CONTACT DUAL PAIRS

Alfonso Giuseppe Tortorella

(joint work with: A. M. BLAGA, M. A. SALAZAR & C. VIZMAN)

Quantum structure of space-time: Generalized geometry and symmetries Bayrischzell Workshop, April 12 – 16, 2019

Introduction

A *symplectic dual pair* consists of a pair of surjective Poisson maps

$$(M_1, \{-, -\}_1) \xleftarrow{\varphi_1} (M, \omega) \xrightarrow{\varphi_2} (M_2, \{-, -\}_2)$$

satisfying the orthogonality condition: ker $T\varphi_1 = (\ker T\varphi_2)^{\perp \omega}$.

Tracing back to [LIE, 1890], with their modern origin in the study of the local structure of Poisson manifolds [WEINSTEIN, 1983], they play a central role in:

- Morita equivalence of Poisson manifolds,
- superintegrable Hamiltonian systems,
- moment maps and reduction theory.

The close analogy between symplectic/Poisson & contact/Jacobi geometry~-> what, if any, is the contact analogue of symplectic dual pairs?

LCS & Contact Manifolds

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs
- 4 CDPs from Contact Reduction
- 5 CDPs & Local Structure of Jacobi Manifolds

LCS & Contact Manifolds

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs
- 4 CDPs from Contact Reduction
- 5 CDPs & Local Structure of Jacobi Manifolds

Locally conformal symplectic (lcs) manifolds

A *lcs structure* on a manifold *M* consists of a representation ∇ of *TM* on a line bundle $L \to M$ and non-degenerate d_{∇} -closed $\omega \in \Omega^2(M; L)$.

- In the *coorientable case* $(L = M \times \mathbb{R})$, a lcs structure reduces to a closed $\eta \in \Omega^1(M)$ and a non-degenerate $\omega \in \Omega^2(M)$, such that $d\omega + \omega \wedge \eta = 0$,
- $\Gamma(L) \to \mathfrak{X}(M), \ \lambda \mapsto \mathcal{X}_{\lambda} := \omega^{\sharp}(d_{\nabla}\lambda)$, (linear 1st order) DO from *L* to *TM*,
- ▶ (skew-symmetric) bi-DO from *L* to *L* satisfying the Jacobi identity

 $\{-,-\}_M: \Gamma(L) \times \Gamma(L) \to \Gamma(L), \ (\lambda,\mu) \mapsto \{\lambda,\mu\}_M := \omega(\mathcal{X}_{\lambda},\mathcal{X}_{\mu}),$

it is the associated Jacobi structure and fully encodes the lcs structure.

Contact Structures

A *contact structure* on a manifold *M* is equivalently described by:

- a *contact distribution* $\mathcal{H} \subset TM$, or
- a *contact form* $\vartheta \in \Omega^1(M;L)$, for some line bundle $L \to M$,

with $L = TM/\mathcal{H}$ and $\vartheta(X) = X \mod \mathcal{H}$, or in the opposite direction $\mathcal{H} = \ker \vartheta$.

- ► the *maximally non-integrability* of \mathcal{H} means that the associated *curvature* 2form $\omega_{\mathcal{H}} \in \Gamma(\wedge^2 \mathcal{H}^* \otimes L)$, with $\omega_{\mathcal{H}}(X, Y) := \vartheta[X, Y]$, is non-degenerate,
- ▶ in the *coorientable case* ($L = M \times \mathbb{R}$), one gets that $\vartheta \in \Omega^1(M)$, and the maximal non-integrability of \mathcal{H} reduces to $(d\vartheta)^n \wedge \vartheta$ is a volume form on M^{2n+1} ,
- $\Gamma(L) \to \mathfrak{X}(M), \lambda \mapsto \mathcal{X}_{\lambda}$, (1st order linear) DO from *L* to *TM*,
- ▶ (skew-symmetric) bi-DO from *L* to *L* satisfying the Jacobi identity

 $\{-,-\}_{\vartheta}: \Gamma(L) \times \Gamma(L) \to \Gamma(L), \ (\lambda,\mu) \mapsto \{\lambda,\mu\}_{\vartheta} := \vartheta[\mathcal{X}_{\lambda},\mathcal{X}_{\mu}],$

it is the associated Jacobi structure and fully encodes the contact structure.

LCS & Contact Manifolds

2 Jacobi Manifolds

- 3 Contact Dual Pairs
- 4 CDPs from Contact Reduction
- 5 CDPs & Local Structure of Jacobi Manifolds

The gauge (or Atiyah) algebroid of a line bundle

The DOs from *L* to *L* can be seen as sections of $DL := (J^1L)^* \otimes L \to M$, the *gauge algebroid*, with Lie algebroid structure on *DL* and *DL*-representation on *L*

 $[\Delta,\Delta'] := \Delta \circ \Delta' - \Delta' \circ \Delta, \quad \rho(\Delta) := \sigma_{\Delta}, \quad \nabla_{\Delta} := \Delta, \qquad \forall \Delta, \Delta' \in \Gamma(DL).$

Each *regular* line bundle morphism $\Phi : L_1 \to L_2$, over $\varphi : M_1 \to M_2$, determines a morphism of gauge algebroids $D\Phi : DL_1 \to DL_2$.

Schouten–Jacobi bracket, i.e. graded Lie bracket $[-, -]_{SJ}$ on $(\mathcal{D}^{\bullet}L)[1]$, with

 $\mathcal{D}^{\bullet}L := \Gamma(\wedge^{\bullet}(J^{1}L)^{*} \otimes L) = \{ \text{multi-DOs from } L \text{ to } L \},\$

• *der-complex* $(\Omega_D^{\bullet}(L), \mathbf{d}_D)$, with $\Omega_D^{\bullet}(L) := \Gamma(\wedge^{\bullet}(DL)^* \otimes L) = \{Atiyah \text{ forms}\}.$

Jacobi manifolds I

A *Jacobi bundle* [MARLE] is a line bundle $L \to M$ with a *Jacobi structure*, i.e. a Lie bracket $\{-, -\}$: $\Gamma(L) \times \Gamma(L) \to \Gamma(L)$ which is a (linear first order) bi-DO. A *Jacobi manifold* is a manifold with a Jacobi bundle over it.

 $\{-,-\} \text{ a Jacobi structure on } L \iff \begin{cases} \mathcal{J} \in \mathsf{MC}((\mathcal{D}^{\bullet}L)[1], \llbracket -, - \rrbracket_{SJ}) \\ \text{ i.e. } \mathcal{J} \in \mathcal{D}^{2}L \text{ and } \llbracket \mathcal{J}, \mathcal{J} \rrbracket_{SJ} = 0. \end{cases}$

A *Jacobi morphism* $(M_1, L_1, \{-, -\}_1) \rightarrow (M_2, L_2, \{-, -\}_2)$ is a *regular* line bundle morphism $\Phi : L_1 \rightarrow L_2$ s.t. the pull-back of sections $\Phi^* : \Gamma(L_2) \rightarrow \Gamma(L_1)$ satisfies

 $\Phi^*{\{\lambda,\mu\}_2} = {\{\Phi^*\lambda,\Phi^*\mu\}_1, \quad \forall \lambda,\mu\in\Gamma(L_2).}$

Jacobi manifolds II

► *coorientable case* $(L = M \times \mathbb{R})$, a Jacobi structure reduces to a *Jacobi pair* (Π, E) , i.e. a bi-vector $\Pi \in \mathfrak{X}^2(M)$ and a vector $E \in \mathfrak{X}(M)$ such that:

$$\llbracket \Pi, \Pi \rrbracket = \Pi \land E, \qquad \llbracket E, \Pi \rrbracket = 0.$$

▶ In particular, any Poisson structure is a Jacobi structure.

Proposition For any $L \rightarrow M$, there is a canonical 1-1 correspondence between:

- *L*-valued contact forms $\vartheta \in \Omega^1(M; L)$,
- ▶ symplectic Atiyah forms ϖ , i.e. non-deg. $\varpi \in \Omega_D^2(L)$ with $d_D \varpi = 0$,
- ▶ *non-degenerate* Jacobi structures $\mathcal{J} \in \mathcal{D}^2 L$, i.e. such that $\mathcal{J}^{\sharp} : J^1 L \to DL$ iso.

LCS & Contact Manifolds

2 Jacobi Manifolds

4 CDPs from Contact Reduction

5 CDPs & Local Structure of Jacobi Manifolds

Contact Groupoids

Let $\mathcal{G} \rightrightarrows \mathcal{G}_0$ be a Lie groupoid, with structure maps s, t, m, u, i. A *multiplicative contact structure* on $\mathcal{G} \rightrightarrows \mathcal{G}_0$ is equivalently described by:

- contact distributions \mathcal{H} on \mathcal{G} which are *multiplicative*, i.e. \mathcal{H} is a *wide* subgroupoid of the tangent groupoid $T\mathcal{G} \rightrightarrows T\mathcal{G}_0$,
- contact forms $\vartheta \in \Omega^1(\mathcal{G}; t^*L_0)$, with values in a representation $L_0 \to \mathcal{G}_0$ of \mathcal{G} , which are *multiplicative*, i.e. for all $(g,h) \in \mathcal{G}^{(2)}$

$$(m^*\vartheta)_{(g,h)} = (\mathbf{pr}_1^*\vartheta)_{(g,h)} + g \cdot (\mathbf{pr}_2^*\vartheta)_{(g,h)},$$

where $\operatorname{pr}_1, \operatorname{pr}_2 : \mathcal{G}^{(2)} := \mathcal{G}_s \times_t \mathcal{G} \to \mathcal{G}$ are the projections.

A *contact groupoid* is a Lie groupoid with a multiplicative contact structure.

From Contact Groupoids to Contact Dual Pairs

Let $\mathcal{G} \rightrightarrows \mathcal{G}_0$ be a contact groupoid, $\vartheta \in \Omega^1(\mathcal{G}; t^*L_0)$, $\mathcal{H} = \ker \vartheta$ and $L = T\mathcal{G}/\mathcal{H}$.

- ▶ The left and right translations induce regular line bundle morphisms $S: L \to L_0$ and $T: L \to L_0$ covering respectively $s: \mathcal{G} \to \mathcal{G}_0$ and $t: \mathcal{G} \to \mathcal{G}_0$.
- ▶ There is a unique Jacobi structure $\mathcal{J}_0 = \{-, -\}_0$ on $L_0 \to \mathcal{G}_0$ such that

$$(\mathcal{G}_0, L_0, \mathcal{J}_0) \xleftarrow{S} (\mathcal{G}, \mathcal{H}) \xrightarrow{T} (\mathcal{G}_0, L_0, -\mathcal{J}_0)$$
 are Jacobi morphisms.

- \mathcal{H} is transverse to both $T^s \mathcal{G}$ and $T^t \mathcal{G}$,
- **2** $S^*\lambda$ and $T^*\mu$ commute wrt $\{-,-\}_{\mathcal{H}}$, for all $\lambda, \mu \in \Gamma(L)$,

So contact groupoids lead us to single out the notion of contact dual pair.

Contact Dual Pairs

Consider a contact manifold (M, L, ϑ) and a pair of Jacobi morphisms

$$(M_1, L_1, \{-, -\}_1) \xleftarrow{\Phi_1} (M, L, \vartheta) \xrightarrow{\Phi_2} (M_2, L_2, \{-, -\}_2), \qquad (\star)$$

covering surjective submersions $M_1 \xleftarrow{\phi_1} M \xrightarrow{\phi_2} M_2$.

DEFINITION The above diagram (*) forms a *contact dual pair* if:

- $\mathcal{H} = \ker \vartheta$ is transverse to the fibers of $\varphi_1 : M \to M_1$ and $\varphi_2 : M \to M_2$,
- **2** $\Phi_1^*\lambda_1$ and $\Phi_2^*\lambda_2$ commute wrt $\{-,-\}_{\mathcal{H}}$, for all $\lambda_1 \in \Gamma(L_1)$ and $\lambda_2 \in \Gamma(L_2)$,
- **③** $\mathcal{H} \cap \ker T\varphi_1$ is the orthogonal complement of $\mathcal{H} \cap \ker T\varphi_2$ wrt $\omega_{\mathcal{H}}$.

PROPOSITION Diagram (*) is a contact dual pair iff $\ker D\Phi_1 = (\ker D\Phi_2)^{\perp \varpi}$, where $\varpi \in \Omega_D^2(L)$ is the symplectic Atiyah form corresponding to ϑ .

LCS & Contact Manifolds

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs
- 4 CDPs from Contact Reduction
- 5 CDPs & Local Structure of Jacobi Manifolds

Contact Actions

A *contact action* of a contact groupoid $\mathcal{G} \Rightarrow \mathcal{G}_0$ on a contact manifold M, with *moment* $\mu : M \rightarrow \mathcal{G}_0$, is a map $\Phi : \mathcal{G}_s \times_{\mu} M \rightarrow M$, $(g, x) \mapsto g \cdot x$, s.t.

$$\mu(g \cdot x) = t(g), \quad \mu(x) \cdot x = x, \quad (gh) \cdot x = g \cdot (hx),$$

and these two equivalent compatibility properties hold:

- $(T\Phi)(u,v) \in \mathcal{H}_M \iff u \in \mathcal{H}_{\mathcal{G}}; \text{ for all } (u,v) \in T(\mathcal{G}_s \times_{\mu} M), \text{ with } v \in \mathcal{H}_M,$
- **2** μ lifts to a regular LB morphism $\hat{\mu} : L_M \to L_0$ (so that $L_M \simeq \mu^* L_0$) and

$$(\Phi^*\vartheta_M)_{(g,x)} = (\mathrm{pr}_1^*\vartheta_{\mathcal{G}})_{(g,x)} + g \cdot (\mathrm{pr}_2^*\vartheta_M)_{(g,x)}.$$

- $\mathcal{G}^{(2)} \xrightarrow{m} \mathcal{G}$ is a contact action of \mathcal{G} on \mathcal{G} with moment $\mathcal{G} \xrightarrow{t} \mathcal{G}_0$.
- Lie group action $G \curvearrowright M$ by contactomorphisms + *transversality* give rise to a moment $\mu : M \to \mathbb{P}(\mathfrak{g}^*)$ and a contact action of $\mathbb{P}(T^*G) \rightrightarrows \mathbb{P}(\mathfrak{g}^*)$ on M.

CDPs from Contact Reduction

Fix a *free and proper* contact action of a *s-connected* $\mathcal{G} \rightrightarrows \mathcal{G}_0$ on M with moment $\mu : M \rightarrow \mathcal{G}_0$. Assume that μ is *surjective* and has *connected fibers*. Then one gets:

- μ is a submersion, and its lift $\hat{\mu} : L_M \to L_0$ is a Jacobi morphism,
- ▶ there exists a unique Jacobi structure $\{-,-\}_{M/\mathcal{G}}$ on $L_M/\mathcal{G} \to M/\mathcal{G}$ s.t. quotient map $\widehat{q} : L_M \to L_M/\mathcal{G}$ is a Jacobi morphism covering $q : M \to M/\mathcal{G}$.

Proposition The following is a contact dual pair, with connected fibers,

$$(M/\mathcal{G}, L_{M/\mathcal{G}}, \{-, -\}_{M/\mathcal{G}}) \xleftarrow{\widehat{q}} (M, \mathcal{H}_M) \xrightarrow{\widehat{\mu}} (\mathcal{G}_0, L_0, \{-, -\}_0).$$

Corollary (Groupoid Contact Reduction [ZAMBON & ZHU]) The *reduced orbit* spaces $\mu^{-1}(\mathcal{O})/\mathcal{G}$ are *transitive Jacobi manifolds*, for all orbits \mathcal{O} of \mathcal{G} in \mathcal{G}_0 , and they form the characteristic foliation of $(M/\mathcal{G}, L_M/\mathcal{G}, \{-, -\}_{M/\mathcal{G}})$.

LCS & Contact Manifolds

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs
- 4 CDPs from Contact Reduction

5 CDPs & Local Structure of Jacobi Manifolds

A Glimpse at the Local Structure of Jacobi Manifolds

Let $(M, L, \mathcal{J} = \{-, -\})$ be a Jacobi manifold.

• The *characteristic foliation* \mathcal{F} of M s.t. $T\mathcal{F} := \operatorname{im}\{J^{1}L \xrightarrow{\sigma} DL \xrightarrow{\sigma} TM\} \subset TM$.

• If $T\mathcal{F} = TM$, then the Jacobi manifold is said to be *transitive*.

CHARACTERISTIC FOLIATION THEOREM [KIRILLOV '76]

- Each characteristic leaf inherits a transitive Jacobi structure, with
 - ▶ odd-dim transitive Jacobi manifolds → contact manifolds,
 - even-dim transitive Jacobi manifolds $\stackrel{1\cdot 1}{\longleftrightarrow}$ lcs manifolds.

TRANSVERSE STRUCTURE [DAZORD, LICHNEROWICZ, MARLE '91]

- Each characteristic leaf inherits a transverse structure, specifically:
 - ▶ contact leaf → transverse homogeneous Poisson structure,
 - lcs leaf ~> transverse Jacobi structure.

CDPs & Local Structure of Jacobi Manifolds

Consider a contact dual pair

$$(M_1,L_1,\{-,-\}_1) \xleftarrow{\Phi_1} (M,L,\vartheta) \xrightarrow{\Phi_2} (M_2,L_2,\{-,-\}_2),$$

with additionally *connected fibers* of the underlying maps $M_1 \xleftarrow{\phi_1} M \xrightarrow{\phi_2} M_2$.

The Characteristic Leaf Correspondence Theorem

- The relation $\varphi_1^{-1}(S_1) = \varphi_2^{-1}(S_2)$ establishes a 1-1 correspondence between the characteristic leaves S_1 of M_1 and the characteristic leaves S_2 of M_2 .
- **2** Let S_1 and S_2 be in correspondence. Then dim $S_1 \equiv \dim S_2 \mod 2$, and
 - there exists a close relation between:

contact (resp. lcs) structure of $S_1 \rightleftharpoons$ contact (resp. lcs) structure of S_2 ,

there exists a canonical anti-isomorphism between:

transverse structure to $S_1 \simeq$ transverse structure to S_2 .

References

- A. M. BLAGA, M. A. SALAZAR, AGT & C. VIZMAN, Contact dual pairs, preprint arXiv:1903.05250, 2019.
- A. BRUCE, K. GRABOWSKA & J. GRABOWSKI, *Remarks on contact and Jacobi geometry*, SIGMA 13 (2017) 59–80.
- M. CRAINIC & M. A. SALAZAR, *Jacobi structures and Spencer operators*, J. Math. Pures Appl. 103 (2015) 504–521.
- Y. KERBRAT & Z. SOUICI-BENHAMMADI, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 81–86.
- A. KIRILLOV, *Local Lie algebras*, Russian Math. Surveys **31** (1976) 55–75.
- A. WEINSTEIN, *The local structure of Poisson manifolds*, J. Differential Geom. 18 (1983) 523–557.
- M. ZAMBON & C. ZHU, Contact reduction and groupoid actions, Trans. Amer. Math. Soc. 358 (2005) 1365–1401.

Thank you!