M-THEORY FLUXES & THREEBRANE SIGMA-MODELS

Athanasios Chatzistavrakidis

Rudjer Bošković Institute, Zagreb

1901.07775 with Larisa Jonke, Dieter Lüst & Richard Szabo

Bayrischzell Workshop 2019

(日)

Goal

Understand the interrelation of:

Flux compactification of M-theory, incl. non-geometric fluxes (here for 7+4 dims.)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Gauge structure of 4D sigma-models.
- Higher algebroids and exceptional generalised geometry.

Why expect this?

For closed strings, a single set of equations describes:

- Geometric & non-geometric fluxes (and Bianchi Ids.) in string compactifications.
- Gauge structure for membrane sigma-models with generalised WZ-term.
- Axioms of a Courant algebroid, and O(d, d) generalised geometry of $TM \oplus T^*M$.

Also for double field theory

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Motivation: Flux Compactifications

In string theory, T-duality reveals unconventional backgrounds w/ non-geometric fluxes.

NSNS sector : H_{ijk} , $f_{ij}^{\ k}$, $Q_i^{\ jk}$, R^{ijk} RR sector (IIB) : F_i , F_{ijk} , F_{ijklm} , $P_i^{\ jk}$, $P_i^{\ jklm}$, &c.

Potentially useful for de Sitter vacua, moduli stabilization and model building.

Sourced by extended, non-perturbative, dynamical objects: exotic branes.

Motivation: Flux Compactifications

In string theory, T-duality reveals unconventional backgrounds w/ non-geometric fluxes.

NSNS sector : H_{ijk} , f_{ij}^{k} , Q_{i}^{jk} , R^{ijk} RR sector (IIB) : F_{i} , F_{ijk} , F_{ijklm} , P_{i}^{jk} , P_{i}^{jklm} , &c.

Potentially useful for de Sitter vacua, moduli stabilization and model building.

Sourced by extended, non-perturbative, dynamical objects: exotic branes.

What about M-theory?

Motivation: Sigma-Models

From a worldsheet perspective, the 3-form flux appears as WZ-term.

In general, all types of fluxes appear as WZ-terms in Courant sigma-models.

1-1 correspondence between such membrane sigma-models and Courant algebroids. Hofman, Park '02; Ikeda '02; Roytenberg '06

Axiomatic organisation of the properties of the (twisted) Courant bracket of $TM \oplus T^*M$ Courant '90; Liu, Weinstein, Xu '95

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + H(X, Y) + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + H(X, Y) + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + H(X, Y) + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + H(X, Y) + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + H(X, Y) + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + H(X, Y) + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \mathcal{L}_X \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \xi) + \frac{1}{2} \operatorname{d}(\iota_X \eta - \iota_Y \eta + \frac{1}{2} \operatorname{d}(\iota_X \eta + \frac{1}{2} \operatorname{d}$$

Which sigma-model could account for M-theory fluxes as WZ-terms in the same spirit?

(ロ) (同) (三) (三) (三) (○) (○)

Motivation: Geometry of Duality

The Courant bracket is "symmetric" under diffs and *B*-field gauge transformations.

A generalised geometry on $TM \oplus T^*M$ places g & B on equal footing. Hitchin '02; Gualtieri '04

In M-theory, higher Courant bracket. $O(d, d) \mapsto$ Cremmer-Julia groups (here SL(5)).

An exceptional generalised geometry for g and the C-fields. Hull '07; Pacheco, Waldram '08

 $TM \oplus \wedge^2 T^*M \oplus \wedge^5 T^*M \oplus \wedge^6 TM .$

→ M-theory as generalised geometry / exceptional field theory where *M* is extended. Coimbra, Strickland-Constable, Waldram '11; Hohm, Samtleben '13...

・ロト・4回ト・4回ト・4回ト・4回ト

Introduction and Motivation

Exceptional Generalized Geometry and SL(5) M-theory Fluxes

SL(5) Fluxes in Exceptional Field Theory

Threebrane Sigma-Models, Homotopy Algebroids and M-theory

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Higher Courant Bracket

General idea: Extend the tangent bundle *TM* over a manifold *M* (dim M = d) by *p*-forms Hagiwara '02; Bi, Sheng '10; Zambon '10

 $E_{\rho} = TM \oplus \wedge^{\rho} T^*M,$ $\Gamma(E_{\rho}) \ni A = X + \eta \quad \text{with} \quad X \in \Gamma(TM), \ \eta \in \Gamma(\wedge^{\rho} T^*M).$

 E_{p} is endowed with a non-degenerate symmetric fiber pairing given by contraction

$$\langle X + \eta, Y + \xi \rangle = \frac{1}{2} (\iota_X \xi + \iota_Y \eta) \in \bigwedge^{p-1} T^* M;$$

for p = 1 it defines an O(d, d)-invariant metric, used e.g. in double field theory.

One can also define binary operations. Higher Dorfman bracket (gen'd Lie derivative)

$$(X + \eta) \circ (Y + \xi) = [X, Y] + \mathcal{L}_X \xi - \iota_Y \eta$$

or its antisymmetrization, a higher Courant bracket

$$[X + \eta, Y + \xi] = [X, Y] + \mathcal{L}_X \xi - \mathcal{L}_Y \eta - \frac{1}{2} \operatorname{d}(\iota_X \xi + \iota_Y \eta).$$

Properties

Modified Jacobi identity: (where $\mathcal{N}(A, B, C) = \frac{1}{3} \langle [A, B], C \rangle + \text{cyclic}(A, B, C) \rangle$)

$$[[A, B], C] + \operatorname{cyclic}(A, B, C) = \operatorname{d} \mathcal{N}(A, B, C);$$

Homomorphism and modified Leibniz rule w.r.t. a (anchor) map $\rho: E_{\rho} \rightarrow TM$

$$\begin{split} \rho[A, B] &= [\rho(A), \rho(B)]; \\ [A, f B] &= f[A, B] + (\rho(A)f) B - df \wedge \langle A, B \rangle . \\ \mathcal{L}_{\rho(C)}\langle A, B \rangle &= \langle [C, A] + d \langle C, A \rangle, B \rangle + \langle A, [C, B] + d \langle C, B \rangle \rangle . \end{split}$$

The higher Courant bracket may be twisted by a (p+2)-form H,

$$[X + \eta, Y + \xi]_H = [X + \eta, Y + \xi] + \iota_X \iota_Y H.$$

In closed string theory, p = 1 and the twist is identified with the NS-NS 3-form flux.

Generalised Geometry

When p = 1, O(d, d) trafos: automorphisms, *B*-transforms & β -transforms Gualtieri '04 When p = 2 & d = 4, SL(5) trafos: SL(4), *C*-transforms, Ω -transforms. Hull '07

$$X + \eta \stackrel{\mathcal{C}}{\mapsto} X + \eta + \iota_X \mathcal{C}, \qquad X + \eta \stackrel{\Omega}{\mapsto} X + \eta + \iota_\eta \Omega.$$

Generalised metrics $\mathcal{H}_1 \& \mathcal{H}_2$ may be parametrized in terms of g and B & C

$$\mathcal{H}_1 = egin{pmatrix} g - B \, g^{-1} \, B & -B \, g^{-1} \ g^{-1} \, B & g^{-1} \end{pmatrix} \ , \quad \mathcal{H}_2 = egin{pmatrix} g + rac{1}{2} \, C \, g^{-1} \wedge g^{-1} \, C & -rac{1}{2} \, C \, g^{-1} \wedge g^{-1} \ -rac{1}{2} \, g^{-1} \wedge g^{-1} \, C & rac{1}{2} \, g^{-1} \wedge g^{-1} \end{pmatrix} \ ,$$

where g is a Riemannian metric on M and B a (Kalb-Ramond) 2-form, or C a 3-form.

The main players in string/membrane duality rotations, DFT/ExFT, &c. Shapere, Wilczek '88; Giveon, Rabinovici, Veneziano '88; Duff '89; Tseytlin '90; Maharana, Schwarz '92; ... Duff '90; Hull '07; Berman, Perry '10; ...

General twists and M-theory

The most general bracket twists come in six types, denoted as (vector degree, form degree):

$$(0, p+2), (1, 2), (p+1, 1), (p, p+1), (2p, p), (2p+1, 0).$$

For string theory, p = 1 gives four possibilities, identified with the corresponding fluxes

$$H_{ijk}, F_{ij}{}^k, Q_k{}^{ij}, R^{ijk}.$$

What about M-theory? For M2-branes, the relevant structure is p = 2 (when d = 4):

(0,4), (1,2), (3,1), (2,3), (4,2), (5,0).

・ロト・4回ト・4回ト・4回ト・4回ト

The first one is a 4-form, the G-flux. What do the other five twists correspond to?

SL(5) M-Theory Fluxes

Strategy: consider a general basis of the extended bundle (indices: *i*, *j* flat, *a*, *b* curved.) As in the string cae, see Halmagyi '09; Blumenhagen, Deser, Plauschinn, Rennecke '12

$$egin{aligned} &oldsymbol{e}_a := oldsymbol{e}_a^{\,\,i}ig(\partial_i + rac{1}{2}\,C_{ijk}\,\mathrm{d}x^j\wedge\mathrm{d}x^kig)\,, \ &oldsymbol{e}^{ab} := oldsymbol{e}^a_ioldsymbol{e}^b_jig(rac{1}{2}\,\mathrm{d}x^i\wedge\mathrm{d}x^j + rac{1}{2}\,\Omega^{ijk}\,oldsymbol{e}_kig)\,, \end{aligned}$$

and compute the higher Courant bracket, which is generally given as

$$\begin{bmatrix} e_a, e_b \end{bmatrix} = G_{abcd} e^{cd} + F_{ab}{}^c e_c ,$$

$$\begin{bmatrix} e_a, e^{bc} \end{bmatrix} = \widetilde{F}_{ade}{}^{bc} e^{de} + Q_a{}^{bc,d} e_d ,$$

$$\begin{bmatrix} e^{ab}, e^{cd} \end{bmatrix} = R^{ab,cd,e} e_e + \widetilde{Q}_{ef}{}^{ab,cd} e^{ef} .$$

This may be done for any d. However, the physical case is d = 4, and it is very special.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SL(5) M-Theory Fluxes

First, there are trace relations, indicating that \tilde{F} and \tilde{Q} are not independent fluxes in 4D,

$$\widetilde{F}_{jj}{}^{lk} = F_{ij}{}^k$$
, $\widetilde{Q}_{im}{}^{jk,lm} = Q_i{}^{jkl} - \frac{1}{2}\delta_i^{[j}Q_n{}^{k]ln} + \frac{1}{4}\delta_i^lQ_n{}^{jkn}$ (in holonomic basis)

Second, the 5-vector R turns out to be a mixed-symmetry tensor of type (1,4) in 4D.

The general local coordinate expressions for the remaining fluxes are found to be

$$\begin{split} G_{abcd} &= 4 \, \nabla_{[a} C_{bcd]} , \\ F_{ab}{}^c &= f_{ab}{}^c - \frac{1}{2} \, G_{abde} \, \Omega^{dec} , \\ Q_a{}^{bcd} &= \frac{1}{2} \left(\partial_a \Omega^{bcd} + 3 \, \Omega^{e[bc} \, f_{ae}{}^{d]} - \frac{1}{2} \, \Omega^{def} \, \delta_a^{[b} \, f_{ef}{}^{c]} - \frac{1}{2} \, \Omega^{e[bc} \, G_{aefg} \, \Omega^{d]/g} \right) , \\ R^{ab,cd,e} &= \frac{1}{2} \, \widehat{\nabla}^{a[b} \Omega^{cde]} - \frac{1}{2} \, \widehat{\nabla}^{b[a} \Omega^{cde]} - \frac{1}{2} \, \widehat{\nabla}^{c[d} \, \Omega^{abe]} + \frac{1}{2} \, \widehat{\nabla}^{d[c} \Omega^{abe]} , \end{split}$$
where $\widehat{\nabla}^{ab} = \Omega^{abc} \, \nabla_c$ and $f_{ab}{}^c = 2 \, e^c{}_j \, e_{[a}{}^i \, \partial_i e_{b]}{}^j =: 2 \, \Gamma_{[ab]}{}^c$ the purely geometric flux.

Agreement with results from SL(5) group theory. Blair, Malek '14

Bianchi Identities

What is more, there is a systematic way to derive the Bianchi identities for all fluxes.

They follow from the (modified) Jacobi identity for the higher Courant bracket. E.g.

$$[[\boldsymbol{e}_i, \boldsymbol{e}_j], \boldsymbol{e}_m] + \operatorname{cyclic}(i, j, m) - \frac{1}{3} \operatorname{d} (\langle [\boldsymbol{e}_i, \boldsymbol{e}_j], \boldsymbol{e}_m \rangle + \operatorname{cyclic}(i, j, m)) = 0,$$

in a holonomic frame, gives directly two of the eight (for general d) Bianchi identities

$$\begin{split} \partial_{[m} G_{ijkl]} &= -\frac{3}{5} \; G_{np[ij} \; \widetilde{F}_{m]kl}{}^{np} - \frac{3}{5} \; F_{[ij}{}^{n} \; G_{m]nkl} \quad \stackrel{4D}{\Rightarrow} \quad G_{n[lij} \; F_{mk]}{}^{n} = 0 \; , \\ \partial_{[m} F_{ij]}{}^{l} - \frac{1}{3} \; \hat{\partial}^{lk} G_{ijmk} &= -G_{nk[ij} \; Q_{m]}{}^{nkl} - F_{[ij}{}^{k} \; F_{m]k}{}^{l} \; . \end{split}$$

This is the M-theory analog of the string results of Blumenhagen, Deser, Plauschinn, Rennecke '12

They reproduce consistency conditions of M-theory on twisted tori. cf. Hull, Reid-Edwards '06

・ロト・4回ト・4回ト・4回ト・4回ト

Exceptional Field Theory

Strings: Momenta & Windings \rightsquigarrow Coordinates x^i & Dual Coordinates $\tilde{x}_i \rightsquigarrow$ Double FT Membranes: Momenta & Wrappings $\rightsquigarrow x^l = (x^i, \tilde{x}_{ij})$ in **10** of *SL*(5) \rightsquigarrow Exceptional FT Local symmetries in ExFT are generated by a generalized Lie derivative

$$\mathcal{L}_{\xi} \mathbf{A}^{\prime} = \xi^{J} \partial_{J} \mathbf{A}^{\prime} - \mathbf{A}^{J} \partial_{J} \xi^{\prime} + \mathbf{Y}_{KL}^{IJ} \mathbf{A}^{K} \partial_{J} \xi^{L} ,$$

where Y_{KL}^{IJ} is an invariant tensor of the U-duality group, controlling a section condition $Y_{KL}^{IJ} \partial_I \otimes \partial_J = 0$.

E.g. $Y_{KL}^{IJ} = \eta^{IJ}\eta_{KL}$ for O(d, d), while $Y_{KL}^{IJ} = \epsilon^{\bar{a}IJ} \epsilon_{\bar{a}KL}$ for SL(5), $\bar{a} = 1, \dots, 5$, $I = [\bar{a}\bar{b}]$.

Closure is associated to the SL(5) covariantization of the higher Courant bracket

$$[\mathcal{L}_{\xi_1}, \mathcal{L}_{\xi_2}] = \mathcal{L}_{[\xi_1, \xi_2]}, \qquad [\![\xi_1, \xi_2]\!] = \frac{1}{2} \left(\mathcal{L}_{\xi_1} \xi_2 - \mathcal{L}_{\xi_2} \xi_1 \right).$$

Fluxes in ExFT

The corresponding fluxes in ExFT are determined as the Lie brackets of two derivations As for DFT in Blumenhagen, Gao, Herschmann, Shukla '13

$$egin{aligned} D_i &= \partial_i + rac{1}{2} \, \mathcal{C}_{ijk} \, ilde{\partial}^{jk} \ , \ &ar{\mathcal{D}}^{jk} &= rac{1}{2} \, ilde{\partial}^{jk} + rac{1}{2} \, \Omega^{jkl} \, \mathcal{D}_l \end{aligned}$$

The fluxes acquire new terms, as in DFT, for example

$$\begin{split} G_{abcd} &= 4 \, \nabla_{[a} C_{bcd]} + 2 \, C_{ef[a} \, \widetilde{\nabla}^{ef} C_{bcd]} \, , \\ F_{ab}{}^c &= f_{ab}{}^c + C_{de[a} \, \widetilde{\Gamma}^{de}{}_{b]}{}^c - \frac{1}{2} \, \Omega^{dec} \, G_{abde} + \frac{1}{2} \, \widetilde{\nabla}^{cd} C_{dab} \, , \end{split}$$

where we defined the dual connection (dual derivative acting on vielbein)

$$\tilde{\Gamma}^{ab}{}_{c}{}^{d} = \boldsymbol{e}^{d}{}_{k} \, \boldsymbol{e}^{[a}{}_{i} \, \boldsymbol{e}^{b]}{}_{j} \, \tilde{\partial}^{ij} \boldsymbol{e}^{k}{}_{c} \; ,$$

and

$$\widetilde{\nabla}^{ab} \textit{C}_{\textit{cde}} = \widetilde{\partial}^{ab} \textit{C}_{\textit{cde}} - \widetilde{\Gamma}^{ab}{}_{c}{}^{f} \textit{C}_{\textit{fde}} - \widetilde{\Gamma}^{ab}{}_{d}{}^{f} \textit{C}_{\textit{cfe}} - \widetilde{\Gamma}^{ab}{}_{e}{}^{f} \textit{C}_{\textit{cdf}} \; .$$

→ systematic derivation of ExFT fluxes modulo the section condition.

Flux Representations

The fluxes exhaust the *SL*(5) representations $\overline{15} \oplus \overline{40} \oplus \overline{10}$, based on the embedding tensor formalism for gaugings of 7D maximal supergravity. Samtleben, Weidner '05

Their decompositions under the embedding $SL(5) \supset SL(4)$, read as

 $\overline{10} = \overline{4} \oplus 6,$ $\overline{15} = \overline{10} \oplus \overline{4} \oplus 1,$ $\overline{40} = \overline{20} \oplus 10 \oplus 6 \oplus \overline{4}.$

Flux Representations

The fluxes exhaust the SL(5) representations $\overline{15} \oplus \overline{40} \oplus \overline{10}$, based on the embedding tensor formalism for gaugings of 7D maximal supergravity. Samtleben, Weidner '05

Their decompositions under the embedding $SL(5) \supset SL(4)$, read as

 $\overline{10} = \overline{4} \oplus 6,$ $\overline{15} = \overline{10} \oplus \overline{4} \oplus 1,$ $\overline{40} = \overline{20} \oplus 10 \oplus 6 \oplus \overline{4}.$

Correspondingly, the fluxes are identified as G_{abcd} , $F_{ab}{}^{c}$, $Q_{a}{}^{[bcd]}$, $\tilde{\Gamma}^{ab}{}_{b}{}^{c}$, $R^{abcd,e}$, $\partial_{a}g_{7}$ Blair, Malek '14; Lüst, Malek, Syväri '17

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Three equations, three viewpoints

Let us go back to the closed string theory case. There are three interesting equations:

$$\begin{split} \eta^{IJ} \rho^{i}{}_{I} \rho^{j}{}_{J} &= 0 , \\ \rho^{i}{}_{I} \partial_{i} \rho^{j}{}_{J} - \rho^{i}{}_{J} \partial_{i} \rho^{j}{}_{I} - \eta^{KL} \rho^{j}{}_{K} T_{LJ} &= 0 , \\ 4 \rho^{i}{}_{[L} \partial_{i} T_{IJK]} + 3 \eta^{MN} T_{M[IJ} T_{KL]N} &= 0 , \end{split}$$

where indices i, j, \ldots run over $1, \ldots, d$ while I, J, \ldots run through $1, \ldots, 2d$.

 η_{IJ} is the O(d, d)-invariant metric & T_{IJK} corresponds to the 4 fluxes H_{ijk} , F_{ij}^{k} , Q_{i}^{jk} , R^{ijk} .

・ロト・4回ト・4回ト・4回ト・4回ト

Three equations, three viewpoints

These three equations may be interpreted in three different but related ways:

- As fluxes and Bianchi identities in (duality twisted) string compactification.
- As the local form of the axioms of a Courant algebroid on E_1 .
- As the gauge invariance & closure for the Courant sigma-model:

$$S[X, A, F] = \int_{\Sigma_3} \left(F_i \wedge \mathrm{d} X^i + \tfrac{1}{2} \eta_{IJ} \, A^I \wedge \mathrm{d} A^J - \rho^i{}_J(X) \, A^J \wedge F_i + \tfrac{1}{6} T_{IJK}(X) \, A^I \wedge A^J \wedge A^K \right) \,,$$

・ロト・4回ト・4回ト・4回ト・4回ト

with ρ_J^i being the anchor components and T_{IJK} the X-pull-back of $\langle e_I, [e_J, e_K] \rangle$.

Three equations, three viewpoints; the DFT case

Similarly, three equations that may be found in the flux formulation of double field theory Geissbühler, Marqués, Núñez, Penas '13

$$\begin{split} \eta^{IJ} \rho^{K}{}_{I} \rho^{L}{}_{J} &= \eta^{KL} ,\\ 2\rho^{L}{}_{[I} \partial_{\underline{L}} \rho^{K}{}_{J]} - \eta^{MN} \rho^{K}{}_{M} \hat{T}_{NJ} &= \rho_{L[I} \partial^{K} \rho^{L}{}_{J]} ,\\ 4\rho^{M}{}_{[L} \partial_{\underline{M}} \hat{T}_{IJK]} + 3\eta^{MN} \hat{T}_{M[J]} \hat{T}_{KL]N} &= \mathcal{Z}_{IJKL} , \end{split}$$

correspond to the gauge structure of a doubled membrane sigma-model

$$S_{\mathsf{DFT}}[\mathbb{X}, \boldsymbol{A}, \boldsymbol{F}] = \int_{\Sigma_3} \left(\boldsymbol{F}_l \wedge d\mathbb{X}^l + \eta_{lJ} \boldsymbol{A}^l \wedge d\boldsymbol{A}^J - (\rho_+)^l {}_J \boldsymbol{A}^J \wedge \boldsymbol{F}_l + \frac{1}{3} \hat{T}_{lJK} \boldsymbol{A}^l \wedge \boldsymbol{A}^J \wedge \boldsymbol{A}^K \right) \; .$$

Gauge symmetries and their closure (or the classical master equation), obstructed. Obstructions vanish when a world volume analog of the strong constraint is satisfied.

"Algebroid" structure (properties of the C-bracket): Metric or DFT algebroid. Vaisman '12; A.Ch., Jonke, Khoo, Szabo '18; Mori, Sasaki, Shiozawa '19

Membranes?

Is there a set of equations that captures the following?

The fluxes and Bianchi identities of SL(5) M-theory compactifications.

(ロ) (同) (三) (三) (三) (○) (○)

- * An algebroid structure related to the higher Courant bracket.
- * The gauge structure of a sigma-model for higher WZ terms.

Threebrane Sigma-Models

The starting point is a topological threebrane sigma-model with action functional Ikeda, Uchino '10

$$\begin{split} \mathcal{S}[X,\alpha,\mathcal{A},\mathcal{F}] &= \int_{\Sigma_4} \left(\mathcal{F}_i \wedge \mathrm{d} X^i - \alpha_l \wedge \mathrm{d} \mathcal{A}^l + \rho^i_{\ l}(X) \, \mathcal{F}_i \wedge \mathcal{A}^l \, + \frac{1}{2} \, \mathcal{S}^{lJ}(X) \, \alpha_l \wedge \alpha_J \right. \\ &+ \frac{1}{2} \, \mathcal{T}^l_{\ JK}(X) \, \alpha_l \wedge \mathcal{A}^J \wedge \mathcal{A}^K + \frac{1}{4!} \, \mathcal{G}_{IJKL}(X) \, \mathcal{A}^l \wedge \mathcal{A}^J \wedge \mathcal{A}^K \wedge \mathcal{A}^L \right) \,. \end{split}$$

Ingredients:

- Scalars $X = (X^i) : \Sigma_4 \longrightarrow M$.
- Auxiliary 3-form $F \in \Omega^3(\Sigma_4, X^*T^*M)$.
- 1-form $A \in \Omega^1(\Sigma_4, X^*E)$ & 2-form $\alpha \in \Omega^2(\Sigma_4, X^*E^*)$; *E* being some vector bundle. *E*-indices *I*, *J*,
- Structure functions ρ , S, T, G of $X(\sigma)$.

Gauge symmetries

Invariance under gauge symmetries with 0-, 1- and 2-form parameters (ϵ^{l} , ζ_{l} , t_{i}):

$$\begin{split} \delta X^{i} &= -\rho^{i}{}_{I} \epsilon^{I} ,\\ \delta A^{I} &= d\epsilon^{I} + S^{IJ} \zeta_{J} - T^{I}{}_{JK} A^{J} \epsilon^{K} ,\\ \delta \alpha_{I} &= d\zeta_{I} + \rho^{i}{}_{I} t_{i} + T^{J}{}_{IK} \zeta_{J} \wedge A^{K} + T^{J}{}_{IK} \alpha_{J} \epsilon^{K} + \frac{1}{2} G_{IJKL} \epsilon^{J} A^{K} \wedge A^{L} ,\\ \delta F_{i} &= -dt_{i} + \partial_{i} \rho^{j}{}_{I} \left(\epsilon^{I} F_{j} + t_{j} \wedge A^{I} \right) - \partial_{i} T^{J}{}_{LI} \epsilon^{I} \alpha_{J} \wedge A^{L} \\ &- \frac{1}{6} \partial_{i} G_{IJKL} \epsilon^{I} A^{J} \wedge A^{K} \wedge A^{L} + \frac{1}{2} \partial_{i} T^{I}{}_{JK} \zeta_{I} \wedge A^{J} \wedge A^{K} + \partial_{i} S^{IJ} \zeta_{I} \wedge \alpha_{J} , \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

provided that ...

Five equations

...provided that five conditions hold for the structure functions:

$$\rho'_{I} S^{IJ} = 0 ,$$

$$\rho'_{I} \partial_{i} S^{JK} + S^{LJ} T^{K}_{IL} + S^{LK} T^{J}_{IL} = 0 ,$$

$$\rho'_{I} \partial_{i} \rho^{j}_{J} - \rho^{i}_{J} \partial_{i} \rho^{j}_{I} - \rho^{i}_{K} T^{K}_{IJ} = 0 ,$$

$$3\rho^{i}_{[I} \partial_{i} T^{J}_{KL]} + S^{JM} G_{KLIM} - 3T^{J}_{M[K} T^{M}_{LI]} = 0 ,$$

$$\rho^{i}_{[I} \partial_{i} G_{JKLM]} + T^{N}_{[IJ} G_{KLM]N} = 0 .$$

Moreover, local form of the axioms for a structure called Lie algebroid up to homotopy. Ikeda, Uchino '10

A special "*H*"-twisted Lie algebroid on *E*, with anchor, sym. 2-vector, E4-form & bracket. Grützmann '10; Grützmann, Strobl "'14"

Some Examples

★ For E = TM, anchor being projection $\rho^i_j = \delta^i_j$ and $S = T = 0 \implies dG = 0$. On-shell (with boundary metric term) describes M2-branes coupled to 3-form *C*: Kökenyesi, Sinkovics, Szabo '18

$$S_{\partial}[X] = \oint_{\partial \Sigma_4} \left(rac{1}{2} \, g_{ij} \, \mathrm{d} X^i \wedge st \mathrm{d} X^j + rac{1}{3!} \, C_{ijk} \, \mathrm{d} X^i \wedge \mathrm{d} X^j \wedge \mathrm{d} X^k
ight) \, .$$

• For $\rho_j^i = E_j^i(X)$ the "vielbein" for a twisted 4-torus, and T its geometric flux,

$$\mathrm{d}\mathsf{E}^i = -\frac{1}{2} \, T^i{}_{jk} \, \mathsf{E}^j \wedge \mathsf{E}^k \; ,$$

M-theory background on twisted torus, Hull, Reid-Edwards '06

$$S_{\partial}[X] = \oint_{\partial \Sigma_4} \frac{1}{2} g_{ij} \mathsf{E}^i \wedge * \mathsf{E}^j \; .$$

Turning on G too, one gets the expected algebraic identity $T^n_{[ij]} G_{klm]n} = 0$.

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ●

A different example

Recall: In the Courant algebroid, a consistent choice is cf. Besso, Heller, Ikeda, Watamura '15

$$\rho'_J = (0, \Pi''), \quad [\Pi, \Pi]_S = 0, \quad Q = d\Pi, \quad [\Pi, R]_S = 0.$$

This leads to a geometric R-flux model

$$egin{array}{rcl} S_{R,\Pi}[X] &=& \oint_{\partial \Sigma_3} \ rac{1}{2} \left(g_{ij} - \Pi_{ik}^{-1} \, g^{kl} \, \Pi_{lj}^{-1}
ight) \mathrm{d} X^i \wedge times \mathrm{d} X^j \ &+ \int_{\Sigma_3} \ rac{1}{3!} \, R^{pqr} \, \Pi_{ip}^{-1} \, \Pi_{jq}^{-1} \, \Pi_{kr}^{-1} \, \mathrm{d} X^i \wedge \mathrm{d} X^j \wedge \mathrm{d} X^k \; . \end{array}$$

• In the present setting, for $E = T^*M$, and the choices (with 4-vector *G*):

$$\rho^{ij} = \Pi^{ij} , \quad T_i^{jk} = \partial_i \Pi^{jk}, \quad [\Pi, G]_{\rm S} = 0 ,$$

M2-branes in 4-form flux controlled by a 4-vector G,

$$\begin{split} S_{\partial}[X] &= \oint_{\partial \Sigma_4} \ \frac{1}{2} \left(g_{ij} - \Pi_{ik}^{-1} \ g^{kl} \ \Pi_{lj}^{-1} \right) \mathrm{d} X^i \wedge * \mathrm{d} X^j \\ &+ \int_{\Sigma_4} \ \frac{1}{4!} \ G^{pqrs} \ \Pi_{ip}^{-1} \ \Pi_{jq}^{-1} \ \Pi_{kr}^{-1} \ \Pi_{ls}^{-1} \ \mathrm{d} X^i \wedge \mathrm{d} X^j \wedge \mathrm{d} X^k \wedge \mathrm{d} X^l \ . \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少々で

SL(5) fluxes from the five conditions?

In the above setting, it is not possible to obtain the rest of SL(5) fluxes.

SL(5) fluxes from the five conditions?

In the above setting, it is not possible to obtain the rest of SL(5) fluxes.

The structure of *R* indicates that T'_{JK} may contain it for enlarged *I*-index range.

The bundle index I should take 10 values; 4 of type i, j and six of paired type [ij], [kl].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SL(5) fluxes from the five conditions?

In the above setting, it is not possible to obtain the rest of SL(5) fluxes.

The structure of *R* indicates that T'_{JK} may contain it for enlarged *I*-index range.

The bundle index I should take 10 values; 4 of type i, j and six of paired type [ij], [kl].

A proposal is to consider the same model, but start with

$$E=E_2=TM\oplus\wedge^2T^*M.$$

For the anchor components we make a general choice, not just projection to TM,

$$(\rho^{i}_{I}) = (\rho^{i}_{j}, \rho^{ijk}) = (\delta^{i}_{j}, \frac{1}{2} \Omega^{ijk}).$$

Setting *S* and *G* to zero, there is a non-trivial identification of T_{IJ}^{K} with the *SL*(5) fluxes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is special; it requires an additional projection to SL(5) representations.

SL(5) fluxes as Wess-Zumino terms

Going back to the threebrane sigma-model, the *E*-valued fields now become:

$$A^{l} = (A^{i}, A_{ij}) =: (q^{i}, p_{ij}), \quad (1\text{-forms})$$
$$\alpha_{l} = (\alpha_{i}, \alpha^{ij}) =: (p_{i}, q^{ij}), \quad (2\text{-forms})$$

Apparent overabundance; but the flux identification says two additional things:

*
$$q^{ij}$$
 is decomposable, i.e. $q^{ij} = q^i \wedge q^j$.

*
$$p_j = q^i \wedge p_{ij}$$

This leads to the sigma-model with WZ terms being the four types of M-theory fluxes

$$egin{aligned} \mathcal{S} &= \int_{\Sigma_4} \, \left(F_i \wedge \mathrm{d} X^i - \, q^i \wedge p_{ij} \wedge \mathrm{d} q^j - \, q^i \wedge q^j \wedge \mathrm{d} p_{ij} + F_i \wedge q^i + rac{1}{2} \, \Omega^{ijk} \, F_i \wedge p_{jk}
ight. \ &+ rac{3}{2} \, F^m_{\ \ ik} \, q^i \wedge q^j \wedge q^k \wedge p_{im} + rac{1}{2} \, G_{ijkl} \, q^i \wedge q^i \wedge q^k \wedge q^l \ &+ rac{3}{2} \, Q_l^{ijk} \, q^l \wedge q^m \wedge p_{im} \wedge p_{jk} + rac{1}{2} \, R^{jk,lm,i} \, q^n \wedge p_{ni} \wedge p_{jk} \wedge p_{lm}
ight) \,. \end{aligned}$$

Boundary metric terms are entries of \mathcal{H}_2 , e.g. the characteristic $g^{ijkl} = g^{ik} g^{jl} - g^{il} g^{jk}$.

Epilogue

Some open problems

- Does this hold for larger U-duality groups?
 M5-branes, extended bundles are not as simple as *E_p*. but known... Hull '07
- Is there a sigma-model with extended base, not only bundle?
 Manifest U-duality in the world volume is hard... Duff, Lu, Percacci, Pope, Samtleben, Sezgin '15 Origin of the section condition?

- M-theory *R*-flux shows signs of non-associativity, how to capture it here? Günaydin, Lüst, Malek '16; Kupriyanov, Szabo '17
 As in the previous step, for the stringy *R*-flux. Mylonas, Schupp, Szabo '12
- M-theory exotic brane couplings?