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Bayrischzell Workshop 2019



Goal

Understand the interrelation of:

_ Flux compactification of M-theory, incl. non-geometric fluxes (here for 7+4 dims.)

_ Gauge structure of 4D sigma-models.

_ Higher algebroids and exceptional generalised geometry.



Why expect this?

For closed strings, a single set of equations describes:

_ Geometric & non-geometric fluxes (and Bianchi Ids.) in string compactifications.

_ Gauge structure for membrane sigma-models with generalised WZ-term.

_ Axioms of a Courant algebroid, and O(d , d) generalised geometry of TM ⊕ T ∗M.
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Also for double field theory

DFT

O(d d) Fluxes
&

Bianchi Ids.

DFT/Vaisman
Algebroid

Doubled
Membrane
σ-model



Motivation: Flux Compactifications

In string theory, T-duality reveals unconventional backgrounds w/ non-geometric fluxes.

NSNS sector : Hijk , fij k , Qi
jk , R ijk

RR sector (IIB) : Fi , Fijk , Fijklm , Pi
jk , Pi

jklm , &c.

Potentially useful for de Sitter vacua, moduli stabilization and model building.

Sourced by extended, non-perturbative, dynamical objects: exotic branes.

What about M-theory?
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Motivation: Sigma-Models

From a worldsheet perspective, the 3-form flux appears as WZ-term.

In general, all types of fluxes appear as WZ-terms in Courant sigma-models.

1-1 correspondence between such membrane sigma-models and Courant algebroids.
Hofman, Park ’02; Ikeda ’02; Roytenberg ’06

Axiomatic organisation of the properties of the (twisted) Courant bracket of TM ⊕ T ∗M
Courant ’90; Liu, Weinstein, Xu ’95

[X + ξ,Y + η] = [X ,Y ] + LXη − LY ξ − 1
2 d(ιXη − ιY ξ) + H(X ,Y ) .

Which sigma-model could account for M-theory fluxes as WZ-terms in the same spirit?



Motivation: Geometry of Duality

The Courant bracket is “symmetric” under diffs and B-field gauge transformations.

A generalised geometry on TM ⊕ T ∗M places g & B on equal footing. Hitchin ’02; Gualtieri ’04

In M-theory, higher Courant bracket. O(d , d) 7→ Cremmer-Julia groups (here SL(5)).

An exceptional generalised geometry for g and the C-fields. Hull ’07; Pacheco, Waldram ’08

TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M ⊕ ∧6TM .

 M-theory as generalised geometry / exceptional field theory where M is extended.
Coimbra, Strickland-Constable, Waldram ’11; Hohm, Samtleben ’13 . . .
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Higher Courant Bracket

General idea: Extend the tangent bundle TM over a manifold M (dim M = d) by p-forms
Hagiwara ’02; Bi, Sheng ’10; Zambon ’10

Ep = TM ⊕ ∧p T ∗M ,

Γ(Ep) 3 A = X + η with X ∈ Γ(TM) , η ∈ Γ(∧p T ∗M) .

Ep is endowed with a non-degenerate symmetric fiber pairing given by contraction

〈X + η,Y + ξ〉 = 1
2 (ιX ξ + ιYη) ∈ ∧p−1 T ∗M ;

for p = 1 it defines an O(d , d)-invariant metric, used e.g. in double field theory.

One can also define binary operations. Higher Dorfman bracket (gen’d Lie derivative)

(X + η) ◦ (Y + ξ) = [X ,Y ] + LX ξ − ιYη ,

or its antisymmetrization, a higher Courant bracket

[X + η,Y + ξ] = [X ,Y ] + LX ξ − LYη − 1
2 d(ιX ξ + ιYη) .



Properties

Modified Jacobi identity: (where N (A, B, C) = 1
3 〈[A, B], C〉 + cyclic(A, B, C))

[[A,B],C] + cyclic(A,B,C) = dN (A,B,C) ;

Homomorphism and modified Leibniz rule w.r.t. a (anchor) map ρ : Ep → TM

ρ[A,B] = [ρ(A), ρ(B)] ;

[A, f B] = f [A,B] +
(
ρ(A)f

)
B − df ∧ 〈A,B〉 .

Lρ(C)〈A,B〉 = 〈[C,A] + d〈C,A〉,B〉+ 〈A, [C,B] + d〈C,B〉〉 .

The higher Courant bracket may be twisted by a (p + 2)-form H,

[X + η,Y + ξ]H = [X + η,Y + ξ] + ιX ιY H .

In closed string theory, p = 1 and the twist is identified with the NS-NS 3-form flux.



Generalised Geometry

When p = 1, O(d , d) trafos: automorphisms, B-transforms & β-transforms Gualtieri ’04

When p = 2 & d = 4, SL(5) trafos: SL(4), C-transforms, Ω-transforms. Hull ’07

X + η
C7→ X + η + ιX C , X + η

Ω7→ X + η + ιηΩ .

Generalised metrics H1 & H2 may be parametrized in terms of g and B & C

H1 =

(
g − B g−1 B −B g−1

g−1 B g−1

)
, H2 =

(
g + 1

2 C g−1∧g−1 C − 1
2 C g−1∧g−1

− 1
2 g−1∧g−1 C 1

2 g−1∧g−1

)
.

where g is a Riemannian metric on M and B a (Kalb-Ramond) 2-form, or C a 3-form.

The main players in string/membrane duality rotations, DFT/ExFT, &c.
Shapere, Wilczek ’88; Giveon, Rabinovici, Veneziano ’88; Duff ’89; Tseytlin ’90; Maharana, Schwarz ’92; . . .

Duff ’90; Hull ’07; Berman, Perry ’10; . . .



General twists and M-theory

The most general bracket twists come in six types, denoted as (vector degree, form degree):

(0, p + 2), (1, 2), (p + 1, 1), (p, p + 1), (2p, p), (2p + 1, 0).

For string theory, p = 1 gives four possibilities, identified with the corresponding fluxes

Hijk , Fij
k , Qk

ij , R ijk .

What about M-theory? For M2-branes, the relevant structure is p = 2 (when d = 4):

(0, 4), (1, 2), (3, 1), (2, 3), (4, 2), (5, 0).

The first one is a 4-form, the G-flux. What do the other five twists correspond to?



SL(5) M-Theory Fluxes

Strategy: consider a general basis of the extended bundle (indices: i , j flat, a, b curved.)
As in the string cae, see Halmagyi ’09; Blumenhagen, Deser, Plauschinn, Rennecke ’12

ea := ea
i (∂i + 1

2 Cijk dx j ∧ dxk ) ,

eab := ea
ieb

j (
1
2 dx i ∧ dx j + 1

2 Ω
ijk ek ) ,

and compute the higher Courant bracket, which is generally given as

[ea, eb] = Gabcd ecd + Fab
c ec ,

[ea, ebc ] = F̃ade
bc ede + Qa

bc,d ed ,

[eab, ecd ] = Rab,cd,e ee + Q̃ef
ab,cd eef .

This may be done for any d . However, the physical case is d = 4, and it is very special.



SL(5) M-Theory Fluxes

First, there are trace relations, indicating that F̃ and Q̃ are not independent fluxes in 4D,

F̃ijl
lk = Fij

k , Q̃im
jk,lm = Qi

jkl − 1
2 δ

[j
i Qn

k ]ln + 1
4 δ

l
i Qn

jkn (in holonomic basis)

Second, the 5-vector R turns out to be a mixed-symmetry tensor of type (1,4) in 4D.

The general local coordinate expressions for the remaining fluxes are found to be

Gabcd = 4∇[aCbcd ] ,

Fab
c = fab

c − 1
2 Gabde Ω

dec ,

Qa
bcd = 1

2

(
∂aΩ

bcd + 3Ωe[bc fae
d ] − 1

2 Ω
def δ

[b
a fef

c] − 1
2 Ω

e[bc Gaefg Ω
d ]fg) ,

Rab,cd,e = 1
2 ∇̂

a[bΩcde] − 1
2 ∇̂

b[aΩcde] − 1
2 ∇̂

c[dΩabe] + 1
2 ∇̂

d [cΩabe] ,

where ∇̂ab = Ωabc ∇c and fab
c = 2 ec

j e[a
i ∂ieb]

j =: 2Γ[ab]
c the purely geometric flux.

Agreement with results from SL(5) group theory. Blair, Malek ’14



Bianchi Identities

What is more, there is a systematic way to derive the Bianchi identities for all fluxes.

They follow from the (modified) Jacobi identity for the higher Courant bracket. E.g.

[[ei , ej ], em] + cyclic(i , j ,m)− 1
3 d
(
〈[ei , ej ], em〉+ cyclic(i , j ,m)

)
= 0 ,

in a holonomic frame, gives directly two of the eight (for general d) Bianchi identities

∂[mGijkl] = − 3
5 Gnp[ij F̃m]kl

np − 3
5 F[ij

n Gm]nkl
4D⇒ Gn[lij Fmk ]

n = 0 ,

∂[mFij]
l − 1

3 ∂̂
lk Gijmk = −Gnk [ij Qm]

nkl − F[ij
k Fm]k

l .

This is the M-theory analog of the string results of Blumenhagen, Deser, Plauschinn, Rennecke ’12

They reproduce consistency conditions of M-theory on twisted tori. cf. Hull, Reid-Edwards ’06



Exceptional Field Theory

Strings: Momenta & Windings Coordinates x i & Dual Coordinates x̃i  Double FT

Membranes: Momenta & Wrappings x I = (x i , x̃ij ) in 10 of SL(5) Exceptional FT

Local symmetries in ExFT are generated by a generalized Lie derivative

LξAI = ξJ ∂JAI − AJ ∂Jξ
I + Y IJ

KL AK ∂Jξ
L ,

where Y IJ
KL is an invariant tensor of the U-duality group, controlling a section condition

Y IJ
KL ∂I ⊗ ∂J = 0 .

E.g. Y IJ
KL = ηIJηKL for O(d , d), while Y IJ

KL = εāIJ εāKL for SL(5), ā = 1, . . . , 5, I = [āb̄] .

Closure is associated to the SL(5) covariantization of the higher Courant bracket

[Lξ1 ,Lξ2 ] = L[[ξ1,ξ2]] , [[ξ1, ξ2]] = 1
2 (Lξ1ξ2 − Lξ2ξ1) .



Fluxes in ExFT

The corresponding fluxes in ExFT are determined as the Lie brackets of two derivations
As for DFT in Blumenhagen, Gao, Herschmann, Shukla ’13

Di = ∂i + 1
2 Cijk ∂̃

jk ,

D̃jk = 1
2 ∂̃

jk + 1
2 Ω

jkl Dl .

The fluxes acquire new terms, as in DFT, for example

Gabcd = 4∇[aCbcd ] + 2 Cef [a ∇̃ef Cbcd ] ,

Fab
c = fab

c + Cde[a Γ̃
de

b]
c − 1

2 Ω
dec Gabde + 1

2 ∇̃
cd Cdab ,

where we defined the dual connection (dual derivative acting on vielbein)

Γ̃ ab
c

d = ed
k e[a

i eb]
j ∂̃

ijek
c ,

and
∇̃abCcde = ∂̃abCcde − Γ̃ ab

c
f Cfde − Γ̃ ab

d
f Ccfe − Γ̃ ab

e
f Ccdf .

 systematic derivation of ExFT fluxes modulo the section condition.



Flux Representations

The fluxes exhaust the SL(5) representations 15⊕ 40⊕ 10, based on the embedding
tensor formalism for gaugings of 7D maximal supergravity. Samtleben, Weidner ’05

Their decompositions under the embedding SL(5) ⊃ SL(4), read as

10 = 4⊕ 6 ,

15 = 10⊕ 4⊕ 1 ,

40 = 20⊕ 10⊕ 6⊕ 4 .

Correspondingly, the fluxes are identified as Gabcd , Fab
c , Qa

[bcd ], Γ̃ abbc, Rabcd,e, ∂ag7

Blair, Malek ’14; Lüst, Malek, Syväri ’17



Flux Representations

The fluxes exhaust the SL(5) representations 15⊕ 40⊕ 10, based on the embedding
tensor formalism for gaugings of 7D maximal supergravity. Samtleben, Weidner ’05

Their decompositions under the embedding SL(5) ⊃ SL(4), read as

10 = 4⊕ 6 ,

15 = 10⊕ 4⊕ 1 ,

40 = 20⊕ 10⊕ 6⊕ 4 .

Correspondingly, the fluxes are identified as Gabcd , Fab
c , Qa

[bcd ], Γ̃ abbc, Rabcd,e, ∂ag7

Blair, Malek ’14; Lüst, Malek, Syväri ’17



Three equations, three viewpoints

Let us go back to the closed string theory case. There are three interesting equations:

ηIJ ρi
I ρ

j
J = 0 ,

ρi
I ∂iρ

j
J − ρi

J ∂iρ
j
I − ηKL ρj

K TLIJ = 0 ,

4 ρi
[L ∂iTIJK ] + 3 ηMN TM[IJ TKL]N = 0 ,

where indices i , j , . . . run over 1, . . . , d while I, J, . . . run through 1, . . . , 2d .

ηIJ is the O(d , d)-invariant metric & TIJK corresponds to the 4 fluxes Hijk , Fij
k , Qi

jk , R ijk .



Three equations, three viewpoints

These three equations may be interpreted in three different but related ways:

_ As fluxes and Bianchi identities in (duality twisted) string compactification.

_ As the local form of the axioms of a Courant algebroid on E1.

_ As the gauge invariance & closure for the Courant sigma-model:

S[X ,A,F ] =

∫
Σ3

(
Fi ∧ dX i + 1

2ηIJ AI ∧ dAJ − ρi
J (X ) AJ ∧ Fi + 1

6 TIJK (X ) AI ∧ AJ ∧ AK
)
, (1)

with ρi
J being the anchor components and TIJK the X -pull-back of 〈eI , [eJ , eK ]〉.



Three equations, three viewpoints; the DFT case

Similarly, three equations that may be found in the flux formulation of double field theory
Geissbühler, Marqués, Núñez, Penas ’13

ηIJ ρK
I ρ

L
J = ηKL ,

2ρL
[I ∂Lρ

K
J] − ηMN ρK

M T̂NIJ = ρL[I ∂
KρL

J] ,

4 ρM
[L ∂M T̂IJK ] + 3 ηMN T̂M[IJ T̂KL]N = ZIJKL ,

correspond to the gauge structure of a doubled membrane sigma-model

SDFT[X,A,F ] =

∫
Σ3

(
FI ∧ dXI + ηIJAI ∧ dAJ − (ρ+)I

JAJ ∧ FI + 1
3 T̂IJK AI ∧ AJ ∧ AK

)
.

Gauge symmetries and their closure (or the classical master equation), obstructed.

Obstructions vanish when a world volume analog of the strong constraint is satisfied.

“Algebroid” structure (properties of the C-bracket): Metric or DFT algebroid.
Vaisman ’12; A.Ch., Jonke, Khoo, Szabo ’18; Mori, Sasaki, Shiozawa ’19



Membranes?

Is there a set of equations that captures the following?

D The fluxes and Bianchi identities of SL(5) M-theory compactifications.

D An algebroid structure related to the higher Courant bracket.

D The gauge structure of a sigma-model for higher WZ terms.



Threebrane Sigma-Models

The starting point is a topological threebrane sigma-model with action functional
Ikeda, Uchino ’10

S[X , α,A,F ] =

∫
Σ4

(
Fi ∧ dX i − αI ∧ dAI + ρi

I(X ) Fi ∧ AI + 1
2 SIJ (X )αI ∧ αJ

+ 1
2 T I

JK (X )αI ∧ AJ ∧ AK + 1
4!

GIJKL(X ) AI ∧ AJ ∧ AK ∧ AL) .
Ingredients:

_ Scalars X = (X i ) : Σ4 −→ M.

_ Auxiliary 3-form F ∈ Ω3(Σ4,X∗T ∗M).

_ 1-form A ∈ Ω1(Σ4,X∗E) & 2-form α ∈ Ω2(Σ4,X∗E∗);

E being some vector bundle. E-indices I, J, . . . .

D Structure functions ρ,S,T ,G of X (σ).



Gauge symmetries

Invariance under gauge symmetries with 0-, 1- and 2-form parameters (εI , ζI , ti ):

δX i = −ρi
I ε

I ,

δAI = dεI + SIJ ζJ − T I
JK AJ εK ,

δαI = dζI + ρi
I ti + T J

IK ζJ ∧ AK + T J
IK αJ ε

K + 1
2 GIJKL ε

J AK ∧ AL ,

δFi = −dti + ∂iρ
j
I
(
εI Fj + tj ∧ AI)− ∂iT J

LI ε
I αJ ∧ AL

− 1
6 ∂iGIJKL ε

I AJ ∧ AK ∧ AL + 1
2 ∂iT I

JK ζI ∧ AJ ∧ AK + ∂iSIJ ζI ∧ αJ ,

provided that...



Five equations

...provided that five conditions hold for the structure functions:

ρi
I SIJ = 0 ,

ρi
I ∂iSJK + SLJ T K

IL + SLK T J
IL = 0 ,

ρi
I ∂iρ

j
J − ρi

J ∂iρ
j
I − ρi

K T K
IJ = 0 ,

3ρi
[I ∂iT J

KL] + SJM GKLIM − 3T J
M[K T M

LI] = 0 ,

ρi
[I ∂iGJKLM] + T N

[IJ GKLM]N = 0 .

Moreover, local form of the axioms for a structure called Lie algebroid up to homotopy.
Ikeda, Uchino ’10

A special “H”-twisted Lie algebroid on E , with anchor, sym. 2-vector, E4-form & bracket.
Grützmann ’10; Grützmann, Strobl “’14”



Some Examples

_ For E = TM, anchor being projection ρi
j = δi

j and S = T = 0  dG = 0.

On-shell (with boundary metric term) describes M2-branes coupled to 3-form C:
Kökenyesi, Sinkovics, Szabo ’18

S∂ [X ] =

∮
∂Σ4

( 1
2 gij dX i ∧ ∗dX j + 1

3!
Cijk dX i ∧ dX j ∧ dX k) .

_ For ρi
j = Ei

j(X) the “vielbein” for a twisted 4-torus, and T its geometric flux,

dEi = − 1
2 T i

jk Ej ∧ Ek ,

M-theory background on twisted torus, Hull, Reid-Edwards ’06

S∂ [X ] =

∮
∂Σ4

1
2 gij Ei ∧ ∗Ej .

Turning on G too, one gets the expected algebraic identity T n
[ij Gklm]n = 0 .



A different example

_ Recall: In the Courant algebroid, a consistent choice is cf. Besso, Heller, Ikeda, Watamura ’15

ρi
J = (0,Πij ) , [Π,Π]S = 0 , Q = dΠ , [Π,R]S = 0 .

This leads to a geometric R-flux model

SR,Π[X ] =

∮
∂Σ3

1
2

(
gij −Π−1

ik gkl Π−1
lj

)
dX i ∧ ∗dX j

+

∫
Σ3

1
3!

Rpqr Π−1
ip Π−1

jq Π−1
kr dX i ∧ dX j ∧ dX k .

_ In the present setting, for E = T ∗M, and the choices (with 4-vector G):

ρij = Πij , Ti
jk = ∂i Π

jk , [Π,G]S = 0 ,

M2-branes in 4-form flux controlled by a 4-vector G,

S∂ [X ] =

∮
∂Σ4

1
2

(
gij −Π−1

ik gkl Π−1
lj

)
dX i ∧ ∗dX j

+

∫
Σ4

1
4!

Gpqrs Π−1
ip Π−1

jq Π−1
kr Π−1

ls dX i ∧ dX j ∧ dX k ∧ dX l .



SL(5) fluxes from the five conditions?

In the above setting, it is not possible to obtain the rest of SL(5) fluxes.

The structure of R indicates that T I
JK may contain it for enlarged I-index range.

The bundle index I should take 10 values; 4 of type i , j and six of paired type [ij], [kl] .

A proposal is to consider the same model, but start with

E = E2 = TM ⊕ ∧2 T ∗M .

For the anchor components we make a general choice, not just projection to TM,

(ρi
I) = (ρi

j , ρ
ijk ) = (δi

j ,
1
2 Ω

ijk ) .

Setting S and G to zero, there is a non-trivial identification of TIJ
K with the SL(5) fluxes.

This is special; it requires an additional projection to SL(5) representations.
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SL(5) fluxes as Wess-Zumino terms

Going back to the threebrane sigma-model, the E-valued fields now become:

AI = (Ai ,Aij ) =: (q i , pij ) , (1-forms)

αI = (αi , α
ij ) =: (pi , q ij ) , (2-forms)

Apparent overabundance; but the flux identification says two additional things:

D q ij is decomposable, i.e. q ij = q i ∧ q j .

D pj = q i ∧ pij .

This leads to the sigma-model with WZ terms being the four types of M-theory fluxes

S =

∫
Σ4

(
Fi ∧ dX i − q i ∧ pij ∧ dq j − q i ∧ q j ∧ dpij + Fi ∧ q i + 1

2 Ω
ijk Fi ∧ pjk

+ 3
2 F m

jk q i ∧ q j ∧ qk ∧ pim + 1
2 Gijkl q i ∧ q j ∧ qk ∧ q l

+ 3
2 Ql

ijk q l ∧ qm ∧ pim ∧ pjk + 1
2 R jk,lm,i qn ∧ pni ∧ pjk ∧ plm

)
.

Boundary metric terms are entries of H2, e.g. the characteristic g ijkl = g ik g jl − g il g jk .



Epilogue

M2-branes

SL(5) Fluxes
&
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Homotopy
algebroid

Threebrane
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Some open problems

_ Does this hold for larger U-duality groups?

M5-branes, extended bundles are not as simple as Ep. but known... Hull ’07

_ Is there a sigma-model with extended base, not only bundle?

Manifest U-duality in the world volume is hard... Duff, Lu, Percacci, Pope, Samtleben, Sezgin ’15

Origin of the section condition?

_ M-theory R-flux shows signs of non-associativity, how to capture it here?
Günaydin, Lüst, Malek ’16; Kupriyanov, Szabo ’17

As in the previous step, for the stringy R-flux. Mylonas, Schupp, Szabo ’12

_ M-theory exotic brane couplings?
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