for the stringy R-flux. mylonas, Schupp, Szabo '12

M-theory exotic brane couplings?
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