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1 Commutative Quantum Field Theory

We will present a brief introduction to (commutative) Quantum Field Theory
using the path integral formalism. We will discuss the quantisation of scalar
fields in Section 1.1, of gauge fields in Section 1.2 and renormalisation in
Section 1.3. We will basically follow the presentation provided in the book
by Lewis Ryder [1].

Conventions. We will use the conventions of [1]. Hence, the Minkowski
metric is given by

gµν =


1
−1

−1
−1

 . (1.1)

1.1 Scalar fields

For a start, we will consider four dimensional Minkowski space-time. The
action for a free scalar field is given by

S0 =

∫
d4xL0(ϕ, ∂µϕ)

=

∫
d4x

(
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 .

)
(1.2)

The Euler-Lagrange equation

∂L0

∂ϕ
− ∂µ

∂L0

∂∂µϕ
= 0

is given by the Klein-Gordon equation:

(�+m2)ϕ = 0 . (1.3)

The path integral is equal to the vacuum to vacuum amplitude

Z0[J ] =

∫
[Dϕ] exp

(
i

∫
d4x

(
L0 + Jϕ+ iϵϕ2

))
, (1.4)

where we have coupled the scalar field to an external source J . It is not
quantised, and somehow represents the link between the quantum world and

2



macroscopic experiments. The source plays an analogous role to the electro-
magnetic current. A charged scalar field couples to gauge potential Aµ via
this current:

Lem = −eJµAµ , (1.5)

where
Jµ = i(ϕ∗∂µϕ− ϕ∂µϕ∗) . (1.6)

Let us return to Eqn. (1.4). The integral measure [Dϕ] is not well defined,

[Dϕ] =
∏
x∈R4

dϕ(x) . (1.7)

There are various techniques to give a well defined meaning to the inte-
gration measure. One of them is a lattice regularisation, where space-time
is approximated by a four dimensional grid with constant lattice spacing
δ, for simplicity. Strictly speaking, one has to perform a Wick rotation
from Minkowski space-time to the four dimensional Euclidean space first.
Then, the calculations have to be performed there, and the results have to
be transformed back to Minkowski space. The formulations in both spaces,
Minkowski and Euclidean are equivalent. This transition will be discussed
briefly in Section 1.1.1. In the noncommutative realm, this transformation
is not at all well understood and still an open question. In the first step of
the lattice regularisation, space-time is approximated by a finite lattice with
N points, say in each direction and lattice spacing δ. Hence, we have the
following identifications

[Dϕ] −→
N∏

i1=1

N∏
i2=1

N∏
i3=1

N∏
i4=1

dϕ(xi1 , xi2 , xi3 , xi4) , (1.8)

∫
d4x −→

N4∑
n=1

δ4 , (1.9)

∂1ϕ
∣∣∣
i,j,k,l

−→ 1

δ
(ϕ(xi + δ, yj, zk, tl)− ϕ(xi, yj, zk, tl)) , (1.10)

. . .

The results will depend on the volume of the lattice and the lattice spacing. In
order to obtain continuum results, one first has to perform the infinite volume
limit, N →∞ and then the continuum limit, δ → 0. This corresponds to the
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so-called naive continuum-limit, which might not be the correct limit. For
the correct limit, one might have to keep some physical quantities fixed.

The field ϕ in (1.4) is not i.g. a solution of the equation of motion (EOM)
(1.3), since all fields are considered in the path integral. We can decompose
the scalar field in the following way:

ϕ→ ϕ0 + ϕ , (1.11)

where ϕ0 is a solution of the Euler-Lagrange equation. Therefore, we obtain
for the action

S = −
∫
d4x

1

2

(
ϕ(�+m2 − iϵ)ϕ+ ϕ0(�+m2 − iϵ)ϕ0

+ϕ(�+m2 − iϵ)ϕ0 + ϕ0(�+m2 − iϵ)ϕ− 2ϕJ− 2ϕ0J
)

= −
∫
d4x

1

2

(
ϕ(�+m2 − iϵ)ϕ− ϕ0J

)
. (1.12)

In general, a solution to the EOM is given by

ϕ0(x) = −
∫
d4y∆F (x− y)J(y) , (1.13)

where ∆F is the Green’s function of Lx = �+m2, i.e.,

Lx∆(x− y) = −δ(4)(x− y) . (1.14)

Acting with Lx on (1.13), we get

LHS = Lxϕ0(x) = J(x) , (1.15)

RHS = −
∫
d4y Lx∆F (x− y)J(y) = J(x) . (1.16)

Therefore, the path integral becomes

Z0[J ] = exp

(
− i

2

∫
d4x d4y J(x)∆F (x− y)J(y)

)
×
∫
[Dϕ] exp

(
− i

2

∫
d4xϕ(�+m2 − iϵ)ϕ

)
= N exp

(
− i

2

∫
d4x d4y J(x)∆F (x− y)J(y)

)
, (1.17)

where N is a normalization factor.
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Propagator. The propagator ∆F (x− y) is defined as Green’s function of
the free field equation:(

�+m2 − iϵ
)
∆F (x− y) = −δ(4)(x− y) . (1.18)

Therefore, we obtain after Fourier transformation

∆F (x) =
1

(2π)4

∫
d4k

e−ikx

k2 −m2 + iϵ

=

∫
d3k

(2π)3

∫
dk0
2π

e−ik0t

k20 − k2 −m2 + iϵ
eikx , (1.19)

where iϵ dictates the path of integration in the complex k0-plane. The poles
of the propagator are

k0 = ±Ek ∓ iδ , (1.20)

where Ek =
√
k2 +m2.

• If t > 0: Propagation forward in time; we need to close the contour in
the upper complex half-plane,

∆F (x)
> =

∫
d3k

(2π)3

∫
dk0
2π

e−ik0t

k20 − k2 −m2 + iϵ
eikx

=

∫
d3k

(2π)3
i

2Ek

eikx−i(Ek−iδ)

δ→0−→
∫

d3k

(2π)3
i

2Ek

eikx−iEk , (1.21)

where we have used the residue theorem∮
γ

f(z)dz = 2πi
n∑

k=1

Res(f, ak), (1.22)

where γ is a closed curve in the complex z-plane and the function f
is holomorphic everywhere except at finitely many points ak in the
interior of γ. In our case, we have

f(k) =
1

(k0 − Ek + iδ)(k0 + Ek − iδ)
, (1.23)

and therefore

Res(f, k0 = Ek − iδ) =
1

2Ek − 2iδ

δ→0−→ 1

2Ek

. (1.24)
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• If t < 0: Propagation backwards in time; we need to close the contour
in the lower complex half-plane and we obtain

∆F (x)
< =

∫
d3k

(2π)3
i

−2Ek

eikx+iEk . (1.25)

We will use a graphical representation of the free propagator just calculated.
The free path integral

Z0[J ] = N e−
i
2

∫
J(x)∆F (x−y)J(y)d4xd4y

= N e−
i
2
(2π)4

∫ J(p)J(−p)

p2−m2+iϵ
d4p

(1.26)

can be expanded in terms of the following basic graphical building blocks:

p i
(2π)4

1
p2−m2+iϵ

,

r
J

p i(2π)4J(p);

and the partition function (1.26) reads

Z0[J ]/N = 1− i

2
(2π)4

∫
d4p

J(p)J(−p)
(p2 −m2 + iϵ)

− (2π)8

8

∫
d4p

J(p)J(−p)
(p2 −m2 + iϵ)

∫
d4q

J(q)J(−q)
(q2 −m2 + iϵ)

+ . . . (1.27)

= 1 +
1

2
r r + 1

2!

(
1

2

)2 r rr r + 1

3!

(
1

2

)3 r rr rr r + . . . (1.28)

Each line also implies an integration over the corresponding momentum.
The functional Z0[J ] is the generating functional of free correlation functions
τn(x1, . . . , xn), in the sense that

τn(x1, . . . , xn) =
1

in
δnZ0[J ]

δJ(x1) . . . δJ(xn)

∣∣∣
J=0

(1.29)

= < 0|TΦ(x1) . . .Φ(xn)|0 > .

E.g., we have

τ2(x, y) = i∆F(x− y) , (1.30)

τ3(x, y, z) = 0 ;
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in fact, all τm with an odd number of arguments - m - vanish identically.
Hence, we can write

Z0[J ] =
∞∑
n=0

in

n!

∫
d4x1 . . . d

4xn J(x1) . . . J(xn)τn(x1, . . . , xn) . (1.31)

Generating functional for interacting fields. A scalar field with a
quartic selfinteraction can be described by the Lagrangian

L =
1

2
∂µϕ ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4

= L0 + Lint (1.32)

leading to the following generating functional:

Z[J ] =

∫
[Dϕ] exp

(
iS + i

∫
d4x Jϕ

)∫
[Dϕ]eiS

. (1.33)

The factor in the denominator is independent of the source J and can be
written as a normalization factor,

Z[J ] = N
∫

[Dϕ] exp

(
iS + i

∫
d4x Jϕ

)
. (1.34)

Furthermore, we can write

Z[J ] = N exp

(
i

∫
d4xLint(

1

i

δ

δJ
)

)
Z0[J ] (1.35)

=
exp

(
i
∫
d4xLint(

1
i
δ
δJ
)
)
exp(− i

2

∫
d4xd4y J(x)∆F (x− y)J(y))

exp
(
i
∫
d4xLint(

1
i
δ
δJ
)
)
exp(− i

2

∫
d4xd4y J(x)∆F (x− y)J(y))

∣∣∣
J=0

.

The exponential above can be expanded into a Taylor series and examined
to each order. In the denominator, the external sources are put to zero.
Therefore, these contributions correspond to vacuum bubbles with no exter-
nal legs, which would be characterized by the sources. The full correlation
functions τn(x1, . . . , xn) which include the interaction are given by functional
differentiating Z[J ]:

τn(x1, . . . , xn) =
1

in
δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣
J=0

. (1.36)
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As an example, let us consider the 2-point function:

τ2(x1, x2) = i∆F(x1 − x2)−
λ

2
∆F(0)

∫
d4z∆F(z− x1)∆F(z− x2)

+O(λ2)

=: i r r − λ

2
r rlr +O(λ2) (1.37)

The normalization factor N removes the vacuum diagrams from the gener-
ating functional,

N =

(
exp

(
i

∫
d4xLint(

1

i

δ

δJ
)

)
Z0[J ]

∣∣∣
J=0

)−1

=

(
1 +

3iλ

4!

∫
d4x∆F (0)

2 +O(λ2)

)−1

(1.38)

= 1− 3iλ

4!

∫
d4x∆F (0)

2 +O(λ2)

Explicit calculation leads to

τ2(x1, x2) =
i

(2π)4

∫
d4p

e−ip(x1−x2)

p2 −m2 + iϵ

(
1 +

i
2
λ∆F (0)

p2 −m2 + iϵ

)
=

i

(2π)4

∫
d4p

e−ip(x1−x2)

p2 −m2 + iϵ

(
1−

i
2
λ∆F (0)

p2 −m2 + iϵ

)−1

=
i

(2π)4

∫
d4p

e−ip(x1−x2)

p2 −m2 + iϵ− iλ
2
∆F(0)

, (1.39)

assuming that λ∆F (0) is small. However, we will see that the term ∆F (0)
introduces divergences into the theory, since

∆F (0) =
1

(2π)4

∫
Λ

d4k
e−ik(x−x)

k2 −m2 + iϵ
∼ Λ2 , (1.40)

where Λ is a UV cut-off. The expression for ∆F (0) shows a quadratic diver-
gence behaviour. Therefore, the one-loop correction effectively modifies the
mass, and we can redefine it in the following way:

m2
eff = m2 +

iλ

2
∆F (0) ≡ m2 + δm2 . (1.41)
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This gives rise to the one-loop renormalisation of the mass, which we will
discuss in some detail in Section 1.3.

Similarly, we obtain for the 4-point function

τ4(x1, x2, x3, x4) =
δ4Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣
J=0

= −3 − iλ

4!

(
72

lr
+ 24 ���

HHH r )
+O(λ2) ,(1.42)

where

���
HHH r ≡

∫
d4z∆F (x1 − z)∆F (x2 − z)∆F (x3 − z)∆F (x4 − z) . (1.43)

1.1.1 Transition to Euclidean spaces

1.2 Gauge fields

1.3 Renormalisation

1.3.1 Scalar ϕ4 theory

1.3.2 Pure Yang-Mills theory

1.4 Compendium

2 Noncommutative Geometry

We will start the discussion of noncommutative geometry with some physical
motivations and will then provide the mathematical foundations.

2.1 Motivation

2.1.1 Rotation group

Let us consider the rotation group SO(3) in a three dimensional Euclidean
space. The group action is noncommutative. This can be seen be applying
two consecutive rotations – (a) 90◦ around the z-axis, and (b) 90◦ around the
x-axis – on a book, say. Let the book be centered in the coordinate origin.
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First applying rotation (a) and then (b) will yield a different result than first
applying (b) and then (a). These operations do not commute.

The generators of infinitesimal rotations form a Lie algebra:

[T i, T j] = iϵijkTk , (2.1)

where i, j, k = 1, 2, 3. A finite rotation g(x) is given by

g(x) = eiλ
i(x)T i

.

Replacing the generators T i by coordinate operators X̂ i, and we obtain a
first example of a noncommutative space:

[X̂ i, X̂j] = iϵijkX̂k . (2.2)

Further assuming the condition that∑
i

X̂ iX̂ i = R2 , (2.3)

where R ∈ R is a central element, the radius; this noncommutative space is
called the fuzzy sphere [2].

2.1.2 Landau problem

Consider a particle with charge e moving in a homogeneous and constant
magnetic field. The quantum mechanical Hamiltonian Ĥ is given by

Ĥ =
1

2m

(
p̂− eÂ

c

)2

. (2.4)

Let us confine the particle to 2D, to the (x, y)-plane with the magnetic field
perpendicular to it,

B =

 0
0
B

 , B = const. (2.5)

Therefore, we get for the Hamiltonian

Ĥ =
p̂2x
2m

+
e2B2

2mc2

(
x̂− c

eB
p̂y

)2
=

p̂2x
2m

+
1

2
mω2

c

(
x̂− ~ky

mωc

)2

, (2.6)
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with the cyclotron frequency ωc =
eB
mc

, and we have replaced p̂y by its eigen-

values ~ky, since p̂y commutes with Ĥ. The Hamiltonian (2.6) is a shifted
harmonic oscillator and has the eigenvalues

En = ~ωc(n+
1

2
) , n ≥ 0 . (2.7)

The separation of the eigenvalues is given by

∆E = ~ωc =
~ eB
mc

.

In the limit of strong magnetic fields B → ∞, the energy spacing becomes
large, ∆E →∞ and only the lowest Landau level is occupied.

Let us turn our attention to the action. It is given by

S =

∫
dt

(
1

2
mẋiẋ

i − e

c
Bµνx

iẋi
)
, (2.8)

where Bµν is an antisymmetric tensor defining the vector potential Aµ, Bµν =
−Bνµ and Aν = Bµνx

µ. The Poisson bracket between coordinates and mo-
menta is given by {

πi, x
j
}
= δji , (2.9)

where

πi =
∂L
∂ẋi

= mẋi +
e

c
Bijx

j . (2.10)

Writing it out explicitly, we get{
ẋi, x

j
}
+
eBik

cm

{
xk, xj

}
=

1

m
δji , (2.11)

Let us assume strong magnetic field B and small mass m - i.e., we restrict
the particle to the lowest Landau level [3]. In this approximation, eqn. (2.11)
simplifies, and we get [4] {

xi, xj
}
=
c (B−1)ij

e
. (2.12)

The coordinates perpendicular to the magnetic field do not commute, on
a classical level. Under quantisation, we replace the Poisson bracket by a
commutator,

{f(x, π) , g(x, π)} → 1

i~
[f(x̂, π̂) , g(x̂, π̂)] ,
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and we obtain a noncommutative algebra.
More rigorously, we have to consider the Hamiltonian and analyse the

constraints of the system, for details see e.g. [5, 6]. In the limit of strong
magnetic field, the canonical momentum given in Eq. (2.10) becomes

πi =
e

c
Bijx

j , (2.13)

which resembles a so-called primary constraint. In order to quantise the
Hamiltonian, the Poisson bracket has to be replaced by the Dirac bracket
{ , }DB. And the quantisation procedure becomes

{f(x, π) , g(x, π)}DB →
1

i~
[f(x̂, π̂) , g(x̂, π̂)] .

Second class constraints2 modify the Poisson bracket,

{f, g}DB = {f, g} −
∑
i,j

{f, ϕi}M−1
ij {ϕj, g} ,

where the second class constraints are denoted by ϕi, and Mij = {ϕi, ϕj}.
Using the definition of a Dirac bracket, one immediately sees that

{xσ, xν}DB =
c (B−1)σν

e
. (2.14)

2.1.3 Quantizing gravity

When the quantization of gravity was considered thoroughly, it became clear
that the usual concepts of space-time are inadequate and that space-time has
to be quantized or noncommutative, in some way. This situation has been
analyzed in detail by S. Doplicher, K. Fredenhagen and J.E. Roberts in [7].
Measuring the distance l between two particles, energy has to be deposited
in that space-time region, proportional to the inverse distance, E = hc

λ
∼ hc

l
.

As the distance l decreases the Energy E increases. At the Planck length,

l ∼ lPl =
√

~G
c3
, the bailed energy is given by

E = hc

√
c3

~G
.

2These are constraints which have a non-vanishing Poisson bracket with at least one
other constraint. If the Poisson bracket of a constraint with any other constraint vanishes,
then this constraint is called first class.
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This corresponds to an inertia

M =
E

c2
=
h

c

√
c3

~G
∼
√

~c
G

=MPl ,

where MPl denotes the Planck mass. The associated Schwarzschild radius is
given by

rS =
2GM

c2
= 2

√
~G
c3

= 2lPl .

Therefore, the deposited energy curves space-time to such an extent that a
black hole is generated. The limitations arising from the need to avoid the
appearance of black holes during a measurement process lead to uncertainty
relations between space-time coordinates. This already allows to catch a
glimpse of the deep connection between gravity and noncommutative geom-
etry, especially noncommutative gauge theory.

2.1.4 String theory

Another motivation for noncommutative geometry comes from String The-
ory. In the context of open strings with D-branes in a background magnetic
field Bµν (induced by the closed string sector) the endpoints of open strings
are confined to the D-branes. Furthermore, their space-time dynamics is de-
scribed by an effective noncommutative field theory living on the D-branes,
in the low energy limit. For details see e.g. [8, 9, 10].

2.2 Basic ideas

Before considering Fig. 1 and the role of algebras in the context of geometry,
let us define the notion of a C∗ algebra.

Definition 2.1 (Involution). An involution ∗ is a map from a set A to
itself,

∗ : A −→ A

a 7−→ a∗ ,

satisfying

i) (a∗)∗ = a ,

13



ii) (ab)∗ = b∗a∗ ,

iii) (za+ wb)∗ = z̄a∗ + w̄b∗ ,

∀a, b ∈ A, ∀z, w ∈ C.

Definition 2.2 (Banach algebra). An algebra A with norm || · || is called
a Banach algebra if and only if (iff) the following requirements are satisfied:

i) (A,+, || · ||) is a Banach space, i.e. complete with respect to || · ||3.

ii) (A,+, ·) is an associative algebra.

iii) ||a · b|| ≤ ||a||||b||, ∀a, b ∈ A.

Definition 2.3 (C∗ algebra). A C∗ algebra C is an involutive Banach
algebra with ||a∗a|| = ||a||2, ∀a ∈ C.

The connection between commutative algebras and geometry is depicted
in Fig 1. We start with a smooth and compact manifoldM. The topology of
M is uniquely determined by the algebra of continuous complex valued func-
tions onM, C(M) with the usual involution (Urysohn’s Lemma [11]). The
Gel’fand-Naimark theorem [12] relates the function algebra to an Abelian
C∗-algebra. The algebra of continuous functions over a compact manifold
M is isomorphic to an Abelian unital C∗-algebra4. The algebra of contin-
uous functions vanishing at infinity over a locally compact Hausdorff space,
C0(M), is isomorphic to an Abelian C∗-algebra (not necessarily unital).

compact

manifoldM
� - C(M)

Urysohn’s

Lemma

� -

Gel’fand

Naimark

Abelian, semisimple

C∗ algebra

Figure 1: Classical algebraic geometry
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points → maximal ideals
x ∈M 7→ ideal J = {f |f(x) = 0} ⊂ C(M)

coordinates → coordinate functions
vector field → derivations of the

algebra

geometry → algebraic geometry

Figure 2: Algebraic geometry

Coordinates on the manifold are replaced by coordinate functions in C(M),
vector fields by derivations of the algebra. Points are replaced by maximal
ideals, cf. Fig. 2.
The trick in noncommutative geometry is to replace the Abelian C∗ algebra
by a non-Abelian one and to reformulate as much of the concepts of algebraic
geometry as possible in terms of non-Abelian C∗ algebras [13, 14].

In the following, this noncommutative algebra Â will be given by the algebra
of formal power series generated by the noncommutative coordinate functions
x̂i, divided by an ideal I,

Â =
C⟨⟨x̂1, ...x̂n⟩⟩

I
, (2.15)

where the ideal I is generated by the commutation relations

[x̂i, x̂j] = iθij(x̂) . (2.16)

An element f̂ ∈ Â has the form

f̂(x̂) =
∞∑
n=0

ci1...in : x̂i1 . . . x̂in : , (2.17)

where :: indicates an ordering prescription in the noncommutative algebra
defining a basis of monomials. This will be discussed in detail in Section 2.3.
The validity of the commutation relations (2.16) is incorporated via the
ideal I.

3A space is complete iff every Cauchy series converges with respect to the norm || · || .
4A unital algebra contains a multiplicative identity element.
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Definition 2.4 (Ideal). Let (R,+, ·) be an arbitrary ring. A subset I is
called a (two-sided) ideal of R, iff

i) (I,+) is a subgroup of (R,+).

ii) x · r ∈ I and r · x ∈ I, ∀x ∈ I, ∀r ∈ R.

In our case, the ideal is generated by the commutation relations, and we can
define

I := {c â, r̂ · â, â · r̂
∣∣∀c ∈ C,∀r̂ ∈ Â} , (2.18)

where â = x̂i · x̂j − x̂j · x̂i − iθij(x̂). An element of the quotient algebra Â is

then an equivalence class [f̂ ] ∈ Â. Let us assume that ĝ is in the equivalence
class [f̂ ]. Then also ĝ + b ∈ [f̂ ], for all b ∈ I. Let us illustrate this with a
simple example.

Example 2.1 (Meaning of ideals). Let us assume θij(x̂) = θij ∈ R, and
let us consider the two functions

f̂ = x̂1x̂2 and ĝ = x̂2x̂1 + iθ12 .

We can use relations (2.16) in order to rewrite ĝ:

ĝ = x̂2x̂1 + iθ12 = x̂1x̂2 − (x̂1x̂2 − x̂2x̂1 − iθ12) = x̂1x̂2 − â

Therefore, we see that we need not distinguish between f̂ and ĝ, and that
they are in the same equivalence class,

ĝ ∈ [f̂ ] .

In this way, the ideal I takes into account the commutation relations in the
language of algebras. �

Let us return to the commutation relations for the coordinates (2.16).
Since the LHS is a commutator, the RHS has to be antisymmetric in its
indices,

θij(x̂) = −θji(x̂)

and has to satisfy the Jacobi identity,

[θij(x̂), x̂k] + [θki(x̂), x̂j] + [θjk(x̂), x̂i] = 0 .
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Most commonly, θij(x̂) is chosen to be either constant or linear or quadratic
in the generators. In the canonical case, the relations are constant,

[x̂i, x̂j] = iθij, (2.19)

where θij ∈ R is an antisymmetric matrix, θij = −θji. The linear or Lie
algebra case

[x̂i, x̂j] = iλijk x̂
k, (2.20)

where λijk ∈ C are the structure constants, basically has been discussed in two
different approaches, namely fuzzy spheres [2] and κ-deformation [15, 16, 17].
Last but not least, we have quadratic commutation relations

[x̂i, x̂j] = (
1

q
R̂ij

kl − δ
i
lδ

j
k)x̂

kx̂l, (2.21)

where R̂ij
kl ∈ C is the so-called R̂-matrix corresponding to quantum groups

and also related to Statistical Physics. Those structures will be discussed in
more detail in the next section. Concerning quantum field theory, we will
concentrate on the simplest case in Section 3.

2.2.1 Hopf algebras and quantum groups

Classically, symmetries are described by Lie algebras or Lie groups. A phys-
ical space is a representation space of its symmetry algebra. In the deformed
case, this is no longer true. Let us consider the canonical commutation rela-
tions

[x̂i, x̂j] = iθij .

These relations destroy the invariance of Minkowski space-time under the
Poincaré Lie algebra. Nevertheless, there is a generalized notion of symmetry
in terms of Hopf algebras and quantum groups, such that deformed spaces
are ”invariant” under those structures. Therefore, also the commutation
relations of the coordinates are left invariant under those transformations.

The interpretation is the following. Space-time is a continuum in the low
energy domain, at high energies - Planck energy or maybe below - space-
time becomes a ”fuzzy”, noncommutative space. But the symmetries are
not broken, they are deformed to Hopf algebras and quantum groups. There
is a well defined commutative limit, e.g. θ → 0 for canonical deformation, in
which the commutative symmetries are recovered.
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Definition 2.5 (Hopf algebra). A Hopf algebra A (over C) – see e.g., [18]
– consists of an algebra and a co-algebra structure which are compatible with
each other. Additionally, there is a map called antipode, which corresponds
to the inverse of a group. A is an algebra, i.e., there is a multiplication m
and a unit element η,

m : A⊗ A→ A,

a⊗ b 7→ ab,

η : C→ A,

c 7→ c1A,

such that the multiplication satisfies the associativity axiom (Fig. 3), where
id denotes the identity map, and η the axiom depicted in Fig. 4. Reversing

A⊗ A⊗ A -m⊗ id
A⊗ A

?

id⊗m

A⊗ A - A

?

m

m

=̂ (ab)c = a(bc)

Figure 3: Associativity

C⊗ A - A⊗ A
η ⊗ id

� A⊗ C

?

A

id⊗ η

m
PPPPPPPPPq

���������)

∼= ∼=
=̂ 1A · a = a · 1A = a

Figure 4: Unity axiom

all the arrows in Figs. 3 and 4 and replacing m by the so-called co-product
∆ and η by the co-unit ϵ gives us the axioms for the structure maps of the
co-algebra. The co-product and the co-unit,

∆ : A → A⊗ A,
ϵ : A → C

18



are dual to m and η, respectively. Compatibility between algebra and co-
algebra structure means that the co-product ∆ and the co-unit ϵ are algebra
homomorphisms, i.e.,

∆(ab) = ∆(a)∆(b), (2.22)

ϵ(ab) = ϵ(a)ϵ(b), (2.23)

where a, b ∈ A. The antipode S : A→ A satisfies the axiom shown in Fig. 5
below. It is an anti-algebra homomorphism (S(ab) = S(b)S(a)).

A⊗ A � ∆
A

?

S ⊗ id

A⊗ A - A

?

η ◦ ϵ

m

-∆
A⊗ A

A⊗ A�

?
m

id⊗ S =̂


m ◦ (S ⊗ id) ◦∆
= η ◦ ϵ
= m ◦ (id⊗ S) ◦∆

Figure 5: Antipode axiom

Associativity on the algebra side is related to co-associativity on the dual
co-algebra side, i.e.

(ab)c = a(bc) ⇒ id⊗∆(∆(a)) = ∆⊗ id(∆(a)) . (2.24)

Let us consider some examples for Hopf algebras.

Example 2.2 (Universal enveloping algebra). Probably the most sim-
ple Hopf algebra is the universal enveloping algebra of some Lie algebra. Let
us consider a Lie algebra g with generators T i satisfying

[T i, T j] = if ijkT
k ,

where f ij
k are the structure constants. The universal enveloping algebra of g,

denoted by U(g) is defined as a quotient algebra:

U(g) =
T (g)

{T i ⊗ T j − T j ⊗ T i − [T i, T j]}
, (2.25)
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where T (g) is the so-called tensor algebra, and the ideal in the denominator is
generated by the commutation relations of the generators. A generic element
of T (g) has the form

T (g) ∋ t =
∞∑
n=0

αi1...inT
i1 ⊗ · · · ⊗ T in . (2.26)

As we have already seen before, the structure in the algebra is generated by
introducing equivalence classes with respect to an appropriate ideal. Then,
U(g) is a Hopf algebra with the following structure maps:

∆(x) = x⊗ 1+ 1⊗ x , ϵ(x) = 0 , S(x) = −x , (2.27)

for any x ∈ g. The universal enveloping algebra is co-commutative, which
means that

τ ◦∆(x) = ∆(x) , (2.28)

with the permutation τ(x⊗ y) = y ⊗ x. But it is not commutative, unless g
is. �

Example 2.3 (Function algebra over some (finite) group G). Let G
be an arbitrary, (for simplicity) finite group, then the function algebra F(G),

F(G) ∋ f : G → C ,

is a Hopf algebra due to the following structure maps: The algebra structure
of F(G) is given by

m : F(G)⊗F(G)→ F(G) (2.29)

m(f1 ⊗ f2)(g) = f1(g)f2(g) ,

η : C→ F(G) (2.30)

η(k) = k 1F(G) ,

where f1, f2 ∈ F(G) and g ∈ G. For the co-algebra structure we have

∆ : F(G)→ F(G)⊗F(G) (2.31)

∆(f)(g1 ⊗ g2) = f(g1g2) ,

ϵ : F(G)→ C (2.32)

ϵ(f) = f(e) ,
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where f ∈ F(G), g1, g2 ∈ G, and e is the unit element of G. Eventually, the
antipode is given by

S(f)(g) = f(g−1). (2.33)

Note that F(G) is a commutative Hopf algebra, since the algebra of functions
is commutative. �

Example 2.4 (Group Hopf algebra CG). Let G be a matrix group of
n× n complex matrices. Then, an element of CG is given by

CG ∋ x =
∑
g∈G

agg , ag ∈ C . (2.34)

The generators tij, i, j = 1, . . . , n form a basis of CG,

tij =


...

. . . 1 . . . . . .
...

 , (2.35)

where we have 1 in the ith row and jth column, and 0 everywhere else.
Because tij generate CG, it is enough to specify the structure maps for those
generators. We have

∆(tij) =
∑
k

tik ⊗ tkj , (2.36)

ϵ(tij) = 1 , (2.37)

S(tij) = (t−1)ij . (2.38)

This Hopf algebra is also commutative, since we clearly have

tijt
m

n = tmnt
i
j . (2.39)

�

Definition 2.6 (Quantum group). A quantum group is a Hopf algebra
with one additional structure. Let us concentrate on the group Hopf algebra
CG of some matrix group G. The additional structure is the so-called R-
matrix,

R : CG ⊗ CG → C .
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As we have seen, the Hopf algebra CG is commutative. The R-matrix is
introduced in order to deform the commutative product in a consistent way.
The resulting noncommutative Hopf algebra is called a quantum group. Let
us denote this quantum group by CGq, since the noncommutativity and R
itself are characterised by the parameter q. Let tij be the coordinate functions
generating CGq. Then, the consistent way to implement a noncommutative
multiplication is via the so-called RTT -relations:

Rij
kl t

k
m t

l
n = tjl t

i
k R

kl
mn , (2.40)

where R(tik ⊗ tjl ) ≡ Rij
kl. In the commutative limit, q → 1 (which means

R→ 1, the identity matrix), we recover the commutative multiplication

tkm t
l
n = tln t

k
m . (2.41)

The R-matrix is not an arbitrary matrix, but it needs to satisfy a consistency
condition. The R-matrix has to be a solution of the Quantum-Yang-Baxter-
Equation (QYBE)

R12R13R23 = R23R13R12, (2.42)

which has to be understood as a matrix equation. Furthermore, we have used
the abbreviation (R13)

ijk
lmn ≡ δjmR

ik
ln; R12 and R23 are defined accordingly.

Definition 2.7 (Quantum Spaces,Mq). A quantum spaceMq is again
defined as a algebra generated by the coordinates x̂i,

Mq ≡ C⟨⟨x̂1, . . . , x̂n⟩⟩/I, (2.43)

where I is an appropriate ideal. Since Mq is the symmetry space of a
quantum group, the ideal I, which defines the algebraic structure of the
quantum space, needs to be invariant under or compatible with the quantum
group structure. In order to pursue that goal, let us first introduce

R̂ ≡ R ◦ τ .

In the classical limit, R̂ is just the permutation τ , with τ(a⊗ b) = b⊗a. The
matrix R̂ can be decomposed into projectors,

R̂ = λ1P̂S + λ2P̂A, (2.44)
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where P̂A is the q-deformed generalisation of the antisymmetric and P̂S of
the symmetric projector. Then, the relations

P̂A

mn

ij x̂
ix̂j = 0 (2.45)

onMq do the job. In the commutative limit, (2.45) means that the commuta-
tor of two coordinates vanishes. They are also compatible with the structure
of the corresponding quantum group CGq. This can be seen by applying the
so-called co-action ρ

ρ :Mq → CGq ⊗Mq,

ρ(x̂i) = tij ⊗ x̂j, (2.46)

on the relations (2.45), since

P̂A

mn

ij (tik ⊗ x̂k)(t
j
l ⊗ x̂

l) = tmi t
n
j ⊗ P̂A

ij

kl x̂
kx̂l = 0. (2.47)

The projector P̂A is a polynomial in R̂, and the R̂TT relations (2.40) can be

applied (Rij
kl = R̂ji

kl), replacing R̂ by P̂A.

Differentials, ∂̂A. The partial derivatives ∂̂A satisfy the same commutation
relations as the coordinates [19] (they commute in the limit q → 1),

P̂A

ij

kl ∂̂i∂̂j = 0. (2.48)

This follows from the assumptions on the exterior derivative d. The exterior
derivative d = ξA∂̂A shall have the same properties as in the classical case,
namely

d2 = 0,

dx̂A = ξA + x̂Ad, (2.49)

where the coordinate differentials ξA are supposed to anticommute, i.e.,

P̂S

AB

CD ξ
CξD = 0. (2.50)

�
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Remark: The defining relations for derivatives and coordinate differentials,
the modified Leibniz rule, and even the structure of the deformed symmetry
group can be reconstructed starting from the commutation relations of the
coordinates (e.g. (2.45)). This is done by proposing ansätze and imposing
consistency. This means that e.g. if one acts with a partial derivative on the
RHS of (2.45), one obtains

∂̂A(P̂A

mn

ij x̂
ix̂j) = (P̂A

mn

ij x̂
ix̂j)∂̂A , (2.51)

where we have to use the (ansatz for the) Leibniz-rule in order to permute the

partial derivative through the term. Since P̂A

mn

ij x̂
ix̂j = 0, it has to be zero

afterwards as well. This restricts the freedom in the ansatz for the Lebniz
rule. In order to find an expression or to restrict the freedom in the ansatz
for the commutation relations of partial derivatives, we have to act with two
derivatives on (2.45):

(∂̂B∂̂A − ∂̂A∂̂B)(P̂A

mn

ij x̂
ix̂j) .

In general, the solution will not be unique, and we can find more than one
differential calculus for a quantum space.

Example 2.5 (Manin plane). CGq = SLq(2)

R̂ =


R̂11

11 R̂11
12 R̂11

21 R̂11
22

R̂12
11 . . .

R̂21
11 . . .

R̂22
11 . . .

 =


q 0 0 0
0 λ 1 0
0 1 0 0
0 0 0 q

 , (2.52)

where λ = q − 1
q
. The symmetry algebra is generated by a, b, c, d, with

T =

(
a b
c d

)
.

The RTT -relations (2.40) imply

ab = qba ac = qca ,

ad = da+ λbc , bc = cb , (2.53)

bd = qdb , cd = qdc .
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The R̂-matrix can be decomposed in the following way:

R̂ = qP̂S −
1

q
P̂A ,

with

P̂S =
q

1 + q2
(R̂ +

1

q
), , P̂A =

−q
1 + q2

(R̂− q) .

From Definition 2.7 above, we obtain the following relations for the coordi-
nates:

x̂ix̂j =
1

q
R̂ij

klx̂
kx̂l ,

i, j = 1, 2, or explicitly
x̂1x̂2 = qx̂2x̂1 ; (2.54)

for the partial derivatives the following choice is consistent:

∂̂i∂̂j =
1

q
R̂kl

ij ∂̂k∂̂l . (2.55)

And last but not least, the Leibniz rule is given by

∂̂ix̂
j = δji +

1

q
R̂−1jk

il x̂
l∂̂k . (2.56)

�

Remarks:

• The Leibniz rule for the partial derivatives, e.g. (2.56), and for any
other operator follows from their co-product. In general, it has the
form

∆(∂̂A) = ∂̂A ⊗ 1+OA
B ⊗ ∂̂B . (2.57)

This leads to the Leibniz-rule

∂̂A(f̂ ĝ) = (∂̂Af̂) ĝ + (OA
B f̂) ∂̂B ĝ , (2.58)

where OA
B is some (differential) operator satisfying

OA
B(f̂ ĝ) = (OA

C f̂) (OC
B ĝ) ,

i.e., it is a homomorphism of the noncommutative function space.
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• The co-product describes how an operator acts on a (tensor-) product
of states. A nice illustration of the meaning of the co-product can be
given in terms of the angular momentum J in quantum mechanics. The
co-product describes the addition of angular momentum

∆J = J ⊗ 1+ 1⊗ J = J1 + J2 . (2.59)

Or you can consider a wavefunction Ψ with spin, it has the form

Ψ = ψ(x)⊗ |s > ,

where |s >= a| ↑> +b| ↓> for a spin-1/2 particle. Then, the total
angular momentum operator acts in the following way on Ψ:

J ◃Ψ = (∆(J)Ψ) = (Lψ(x))⊗ |s > +ψ(x)⊗ (S|s >) (2.60)

or in other words
∆J = L+ S .

Example 2.6 (Vertex models). Vertex model are of importance in Sta-
tistical Physics. They live on a lattice, consisting of lattice points or vertices
and links between them. The links may have different occupations. To
the vertex i one attributes a weight ωi depending on the occupation of the
attached links. Not all configurations are allowed and have non-vanishing
weight. Let us consider the so-called six vertex model as an example. The
allowed vertices are depicted in Fig. 6. Not all the weights are independent,

� �
?

?

ω1

- -6

6
ω2

- -
?

?

ω3

� �6

6
ω4

- �6
?

ω5

�-
?

6
ω6

Figure 6: Six vertex model

but we have

ω1 = ω2 = a ω3 = ω4 = b ,

ω5 = ω6 = c , (2.61)
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where a, b, c are some numbers. All physics is encoded in the partition func-
tion Z (the equivalent to the Feynman integral):

Z =
∑

all configns

∏
vertices

weight(vertex) . (2.62)

We can parametrize the vertex as a matrix in the following way:

� �
?

?µ

β

γ
α

= ω(µ, α|β, γ) ,

(2.63)

where µ, γ = 1 means arrow to the left and µ, γ = 2 arrow to the right, resp.
α, β = 1 arrow down and α, β = 2 arrow up. The remarkable feature of the
vertex weights is that they satisfy the Yang-Baxter Equation (2.42), with the
identification

ω(µα|βγ) = R̂µα
βγ . (2.64)

The converse is also true: Every solution of the Yang-Baxter Equation yields
an exactly solvable vertex model (integrable model). �

Example 2.7 (Twisted symmetry in the canonical case). As dis-
cussed before, Minkowski space with canonical commutation relations does
not allow for the usual Poincaré symmetry. Compared to the quantum group
case or other more sophisticated examples, calculations can be done more
easily and more interesting models can be studied. The commutator of two
coordinates is a constant

[x̂µ, x̂ν ] = iθµν , (2.65)

where θµν = −θνµ ∈ C. The derivatives act on coordinates as in the classical
case,

[∂̂ν , x̂
µ] = δµν . (2.66)

However, there are two consistent ways to define commutation relations of
derivatives. Simplest choice is

[∂̂µ, ∂̂ν ] = 0. (2.67)
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Another possibility compatible with the coordinate algebra is obtained by
observing that

x̂µ − iθµν ∂̂ν (2.68)

commutes with all coordinates x̂ν and all derivatives ∂̂ν one may assume that
this expression equals some constant, 0 say. Thus, we can define a derivative
in terms of the coordinates (for invertible θ),

∂̂µ = −iθ−1
µν x̂

ν . (2.69)

The commutator of derivatives is given by

[∂̂µ, ∂̂ν ] = iθ−1
µν . (2.70)

We have mentioned that the usual Poincaré symmetry is broken by the exis-
tence of the nonnoncommutative structure θµν , which is similar to an Ether.
Nevertheless, the so-called twisted Poincaré symmetry respects the coordi-
nate relations (2.65). It is a Hopf algebra, but not a quantum group. The
starting point is the undeformed universal enveloping algebra of the Poincaré
algebra, U(P). This Hopf algebra has the coproduct

∆(x) = x⊗ 1+ 1⊗ x ,

for any element x. We introduce a twist F ∈ U(P) ⊗ U(P), which satisfies
the cocycle condition:

(F ⊗ 1)(∆⊗ 1)F = (1⊗F)(1⊗∆)F . (2.71)

The twist F is used to define the twisted Poincaré symmetry UF(P): All
Hopf algebra structures are unchanged except the co-product:

∆F(x) := F∆(x)F−1 . (2.72)

In the case of canonical deformation, the twist is rather simple:

F = e
i
2
θµνPµ⊗Pν , (2.73)

where Pµ are the translation generators (partial derivatives). In order to
compute the twisted co-product (2.72) for the generators of the Poincaré
algebra – translations Pα and Lorentz generators Mµν – we need to expand
the twist and use the algebra relations

[Pµ, Pν ] = 0 , [Pα,Mµν ] = ηαµPν − ηανPµ . (2.74)

28



This corresponds to the choice (2.67) for the partial derivatives. Therefore,
we obtain

∆FPµ = Pµ ⊗ 1+ 1⊗ Pµ , (2.75)

∆FMµν = Mµν ⊗ 1+ 1⊗Mµν (2.76)

−1

2
θαβ ((ηαµPν − ηανPµ)⊗ Pβ + Pα ⊗ (ηβµPν − ηβνPµ)) .

Using the deformed co-product of the generators above and their action on
coordinates:

(Pµx̂
α) = iδαµ ,

(Mµνx
α) = i(x̂µ∂ν − x̂ν∂µ)x̂

α = i(x̂µδ
α
ν − x̂νδ

α
µ) , (2.77)

we can show explicitly that the commutation relations of the coordinates are
preserved. Let us start with the translation generators Pµ acting on the LHS
of (2.65):

(Pµ

[
x̂α, x̂β

]
) =: Pµ ◃

[
x̂α, x̂β

]
(2.78)

= (Pµ ◃ x̂
α)x̂β + x̂α(Pµ ◃ x̂

β)− (Pµ ◃ x̂
β)x̂α + x̂β(Pµ ◃ x̂

α) = 0 ,

where we have used formula (2.75) for the co-product of Pµ. Acting on the
RHS yields the same result:

Pµ ◃ iθ
µν = 0 , (2.79)

since θµν is constant. Next, consider a Lorentz generator Mµν :

Mµν ◃
[
x̂α, x̂β

]
=

= iδαν
[
x̂µ, x̂

β
]
− iδαµ

[
x̂ν , x̂

β
]
− iδβν [x̂µ, x̂

α] + iδβµ [x̂ν , x̂
α] (2.80)

−1

2
θστ (ησµPν − ησνPµ)⊗ Pτ ◃

[
x̂α, x̂β

]
(2.81)

−1

2
θστPσ ⊗ (ητµPν − ητνPµ) ◃

[
x̂α, x̂β

]
= δαν θ

β
µ + δαµθν

β + δβν θµ
α + δβµθ

α
ν

−δαν θβµ − δαµθνβ − δβν θµα − δβµθαν
= 0 .

As before, acting on the RHS of (2.65) yields

Mµν ◃ iθ
αβ = 0 . (2.82)

Therefore, we see that the commutation relations are consistent with the
twisted Poincaré Hopf algebra. �
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2.3 Star products

Let us consider the noncommutative algebra of functions Â on a noncommu-
tative space

Â =
C⟨⟨x̂1, ..., x̂n⟩⟩

I
, (2.83)

where I is the ideal generated by the commutation relations of the coordinate
functions, and the commutative algebra of functions

A =
C⟨⟨x1, ..., xn⟩⟩

[xi, xj]
≡ C[[x1, ..., xn]], (2.84)

i.e., [xi, xj] = 0. Our aim in this Section is to relate these algebras by an
isomorphism. Let us first consider the vector space structure of the algebras,
only. In order to construct a vector space isomorphism, we have to choose a
basis (ordering) in Â - satisfying the Poincaré-Birkhoff-Witt property5 - e.g.,
the basis of symmetrically ordered polynomials,

1, x̂i,
1

2
(x̂ix̂j + x̂jx̂i), . . . . (2.85)

Now we map the basis monomials in A onto the according symmetrically
ordered basis elements of Â

W : A → Â,
xi 7→ x̂i, (2.86)

xixj 7→ 1

2
(x̂ix̂j + x̂jx̂i) ≡ : x̂ix̂j : .

The ordering is indicated by : : and may denote any choice of ordering. W
is an isomorphism6 of vector spaces. In order to extend W to an algebra
isomorphism, we have to introduce a new noncommutative multiplication ⋆
in A. This ⋆-product is defined by

W (f ⋆ g) :=W (f) ·W (g) = f̂ · ĝ, (2.87)

where f, g ∈ A, f̂ , ĝ ∈ Â.
(A, ⋆) ∼= (Â, ·), (2.88)

i.e., W is an algebra isomorphism. The information on the noncommutativity
of Â is encoded in the ⋆-product.

5The dimension of the subspace spanned by monomials of a fixed degree is the same
as the dimension of the subspace spanned by monomials in the commutative variables of
the same degree.

6A function f is an isomorphism, iff it is bijective, and f and f−1 are homomorphisms.
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2.3.1 Construction of a ⋆-product of functions

Let us choose symmetrically ordered monomials as basis in Â. The commu-
tation relations of the coordinates are

[x̂i, x̂j] = iθij(x̂), (2.89)

where θij(x̂) is an arbitrary expression in the coordinates x̂, for now. In just a
moment we will discuss the special cases (2.19 - 2.21). The Weyl quantisation
procedure [20, 21] is given by the Fourier transformation,

f̂ =W (f) =
1

(2π)n/2

∫
dnk eikj x̂

j

f̃(k), (2.90)

f̃(k) =
1

(2π)n/2

∫
dnx e−ikjx

j

f(x), (2.91)

where we have replaced the commutative coordinates by noncommutative
ones (x̂i) in the inverse Fourier transformation (2.90). The exponential takes
care of the symmetrical ordering, i.e., we use the plane waves as basis:

eikx
W7→ eikx̂ .

Using eqn. (2.87), we get

W (f ⋆ g) =
1

(2π)n

∫
dnk dnp eikix̂

i

eipj x̂
j

f̃(k)g̃(p). (2.92)

Because of the noncommutativity of the coordinates x̂i, we need the Campbell-
Baker-Hausdorff (CBH) formula

eAeB = eA+B+ 1
2
[A,B]+ 1

12
[[A,B],B]− 1

12
[[A,B],A]+.... (2.93)

Clearly, we need to specify θij(x̂) in order to evaluate the CBH formula.

Example 2.8 (Weyl-Moyal ⋆-product). Due to the constant commuta-
tion relations,

[xµ ⋆, xν ] = iθµν ,

the CBH formula will terminate: Terms with more than one commutator will
vanish,

exp(ikix̂
i) exp(ipjx̂

j) = exp

(
i(ki + pi)x̂

i − i

2
kiθ

ijpj

)
. (2.94)
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Eqn. (2.92) now reads

f ⋆ g (x) =
1

(2π)n

∫
dnkdnp ei(ki+pi)x

i− i
2
kiθ

ijpj f̃(k)g̃(p) , (2.95)

and we get for the ⋆-product the Moyal-Weyl product [22]

f ⋆ g (x) = exp(
i

2

∂

∂xi
θij

∂

∂yj
) f(x)g(y)

∣∣∣
y→x

. (2.96)

The deformed derivatives reduce to the usual partial derivatives:

[∂µ ⋆, ∂ν ] = 0 ,

∂µ ⋆ xν = δµν + xν ⋆ ∂µ .

In order to write down an action we need an integration. In this case, we
can just use the ordinary 4-dimensional integral:∫

d4x (f1 ⋆ f2 ⋆ · · · ⋆ fn)(x) =

∫
d4x (fn ⋆ f1 ⋆ . . . fn−1)(x) (2.97)

=

∫
d4x f1(x) (f2 ⋆ f3 ⋆ · · · ⋆ fn)(x) ,

which means that in the special case n = 2 the star and the noncommutative
effect drops out: ∫

d4x (f1 ⋆ f2)(x) =

∫
d4x f1(x)f2(x) . (2.98)

This is called the trace-property and is essential for variational calculus. �.

Example 2.9 (κ-deformation). The coordinates build a Lie algebra

[x̂i, x̂j] = iλijk x̂
k, (2.99)

with structure constants λijk . In this case the CBH sum will not terminate
and we get

exp(ikix̂
i) exp(ipjx̂

j) = exp

(
i(ki + pi)x̂

i +
i

2
gi(k, p)x̂

i

)
, (2.100)
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where all the terms containing more than one commutator are collected in
gi(k, p). (2.92) becomes

f ⋆ g (x) =
1

(2π)n

∫
dnkdnp ei(ki+pi)x

i+ i
2
gi(k,p)x

i

f̃(k)g̃(p). (2.101)

The symmetrically ordered ⋆-product takes the form

f ⋆ g (x) = e
i
2
xi gi(−i ∂

∂y
,−i ∂

∂z
) f(y)g(z)

∣∣∣
y→x
z→x

. (2.102)

In general, it will not be possible to write down a closed expression for the
⋆-product, since the CBH formula can be summed up only for very few
examples.

Let us concentrate on the so-called κ-deformed case. We start at the
following commutation relations:

[x̂n, x̂p] = iax̂p =
i

κ
x̂p, [x̂q, x̂p] = 0, (2.103)

where p, q = 1, . . . , n− 1. The most general linear quantum space structure
compatible with a deformed version of Poincaré symmetry is given by [23]

[x̂µ, x̂ν ] = i (aµδνσ − aνδµσ) x̂
σ, (2.104)

where aµ is a constant 4−vector ”pointing into the direction of noncommuta-
tivity”. Its components also play the role of Lie algebra structure constants.
Choosing

aµ = aδµn (2.105)

we get back to relation (2.103). The symmetrically ordered star product is
given by [24]

f ⋆ g (x) =

∫
d4k d4p f̃(k)g̃(p) ei(ωk+ωp)xn

eix⃗(k⃗e
aωpA(ωk,ωp)+p⃗A(ωp,ωk)), (2.106)

where k = (ωk, k⃗), and x⃗ = (x2, x3, x4). We have used the definition

A(ωk, ωp) ≡
a(ωk + ωp)

ea(ωk+ωp) − 1

eaωk − 1

aωk

. (2.107)
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∂⋆nx
i = xi∂⋆n,

∂⋆nx
n = 1 + xn∂⋆n , (2.108)

∂⋆i x
j = δji + xj∂⋆i ,

∂⋆i x
n = (xn + ia) ∂⋆i .

[∂µ ⋆, ∂ν ] = 0 (2.109)

action on commutative functions

∂̃n ◃ f(x) = ∂nf(x), (2.110)

∂̃i ◃ f(x) = ∂i
exp(ia∂n)− 1

ia∂n
f(x). (2.111)

The derivatives on the RHS are ordinary derivatives. We can also evaluate
the action of the derivatives on a product of two function, i.e., we calculate
the modified Leibniz rule. It is given by

∂⋆n ◃ f ⋆ g(x) = (∂⋆n ◃ f(x)) ⋆ g(x) + f(x) ⋆ (∂⋆n ◃ g(x)), (2.112)

∂⋆i ◃ f ⋆ g(x) = (∂⋆i ◃ f(x)) ⋆ g(x) + (eia∂
⋆
n ◃ f(x)) ⋆ (∂⋆i ◃ g(x)) .

The boosts and the rotation generators act on functions in the following way,

N⋆l ◃ f(x) =
(
xl∂n − xn∂l (2.113)

+xl∂µ∂µ
eia∂n − 1

2∂n
+ xν∂ν∂l

a∂n + i(eia∂n − 1)

a∂2n

)
f,

M⋆rs ◃ f(x) = (xs∂r − xr∂s) f(x), (2.114)

where ∆cl =
∑n−1

i=1 ∂i∂i. The action of the rotations M⋆rs is easily obtained,
since their algebra and co-algebra structure is undeformed.

The definition of a suitable integration is more tricky. We have to intro-
duce a measure function µ(x) in order to guarantee the trace property,∫

d4xµ(x) (f1 ⋆ · · · ⋆ fn) =

∫
d4xµ(x) (fn ⋆ f1 ⋆ · · · ⋆ fn−1) (2.115)

=

∫
d4xµ(x) fn (f1 ⋆ · · · ⋆ fn) .

The measure function µ(x) is given by

µ(x) =
1

x1x2 . . . xn−1
. (2.116)

�

34



Example 2.10 (q-deformed case). The CBH formula cannot be used
explicitly, we have to use eqns. (2.86), instead. Let us first write functions
as a power series in xi,

f(x) =
∑
J

cJ (x1)j1 · . . . (xn)jn , (2.117)

where J = (j1, . . . , jn) is a multi-index. In the same way, noncommutative
functions are given by power series in ordered monomials

f̂(x̂) =
∑
J

cJ : (x̂1)j1 · . . . (x̂n)jn : . (2.118)

In a next step, we have to express the product of two ordered monomials in
the noncommutative coordinates again in terms of ordered monomials, i.e.,
we have to find coefficients aK such that

: (x̂1)i1 . . . (x̂n)in : : (x̂1)j1 . . . (x̂n)jn : =
∑
K

aK : (x̂1)k1 . . . (x̂n)kn : . (2.119)

Knowing the aK , we know the ⋆-product for monimials. It is simply given
by

(x̂1)i1 . . . (x̂n)in ⋆ (x̂1)j1 . . . (x̂n)jn =
∑
K

aK(x̂
1)k1 . . . (x̂n)kn , (2.120)

using the same coefficients aK as in (2.119). The whole procedure makes use
of the isomorphism W defined in eqns. (2.86) and (2.87). In a last step, we
have to generalise the above expression to functions f and g, and express
the ⋆-product in terms of ordinary derivatives on the functions f and g,
respectively. This merely amounts to replacing qik - where ik refers to the
power ot the kth coordinate in (2.120) - by the differential operator qx

k∂k ,
where no summation over k is implied.

For a better illustration, let us consider the Manin plane. The commuta-
tion relations are

x̂ ŷ = q ŷ x̂.

First, we consider normal ordering, i.e., a normal ordered monomial has the
form

: ŷ3 x̂2 ŷ : = x̂2 ŷ4.
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Following the above prescription, we end up with the following ⋆-product
[25]

f ⋆N g (x, y) = m ◦ q−y ∂
∂y

⊗x ∂
∂xf(x, y)⊗ g(x, y) , (2.121)

where m is again the multiplication map, m(a⊗b) = ab. Let us now consider
a symmetric ordering, where the factor k! in the denominator is replaced by
[k]q1/2 !, e.g.,

W [xy] =
x̂ŷ + ŷx̂

[2]q1/2 !
, (2.122)

where [a]qb ≡ qab−q−ab

qb−q−b . The only difference to symmetrically ordered polyno-
mials is the normalisation.

f ⋆S g (x, y) = m ◦ q−
1
2(y

∂
∂y

⊗x ∂
∂x

−x ∂
∂x

⊗y ∂
∂y )f(x, y)⊗ g(x, y). (2.123)

In the next Section, we will examine the connection between ⋆-products
corresponding to different oderings in more detail. �

Example 2.11 (Quantum mechanics). In Quantum mechanics, cf. [26],
we have Heisenberg commutation relations between momenta and position
operators,

[Qi, Pj] = i~δij, (2.124)

i, j = 1, . . . , n. In normal ordering, where all the momenta are on the right
and all coordinates on the left, QlP k, we get for the ⋆-product

f ⋆N g (Q,P ) = m ◦ exp(−i~∂Pi
⊗ ∂Qi)f(Q,P )⊗ g(Q,P ) . (2.125)

For symmetrical ordering the ⋆-product reads

f ⋆S g (P,Q) = m ◦ exp
(
i~
2

(
∂Qi ⊗ ∂Pi

− ∂Pi
⊗ ∂Qi

))
f(Q,P )⊗ g(Q,P ).

(2.126)
�

2.3.2 Mathematical approach to ⋆-products

Definition 2.8 (Poisson bracket). LetM be a smooth manifold, a Pois-
son bracket is a bi-linear map {, } : C∞(M)× C∞(M)→ C∞(M) satisfying

f, g, h ∈ C∞(M)
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(i) {f, g} = −{g, f}, antisymmetry

(ii) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0, Jacobi identity

(iii) {f, gh} = {f, g}h+ g{f, h}, Leibniz rule

Locally, we can always write the Poisson bracket with the help of an
antisymmetric tensor

{f, g} = αij(x) ∂if∂jg, (2.127)

where αij = −αji. Because of the Jacobi identity θij has to satisfy

αij∂jα
kl + αkj∂jα

li + αlj∂jα
ik = 0. (2.128)

Definition 2.9 (⋆-Product). Let f, g ∈ C∞(M) and Ci : C∞(M) ×
C∞(M)→ C∞(M), i = 1, . . . ,∞, be local bi-differential operators. Then we
define the product ⋆ : C∞(M)× C∞(M)→ C∞(M)[[h]], by

f ⋆ g =
∞∑
n=0

hnCn(f, g), (2.129)

such that the following axioms are satisfied:

(i) ⋆ is an associative product.

(ii) C0(f, g) = f g, classical limit.

(iii) 1
h
[f ⋆, g] = −i {f, g}, in the limit h→ 0, semiclassical limit.

The RHS of definition (2.129) is an element of C∞(M)[[h]], the algebra
of formal power series in the formal parameter h with coefficients in C∞(M),
i.e.,

ζ ∈ C∞(M)[[h]] ,

ζ(x) =
∞∑
j=0

hjζj(x) , (2.130)

where ζj(x) ∈ C∞(M). Formal power series means that the convergence of
the series 2.130 is no issue.
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The definition of the ⋆-product can be generalised to a C[[h]]-linear prod-
uct in B = C∞(M)[[h]] by(∑

n

fnh
n
)
⋆
(∑

m

gmh
m
)

=
∑
k,l

fkglh
k+l

+
∑

k,l≥0,m≥1

Cm(fk, gl)h
k+l+m . (2.131)

Theorem 1 (Theorem by M. Kontsevich [27])
For any Poisson bi-vector field α in some domain of Rn there exists a ⋆-
product. It is given by the following formula:

f ⋆K g =
∞∑
n=0

hn
∑
Γ∈Gn

ωΓBΓ,α(f, g). (2.132)

Let us explain the symbols occuring in (2.132) briefly. To each admissable
graph Γ ∈ Gn there is an associated bi-differential operator BΓ,α and a weight
ωΓ. The symbol Γn, where n ≥ 0 is the order in the formal deformation
parameter, denotes the set of admissable graphs, which is a proper subset of
the set of all graphs. It is characterised in the follwing way:
Each graph Γ consists of n + 2 vertices labelled by {1, 2, . . . , n, L,R} and
2n edges {ik, jk}, with k = 1, . . . , n starting at the vertex k and pointing to
some other vertex. An admissable graph has no loops, i.e., an edge starting
and ending at the same vertex. Also, no parallel multiple edges are allowed,
edges sharing the same starting and ending vertex.

The vertices k = 1, . . . , n are distributed over the upper half complex
plane, the vertices L and R at the origin and the point (1, 0), respectively. A
multi-vectorfield BΓ is associated to each such graph. The formality theorem
assigns a bi-differential operator BΓ,α to the multi-vectorfields BΓ. The edges
correspond to derivatives, the vertices to the Poisson structure α. If an edge
ends at another vertex in the upper plane, the derivative acts on the Poisson
structure associated to that vertex. If it ends on L or R, respectively the
derivative acts on the function f or g, respectively. The weight ωΓ of a graph
Γ is given by a complicated complex integration. For details see [27], for the
explicit calculations of some weights, see e.g., [28, 29].

In order to illustrate these definitions let us consider some graphs as
examples:

• Graph to nth order for the Weyl-Moyal product:
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This graph corresponds to the expression

αi1j1αi2j2 . . . αinjn∂i1 . . . ∂inf ∂j1 . . . ∂jng . (2.133)

• Example for a not admissable loop graph, n = 1:

r r
r
?
m

L R

• Parallel edges are not allowed as well:

r r
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�
�
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L R

r r
r r�� ��
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• Another graph in third order for non-constant Poisson structure:
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i1

j1

i2 j2

i3

j3

The above graph yields in terms of the Poisson structure:

αi1j1
(
∂j1∂i3 α

i2j2
)
αi3j3(∂i1∂i2f) (∂j2∂j3 g) . (2.134)
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Changing the ordering in the noncommutative algebra leads to gauge
equivalent ⋆-products. The ⋆-products are related by a transformation D,

Df ⋆Dg = D(f ⋆′ g), (2.135)

where
Df = f +

∑
n≥1

(ih)nDn(f) (2.136)

and Dn are differential operators of order n.
Let us reconsider the ⋆-products given in Example 2.11 in Section 2.3.1.

There, ⋆N and ⋆S are gauge equivalent ⋆-products. For simplicity, let us con-
sider 1-dimensional Quantum Mechanics. The generalisation to n dimensions
is straight forward. In this case, the ⋆-products (2.125) and (2.126) read

f ⋆N g (q, p) = m ◦ exp (−i~∂p ⊗ ∂q) f(q, p)⊗ g(q, p),
f ⋆S g (q, p) = m ◦ exp

(
i
2
(∂q ⊗ ∂p − ∂p ⊗ ∂q)

)
f(q, p)⊗ g(q, p).

Using matrices in the exponent, these formulae can be written very succinctly
as

f ⋆N g (q, p) = m ◦ exp
(
i~
2
α̃ij∂i ⊗ ∂j

)
f(q, p)⊗ g(q, p),

f ⋆S g (q, p) = m ◦ exp
(
i~
2
αij∂i ⊗ ∂j

)
f(q, p)⊗ g(q, p),

where(
α̃ij
)
i,j=q,p

=

(
0 0
−2 0

)
,

(
αij
)
i,j=q,p

=

(
0 1
−1 0

)
. (2.137)

The matrix α is the antisymmetric part of α̃. These ⋆-products are connected
by the transformation D,

D = exp

(
i~
4
θijS ∂i∂j

)
= exp

(
− i~

2
∂q∂p

)
, (2.138)

where θS is the symmetric part of α̃, i.e., α̃ij = αij + θijS . We have

f ⋆S g = D−1 (Df ⋆N Dg) . (2.139)
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The same is true in case of the Manin plane. There we have

(α̃ij)i,j=q,p =

(
0 0

−2y ⊗ x 0

)
, (αij)i,j=q,p =

(
0 x⊗ y

−y ⊗ x 0

)
,

(
θijS
)
i,j=q,p

=

(
0 −x⊗ y

−y ⊗ x 0

)
. (2.140)

The transformation D = exp
(
ih
4
θijS ∂i∂j

)
connects the normal ordered ⋆-

product (2.121) and the symmetrically ordered ⋆-product (2.123) (with q-
numbers as normalisation factors). Again, we have f ⋆S g = D−1 (Df ⋆N Dg).

In Example 2.11, we have considered the covariance of a quantum space
under the twisted Poincaré symmetry. Therefore, let us briefly discuss this
property in more general terms, see e.g. [30] and references therein. Covari-
ance of a space M under the symmetry algebra U~(g) means that M is a
U~(g)−module algebra:

g ◃ m⋆(x⊗ y) = m⋆(∆~(g) ◃ (x⊗ y)) = m⋆(g(1) ◃ x⊗ g(2) ◃ y), (2.141)

where g ∈ U~(g), x, y ∈M, andm⋆ denotes the ⋆-multiplication onM. Drin-
fel’d’s theorem [31] establishes an isomorphism U~(g) ∼= (U(g)[[~]],∆~, ϵ~, S~),
where

∆~(g) = F∆(g)F−1.

∆ is the classical co-product of U(g), F the so-called Drinfel’d twist. Co-
variant ⋆-products are defined in [30] using some appropriate Drinfel’d twist
by

x ⋆ y = m⋆(x⊗ y) = m(F−1 ◃ (x⊗ y)) , (2.142)

where m denotes the commutative, pointwise multiplication. The twist is de-
fined uniquely by the requirement of covariance up to a central 2-coboundary.

3 Noncommutative Quantum Field Theory

In this section, we will consider Euclidean 4 dimensional space endowed with
a Weyl-Moyal star-product.

3.1 Scalar models

For describing real scalar fields on a space with Weyl-Moyal star-product,
we will here employ a straight forward approach. We simply replace the
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pointwise product in the commutative action by the non-local star-product.
In a second step, we use the identities (2.97) and (2.98) in order to simply
the expressions. The action then reads

S =

∫
d4x

(
1

2
∂µϕ ⋆ ∂µϕ−

m2

2
ϕ ⋆ ϕ− λ4

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ

)
=

∫
d4x

(
1

2
∂µϕ ∂µϕ−

m2

2
ϕ2 − λ4

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ

)
(3.1)

The first one to consider this action was T. Filk [32] who derived the corre-
sponding Feynman rules, noticing that the propagator is exactly the same as
in commutative space, i.e.

G(k) =
1

(2π)4
1

k2 +m2
, (3.2)

while the vertex gains phase factors in the momenta. In order to see this, let
us examine the interaction part of (3.1):

Γint =

∫
d4x

λ

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ(x)

=

∫
d4x

1

(2π)8

∫
(Π4

i=1d
4ki)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)

× eik1x ⋆ (eik2x ⋆ (eik3x ⋆ eik4x)))

=

∫
d4x

1

(2π)8

∫
(Π4

i=1d
4ki)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)

× ei(k1+k2+k3+k4)xe−
i
2

∑
i<j kiθkj

=
1

(2π)4

∫
(Π4

i=1d
4ki)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) (3.3)

× δ(4)(k1 + k2 + k3 + k4)e
− i

2

∑
i<j kiθkj ,

with kiθkj = kαi θαβk
β
j . The vertex-function is defined by

Γ(4)(p1, p2, p3, p4) =
δ4S

δϕ(p1)δϕ(p2)δϕ(p3)δϕ(p4)
,
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which yields

Γ(4)(p1, p2, p3, p4) =
λ

3
(2π)4δ(4)(p1 + p2 + p3 + p4)

×

(
cos(

1

2
k1k̃2) cos(

1

2
k3k̃4) + cos(

1

2
k1k̃3) cos(

1

2
k2k̃4) (3.4)

+ cos(
1

2
k1k̃4) cos(

1

2
k2k̃3)

)

As a consequence, new types of Feynman graphs appear: In addition to
the ones known from commutative space, where no phases depending on
internal loop momenta appear (planar graphs) and which exhibit the usual
UV divergences, so-called non-planar graphs come into the game which are
regularized by phases depending on internal momenta. Explicit one-loop
calculations have been performed in [33, 34, 35, 36, 37] and the infamous
UV/IR mixing problem has been discovered: Due to the phases in the non-
planar graphs, their UV sector is regularized on the one hand, but on the
other hand this regularization implies divergences for small external momenta
instead. We will consider the example of the 2-point tadpole and discuss the
UV/IR mixing property in detail in the next subsection.

3.1.1 UV/IR mixing

For example the two point tadpole graph is approximately given by the in-
tegral

Π(Λ, p) =
λ

3

∫
d4k

2 + cos(kp̃)

k2 +m2
≡ Πpl(Λ) + Πn-pl(p) . (3.5)

The planar contribution is as usual quadratically divergent in the UV cutoff
Λ, i.e.

Πpl ∼ Λ2 .

The difference to the commutative case is the factor 2/3 and the non-planar
contribution. This contribution is regularized by the cosine, and we get

Πn-pl ∼ 1

p̃2
, (3.6)
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which shows that the original UV divergence is not present any more, but
reappears when p̃ → 0 (where the phase is 1) representing a new kind of
infrared divergence. Since both divergences are related to one another, one
speaks of UV/IR mixing. At one-loop level, this is no problem though. It
corresponds to a counter term∫

d4p ϕ̃(p)
1

p̃2
ϕ̃(−p) , (3.7)

which is well behaved even in the limit p̃ → 0. But higher loop insertions
then lead to a term of the form∫

d4p ϕ̃(p)
1

(p̃2)n
ϕ̃(−p) , (3.8)

where n is the number of insertions. Clearly, this term exhibits a seri-
ous IR singularity. It is this mixing which renders the action (3.1) non-
renormalizable. Two different strategies to cure UV/IR mixing are known.
Both modify the propagator by adding an additional term quadratic in the
fields: An oscillator term and a 1/p̃2-term, respectively. In what follows, we
will briefly review those approaches.

3.1.2 Ways out

Grosse-Wulkenhaar model. Adding an oscillator potential and after
some awkward rewritting, the action (3.1) becomes [38, 39]

S =

∫
d4x

(
1

2
ϕ ⋆ [x̃ν ⋆, [x̃ν ⋆, ϕ]] +

Ω2

2
ϕ ⋆ {x̃ν ⋆, [x̃ν ⋆, ϕ]} (3.9)

+
µ2

2
ϕ ⋆ ϕ+

λ

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ

)
,

where x̃ν = θ−1
ναx

α, and we have used i ∂µf = [x̃µ ⋆, f]. This action is covariant,
i.e.

S[ϕ;µ, λ,Ω] 7→ Ω2S[ϕ;
µ

Ω
,
λ

Ω2
,
1

Ω
] , (3.10)

under the so-called Langmann-Szabo duality transformation [40] between
position and momenta:

ϕ̂(p)←→ π2
√
|detΘ|ϕ(x) , pµ ←→ 2x̃µ , (3.11)
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where ϕ̂(pa) =
∫
d4xae

(−1)aipa,µxa,µ ϕ(xa). The index a is labelling the legs
of vertex and propagator, resp. and defines the direction of the according
momentum. This becomes a symmetry at Ω = 1.Due to oscillator term, the
propagator is modified and an IR damping is implemented. The propagator
is given by the Mehler kernel:

KM(p, q) =
ω3

8π2

∫ ∞

0

dα

sinh2 α
e−

ω
4
(p−q)2 coth α

2
−ω

4
(p+q)2 tanh α

2 , (3.12)

where ω = Θ/Ω. The IR damping is also responsible for a proper handling
of the UV/IR mixing problem. The model is renormalisable to all orders in
perturbation theory. The propagator depends on two momenta, an incoming
and outgoing momentum, since the explicit x-dependence of the action breaks
translation invariance. Therefore, also momentum conservation is broken.
Remarkably, the oscillator term can be interpreted as coupling of the scalar
field to the curvature of some specific noncommutative background [41].

1/p2-model. In the second approach, a non-local term is added to the
action (3.1). In momentum space, it reads [42]

Snl =

∫
d4p

a

2
ϕ̃(p)

1

p̃2
ϕ̃(−p) . (3.13)

This is exactly the counter term (3.7) we have discussed before. The resulting
action is translation invariant, and thus momentum conservation holds. The
term (3.13) implements IR damping for the propagator, i.e. G(p) → 0, for
p→ 0. The modified propagator has the form

G(p) =
1

p2 +m2 + a2

p2

. (3.14)

The damping effect of the propagator becomes obvious when one considers
higher loop orders. An n-fold insertion of the divergent one-loop result (3.6)
into a single large loop can be written as

Πnnp−ins.(p) ≈ λ2
∫
d4k

eikp̃(
k̃2
)n [

k2 +m2 + a′2

k2

]n+1
, (3.15)

neglecting any effects due to recursive renormalization and approximating
the insertions of irregular single loops by the most divergent (quadratic) IR
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divergence. For the model (3.1), i.e. a = 0, the integrand is proportional to
(k2)−n, for k2 → 0, as we have already mentioned. But a ̸= 0 implies that
the integrand behaves like

1(
k̃2
)n [

a′2

k2

]n+1
=

k̃2

(a′2)n+1 , (3.16)

which is independent of the loop order n. Using multiscale analysis, the
perturbative renormalisability of this model to all orders could be shown
[42].

3.1.3 Minkowski space-time

In this section, we want to briefly discuss or rather mention the difficulties
that arise when we consider noncommutative Minkowski space-time. They
occur when we consider θ0µ ̸= 0 and is due to the fact that the interaction part
of the Lagrangian now depends on infinitely many time derivatives acting on
the fields. This corresponds to a non-locality in time. In the commutative
case, field theories on Minkowski space-time and Euclidean space are related
by Wick rotation. However, the generalisation of the Wick rotation to the
noncommutative realm is not understood up to now.

A way to deal with fields on noncommutative Minkowski space has been
proposed by S. Doplicher et al. [7] and further developed for noncommutative
scalar ϕ4 theory by several authors [43, 44, 45]. It is termed “interaction point
time ordered perturbation theory” (IPTOPT) and is based on the following
idea: Consider the Gell-Mann–Low formula applied to the field operators ϕ̂
of a scalar ϕ̂4 theory

⟨
0|T{ϕ̂H(x1) . . . ϕ̂H(xn)}|0

⟩
=

∞∑
m=0

(−i)m

m!

∞∫
−∞

dt1

∞∫
−∞

dt2 . . .

∞∫
−∞

dtm (3.17)

×
⟨
0|T{ϕ̂I(x1) . . . ϕ̂I(xn)V̂ (t1) . . . V̂ (tm)}|0

⟩
.

The subscripts H and I denote the Heisenberg picture and the interaction
picture, respectively; V is the interaction part of the Hamiltonian

V̂ (z0) =

∫
d3z

κ

4!
ϕ̂(z) ⋆ ϕ̂(z) ⋆ ϕ̂(z) ⋆ ϕ̂(z) . (3.18)
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The idea is that the time-ordering operator T acts on the time components of
the xi and on the so-called time stamps t1, . . . , tm. For example, considering
the interaction (3.18) with an alternative representation for the star products

V (z0) =
κ

4!

3∏
i=1

∫
d4sid

4li
(2π)4

eisili

× ϕ(z − 1

2
l̃1)ϕ(z + s1 −

1

2
l̃2)ϕ(z + s1 + s2 −

1

2
l̃3)ϕ(z + s1 + s2 + s3) ,

the time ordering only affects z0 and no other time components (like e.g. l0i
etc.). This leads to modified Feynman rules. For example, the propagator of
the commutative ϕ4 theory,

G(x, x′) =

∫
d4k

(2π)4
eik(x−x′)

k2 +m2 − ie
, (3.19)

is generalised to the so-called contractor

GC(x, t;x
′, t′) =

∫
d4k

(2π)4
exp [ik(x− x′) + ik0(x0 − t− (x′0 − t′))]

k2 +m2 − ie
(3.20)

×
[
cos
(
ωk(x

0 − t− (x′0 − t′))
)
− ik0

ωk

sin
(
ωk(x

0 − t− (x′0 − t′))
)]

.

For x0 = t and x′0 = t′ (which is the case if θ0µ = 0), the contractor reduces
to (3.19). This approach seems promising in some respects, meaning that one
may extend the formalism to noncommutative gauge fields, although (among
many others) the question of unitarity is still unclear [46].

Finally, one should also remark that similar work, i.e. considerations
concerning proper time ordering when dealing with noncommutative time,
have been done by D. Bahns et al. [47, 48].

3.2 Gauge models

As one generally assumes the commutator θµν to be very small (as mentioned
in the introduction perhaps even of the order of the Planck length squared),
it certainly makes sense to also consider an expansion of a noncommutative
theory in terms of that parameter. In the expanded approach, noncommu-
tative gauge theory is based on essentially three principles,
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• Covariant coordinates,

• Locality and classical limit,

• Gauge equivalence conditions.

Let ψ be a noncommutative field with infinitesimal gauge transformation

δ̂ψ(x) = iα ⋆ ψ(x) , (3.21)

where α denotes the gauge parameter. The ⋆-product of a field and a coor-
dinate does not transform covariantly,

δ̂(x ⋆ ψ(x)) = i x ⋆ α(x) ⋆ ψ(x) ̸= iα(x) ⋆ x ⋆ ψ(x) . (3.22)

Therefore, one has to introduce covariant coordinates [49]

Xµ ≡ xµ + gθµαAα , (3.23)

such that
δ̂(Xµ ⋆ ψ) = iα ⋆ (Xµ ⋆ ψ) . (3.24)

Hence, covariant coordinates and the gauge potential transform under a
noncommutative gauge transformation in the following way

δ̂Xµ = i [α ⋆, Xµ] , g δ̂Aµ = iθ−1
µα [α ⋆, xα] + ig [α ⋆, Aµ] , (3.25)

where we have assumed that θ is non-degenerate. Other covariant objects
can be constructed from covariant coordinates, such as the field strength,

igθµαθνβFαβ = [Xµ ⋆, Xν ]− iθµν , δ̂Fµν = i [α ⋆, Fµν ] . (3.26)

3.2.1 Seiberg-Witten maps

For simplicity, we will set the coupling constant g = 1 in this section. The
star product can be written as an expansion in a formal parameter θ,

f ⋆ g = f · g +
∞∑
n=1

θnCn(f, g) .

In the commutative limit θ → 0, the star product reduces to the pointwise
product of functions. One may ask, if there is a similar commutative limit for
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the fields. The solution to this question was given for Abelian gauge groups
by [9],

Âµ[A] = Aµ +
θ

2
θστ (Aτ∂σAµ + FσµAτ ) +O(θ2) ,

ψ̂[ψ,A] = ψ +
θ

2
θµνAν∂µψ +O(θ2) ,

α̂ = α+
θ

2
θµνAν∂µα+O(θ2) . (3.27)

The origin of this map lies in string theory. There, the resulting gauge theory
depends on the applied regularization scheme [9]. Pauli-Villars regularization
provides us with classical gauge invariance

δAi = ∂iλ, (3.28)

whence point-splitting regularization comes up with noncommutative gauge
invariance

δ̂λÂi = ∂iΛ̂ + i
[
Λ̂ ⋆, Âi

]
. (3.29)

N. Seiberg and E. Witten argued that consequently there must be a local
map from ordinary gauge theory to noncommutative gauge theory

Â[A], Λ̂[λ,A] , (3.30)

satisfying

Â[A+ δλA] = Â[A] + δ̂λÂ[A] , (3.31)

where δα denotes an ordinary gauge transformation and δ̂α a noncommu-
tative one. The Seiberg-Witten (SW) maps are solutions of the so-called
“gauge-equivalence relation” (3.31).

By locality we mean that in each order in the noncommutativity param-
eter θ there is only a finite number of derivatives. Let us remember that we
consider arbitrary gauge groups. The noncommutative gauge fields Â and
gauge parameters Λ̂ are enveloping algebra valued. Let us choose a symmet-
ric basis in the enveloping algebra, T a, 1

2
(T aT b + T bT a), . . . , such that

Λ̂(x) = Λ̂a(x)T
a + Λ̂1

ab(x) : T aT b : + . . . ,

Âµ(x) = Âµa(x)T
a + Âµab(x) : T aT b : + . . . . (3.32)
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Eqn. (3.31) defines the SW maps for the gauge field and the gauge parameter.
However, it is more practical to find equations for the gauge parameter and
the gauge field alone [50]. First, we will concentrate on the gauge parameters

Λ̂. We already encountered the consistency condition

δ̂αδ̂β − δ̂β δ̂α = δ̂−i[α⋆,β] ,

which more explicitly reads

iδ̂αβ̂[A]− iδ̂βα̂[A] +
[
α̂[A] ⋆, β̂[A]

]
= ([̂α, β])[A] . (3.33)

We can expand α̂ in terms of θ,

α̂[A] = α+ α1[A] + α2[A] +O(θ3) , (3.34)

where αn is O(θn). The consistency relation (3.33) can be solved order by
order in θ:

0th order : α0 = α ,

1st order : α1 =
θ

4
θµν {∂µα,Aν}

=
θ

2
θµν∂µαaAµb : T

aT b : . (3.35)

For fields ψ̂ the condition

δαψ̂[A] = δ̂αψ̂[A] = iα̂[A] ⋆ ψ̂[A] (3.36)

has to be satisfied. In other words, the ordinary gauge transformation induces
a noncommutative gauge transformation. We expand the fields in terms of
the non-commutativity

ψ̂ = ψ0 + ψ1[A] + ψ2[A] + . . . , (3.37)

and solve Eqn. (3.36) order by order in θ. In first order, we have to find a
solution to

δαψ
1[A] = iαψ1 + iα1ψ − θ

2
θµν∂µα∂νψ . (3.38)
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It is given by

0th order : ψ0 = ψ ,

1st order : ψ1 = −θ
2
θµνAµ∂νψ +

iθ

4
θµνAµAνψ . (3.39)

The gauge fields Âµ have to satisfy

δαÂµ[A] = ∂µα̂[A] + i
[
α̂[A] ⋆, Âµ[A]

]
. (3.40)

Using the expansion

Âµ[A] = A0
µ + A1

µ[A] + A2
µ[A] + . . . , (3.41)

and solving (3.40) order by order, we end up with

0th order : A0
µ = Aµ ,

1st order : A1
µ = −θ

4
θτν {Aτ , ∂νAµ + Fνµ} , (3.42)

where Fνµ = ∂νAµ−∂µAν−i [Aν ,Aµ]. Similarly, we have for the field strength

F̂µν

δαF̂µν = i
[
α̂, F̂µν

]
and F̂µν = Fµν +

θ

2
θστ {Fµσ, Fντ} −

θ

4
θστ {Aσ, (∂τ +Dτ )Fµν} , (3.43)

where DµFτν = ∂µFτν − i [Aµ,Fτν ].

3.2.2 Oscillator models

As a first step, a BRST invariant action including an oscillator term has been
proposed in [51]:

S =

∫
d4x

(
1

4
Fµν ⋆ F

µν + s(c̄ ⋆ ∂µAµ)−
1

2
B2 +

Ω2

8
s(c̃µ ⋆ Cµ)

)
, (3.44)

where Cµ contains the crucial new terms:

Cµ = {{x̃µ ⋆, Aν} ⋆, Aν}+ [{x̃µ ⋆, c̄} ⋆, c] + [c̄ ⋆, {x̃µ ⋆, c}] , (3.45)
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and c̃µ is a new parameter which also transforms under BRST. The noncom-
mutative field strength is given by Fµν = ∂µAν−∂νAµ−i [Aµ

⋆, Aν ]. Summing
up, the action (3.44) is invariant under the following BRST transformation:

sAµ = Dµc, sc̄ = B, sc = igc ⋆ c, (3.46)

sB = 0, sc̃µ = x̃µ .

The above set of transformations is nilpotent. The propagator of the gauge
field is given by Mehler kernel (3.12). One-loop calculations have been pre-
formed in [52]. A power counting formula has been obtained and the correc-
tions to the vertex functions have been computed. Remarkably, the one-point
tadpole is UV-divergent. Therefore, the action (3.44) is not stable under one-
loop corrections, and a linear counter terms needed.

It seems natural to look for a more general action. The so-called induced
gauge action [53, 54] contains the terms of (3.44) and more. It is invariant
under noncommutative U(1) transformations. The starting point is the scalar
ϕ4 model with oscillator potential (3.9). The scalar field is then coupled to an
external gauge field. The dynamics of the gauge field is given by the divergent
contributions of the one-loop effective action generalising the method of heat
kernel expansion to the noncommutative realm. The induced action is given
by

S =

∫
d4x

{
3

θ
(1− ρ2)(µ̃2 − ρ2)(X̃ν ⋆ X̃

ν − x̃2) (3.47)

+
3

2
(1− ρ2)2

(
(X̃µ ⋆ X̃µ)

⋆2 − (x̃2)2
)
− ρ4

4
FµνFµν

}
,

where ρ = 1−Ω2

1+Ω2 , µ̃
2 = m2θ

1+Ω2 . Furthermore, the field strength is given by

Fµν = −i[x̃µ, Aν ]⋆ + i[x̃ν , Aµ]⋆ − i[Aµ, Aν ]⋆ ,

and X̃µ denote the covariant coordinates, X̃µ = x̃µ +Aµ. In the limit Ω→ 0
(i.e., ρ → 1), we recover the usual noncommutative Yang-Mills action. An
interesting limit is Ω→ 1 (i.e., ρ→ 0), where we obtain a pure matrix model.
It has a non-trivial vacuum, which makes the quantization more difficult. The
computation of propagator and Feynman rules and also one-loop calculations
are work in progress.
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An alternative model has been proposed in [55]. The gauge model is
constructed on a specific curved noncommutative background space, the so-
called truncated Heisenberg space. In two dimensions the action reads

S =

∫
d2x

(
(1− α2)F ∗2

12 − 2(1− α2)µF12 ⋆ ϕ+ (5− α2)µ2ϕ2 (3.48)

+4iαF12 ⋆ ϕ
⋆2 + (Diϕ)

2 − α2 {pi +Ai
⋆, ϕ}2

)
, (3.49)

where α is some parameter and µ has dimension of a mass.

3.2.3 1/p2 model

The same strategy as in the scalar case is applied here, the IR divergence is
added as a counter term. Considering the action

S =

∫
d4xFµν ⋆ Fµν (3.50)

for noncommutative U(1) theory, the vacuum polarization shows the follow-
ing IR divergent contribution:

Πµν ∝
p̃µp̃ν
(p̃2)2

. (3.51)

A gauge invariant implementation of the above is given by the term [56]∫
d4xFµν

1

D̃2D2
Fµν . (3.52)

The inverse covariant derivatives in the above expression need to be expanded
in terms the gauge field. Hence, vertices with arbitrary number of photon
legs occur. This situation might still be treatable, but it is simpler to use a lo-
calised version of (3.52). Basically, there are two different ways to implement
the localization:

• By introducing an antisymmetric field Bµν [57]:∫
d4xFµν

a2

D̃2D2
Fµν →

∫
d4x

(
aBµνFµν −Bµν ⋆ D̃

2D2Bµν

)
. (3.53)

But this field is physical and introduces additional degrees of freedom.
Therefore, the model is not pure noncommutative U(1) gauge theory
any more but describes different physics.
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• Secondly, BRST doublet structures are employed in [58]. The addi-
tional fields needed for the localization of (3.52) build BRST doublets.
This avoids the introduction of new physical degrees of freedom. Un-
fortunately, the model presented in [58] is not renormalizable.

The virtue of the latter approach is the implementation of the IR damping
as a so-called ”soft breaking”. This is in analogy to the Gribov-Zwanziger
approach to undeformed QCD [59, 60], where an IR modification of the prop-
agator is suggested to cure the Gribov ambiguities. The UV renormalizabil-
ity is not altered. In [61], the ”soft breaking” approach has been developed
further. As a result the following action is proposed:

S = Sinv + Sgf + Saux + Ssoft + Sext , (3.54)

Sinv =

∫
d4x

1

4
FµνFµν , (3.55)

Sgf =

∫
d4x s(c̄∂µAµ) , (3.56)

Saux =

∫
d4x s

(
ψ̄µνBµν

)
, (3.57)

Ssoft =

∫
d4x s

(
(Q̄µναβBµν +QµναβB̄µν)

1

�̃
(fαβ + σ

θαβ
2
f̃)

)
, (3.58)

Sext =

∫
d4x (ΩA

µ sAµ + Ωcsc) , (3.59)

where fαβ = ∂αAβ−∂βAα is the commutative U(1) field strength, Θαβ = ϵ θαβ
and f̃ = θαβfαβ, �̃ = ∂̃µ∂̃µ = θµαθµβ∂α∂β. For convenience, ϵ has mass
dimension −2, whereas θµν is rendered dimensionless. The additional sources
Q̄, Q, J̄, J ensure BRST invariance of (3.54). In the IR, they take their
physical values:

Q̄µναβ|phys = 0, J̄µναβ|phys =
γ2

4
(δµαδνβ − δµβδνα),

Qµναβ|phys = 0, Jµναβ|phys =
γ2

4
(δµαδνβ − δµβδνα) . (3.60)

Inserting the physical values and integrating out the field Bµν the following
action is obtained:

Sphys =

∫
d4x

(
1

4
FµνFµν + γ4

[
∂µAν

1

2�̃2
fµν +

(
σ +

θ2

4
σ2

)
(∂̃A)

1

�̃2
(∂̃A)

]
+ s (c̄∂µAµ)

)
.

(3.61)
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The term proportional to γ4 breaks gauge invariance. It is called “soft break-
ing” since the parameter γ has dimension of mass. We have used the com-
mutative field strength in this expression although it is not covariant under
noncommutative gauge transformations. But it only appears in the breaking
term and cannot make it worse, since gauge invariance is already violated.
The advantage is that only the propagation but not the interaction is modi-
fied due to the “soft breaking”.

The full action (3.54) is invariant under the following set of BRST trans-
formations:

sAµ = Dµc , sc = igcc , sc̄ = b , sb = 0 ,

sψ̄µν = B̄µν , sB̄µν = 0 , sBµν = ψµν , sψµν = 0 , (3.62)

sQ̄ = J̄ , sJ̄ = 0 , sQ = J , sJ = 0 .

The fields ψ and B, resp. ψ̄ and B̄ and the sources Q and J , resp. Q̄ and J̄
are BRST doublets. Let us discuss the Feynman rules for (3.54). The vertex
functions are the same as in the usual noncommutative U(1) theory defined
by the action (3.50). The propagator is more complicated, it reads

GA
µν(k) =

(
k2 +

γ4

k̃2

)−1
(
δµν −

kµkν
k2
− σ̄4

(k2 + (σ̄4 + γ4) 1
k̃2
)

k̃µk̃ν

(k̃2)2

)
, (3.63)

where

σ̄ = 2γ4
(
σ +

θ2σ2

4

)
.

But for 1-loop calculation, it can be approximated by

GA
µν ∼

1

k2
(δµν −

kµkν
k2

), k2 >> 1 , (3.64)

since both UV and IR divergences result from high momentum range in the
loop. This ignores the IR damping, but as we have seen the damping has no
effect at one-loop. Considering higher loop insertions of a single tadpole (cf.
(3.15)) the damping of the propagators between the single loops is essential
and renders the result independent of the number of inserted loops - at least
in the scalar case, for the gauge model discussed here this still needs to be
shown.

A power counting formula,

dG = 4− EA − Ecc̄ , (3.65)
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where Eϕ denotes the number of external ϕ-legs, and one-loop results have
been obtained in [61]. The correction to the vacuum polarization is given by

Πµν =
2g2

ϵ2π2

p̃µp̃ν
(p̃2)2

+
13g2

3(4π)2
(p2δµν − pµpν) lnΛ , (3.66)

where Λ denotes a momentum cut-off. Remarkably, the one-loop correction is
transversal. Furthermore, we obtained the following results for the vertices:

Γ3A,IR
µνρ = −2ig3

π2
cos

ϵp1p̃2
2

∑
j=1,2,3

p̃j,µp̃j,ν p̃j,ρ
ϵ(p̃2j)

2
, (3.67)

Γ3A,UV
µνρ = − 17g2

6(4π)2
ln Λ Ṽ 3A,tree

µνρ (p1, p2, p3) , (3.68)

Γ4A,UV
µνρσ = − 5

8π2
ln Λ Ṽ 4A,tree

µνρσ , (3.69)

where V 3A,tree
µνρ and V 4A,tree

µνρσ denote the tree level vertex functions. Regard-
ing the three-point function, the IR divergent result (3.67) corresponds to a
counter term

S3A,corr =

∫
d4x g3 {Aµ

⋆, Aν}
∂̃µ∂̃ν ∂̃ρ

ϵ �̃2
Aρ . (3.70)

Such a term can readily be introduced into the “soft breaking“ part of the
action Ssoft in (3.54). But in order to do so, we have to restore BRST invari-
ance in the UV regime. Again, this can be achieved by introducing sources
Q′ and J ′, which form a BRST doublet,

sQ′ = J ′ , sJ ′ = 0 . (3.71)

Consequently, we insert the following terms into Ssoft:∫
d4x

(
J ′ {Aµ

⋆, Aν}
∂̃µ∂̃ν ∂̃ρ

�̃2
Aρ −Q′s

(
{Aµ

⋆, Aν}
∂̃µ∂̃ν ∂̃ρ

�̃2
Aρ

))
. (3.72)

This term is BRST invariant by itself. In the IR, the sources take on their
physical values

J ′ = gγ′2, Q′ = 0 , (3.73)

56



and the counter term in (3.70) leads to a renormalization of γ′, which is
another parameter of mass-dimension 1.

The above one-loop result leads to a negative β-function:

β = − 7g3

12π2
.

List of abbreviations

EOM equations of motion
LHS left hand side
QYBE Quantum-Yang-Baxter-Equation
RHS right hand side
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