Special Relativity Recap II

paul.romatschke@colorado.edu

Spring 2021

Special Relativity Recap - continued

- Last lecture we started a review of special relativity
- In particular, we reviewed index notation
- We will continue this review of special relativity in this lecture

More on index notation

- In the last lecture, we introduced index notation
- E.g. for ordinary 3 -vectors, we have $x_{i}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
- We can write products of vectors using index notation as

$$
\begin{equation*}
u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \tag{2.1}
\end{equation*}
$$

- We can represent matrices using two indices, e.g.

$$
a_{i j}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{2.2}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

More on index notation

- Changing the order of the indices of a rank 2 matrix corresponds to transposition
- For instance,

$$
\mathbf{a}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{2.3}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad \mathbf{a}^{T}=\left(\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right)
$$

so that

$$
\begin{equation*}
a_{i j}^{T}=a_{j i} \tag{2.4}
\end{equation*}
$$

More on index notation

- Products of matrices and vectors are given by

$$
\mathbf{a} \cdot \mathbf{v}=a_{i j} v_{j}=\left(\begin{array}{l}
a_{11} v_{1}+a_{12} v_{2}+a_{13} v_{3} \tag{2.5}\\
a_{21} v_{1}+a_{22} v_{2}+a_{23} v_{3} \\
a_{31} v_{1}+a_{32} v_{2}+a_{33} v_{3}
\end{array}\right)
$$

- Note that the order of the product is important, e.g. in general

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{v} \neq \mathbf{v} \cdot \mathbf{a} . \tag{2.6}
\end{equation*}
$$

- In index notation, the order of the product is specified uniquely by the index that appears twice
- In index notation, we have

$$
\begin{equation*}
b_{i}=a_{i j} v_{j}=v_{j} a_{i j}, \quad c_{i}=v_{j} a_{j i}=a_{j i} v_{j}=a_{i j}^{T} v_{j} \tag{2.7}
\end{equation*}
$$

More on index notation

- In index notation, the order of the objects does not matter, e.g. $a_{i j} v_{j}=v_{j} a_{i j}$
- However, the order of the indices matters, e.g. $a_{i j} v_{j} \neq a_{j i} v_{j}$
- Indices appearing twice next to each other can be interpreted as products, e.g.

$$
\begin{equation*}
a_{i j} v_{j}=\mathbf{a} \cdot \mathbf{v} \tag{2.8}
\end{equation*}
$$

- Warning: Indices appearing twice somewhere do in general not correspond to vector products, e.g.

$$
\begin{equation*}
a_{i j} v_{i} \neq \mathbf{a} \cdot \mathbf{v} \tag{2.9}
\end{equation*}
$$

- However, you may recognize such expressions as products by re-ordering the symbols, e.g.

$$
\begin{equation*}
a_{i j} v_{i}=v_{i} a_{i j}=\mathbf{v} \cdot \mathbf{a} \tag{2.10}
\end{equation*}
$$

Norm of a Vector

- Norm of 3-vectors

$$
\begin{equation*}
|\vec{x}|^{2}=x^{2}+y^{2}+z^{2} \tag{2.11}
\end{equation*}
$$

- Can write this in index notation

$$
\begin{equation*}
|\vec{x}|^{2}=x^{i} x^{i}=x^{i} \delta_{i j} x^{j} \tag{2.12}
\end{equation*}
$$

- Here $\delta_{i j}$ is the Kronecker symbol:

$$
\delta_{i j}=\left(\begin{array}{lll}
1 & 0 & 0 \tag{2.13}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Metric Tensor

- We can view the Kronecker symbol as the metric tensor of Euclidean space
- There is a formal definition for the metric tensor
- In practice, however, all you need to know is that the metric tensor is how you calculate a dot product of vectors
- In 3-dimensional Euclidean space

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=u^{i} v^{j} \delta_{i j} \tag{2.14}
\end{equation*}
$$

Transformation of the Metric Tensor

- The length of a vector is expressed through the metric tensor
- For a 3-vector, writing the metric tensor as $g_{i j}$ we have

$$
\begin{equation*}
L^{2}=|\mathbf{x}|^{2}=x_{i} g_{i j} x_{j} \tag{2.15}
\end{equation*}
$$

- For Euclidean 3-space, we know that $g_{i j}=\delta_{i j}$.
- Rotations are encoded through a rotation matrix $R_{i j}$ such that

$$
\begin{equation*}
x_{i}=R_{i j} x_{j}^{\prime} \tag{2.16}
\end{equation*}
$$

- In the rotated coordinate system, assuming a metric tensor $g_{i j}^{\prime}$, we have

$$
\begin{equation*}
L^{\prime 2}=x_{i}^{\prime} x_{i}^{\prime}=x_{i}^{\prime} g_{i j}^{\prime} x_{j}^{\prime} \tag{2.17}
\end{equation*}
$$

Transformation of the Metric Tensor

- We can use the transformation rule $x_{i}=R_{i j} x_{j}^{\prime}$ to re-write the length of the vector

$$
\begin{equation*}
L^{2}=x_{i} g_{i j} x_{j}=R_{i m} x_{m}^{\prime} g_{i j} R_{j n} x_{n}^{\prime}=x_{m}^{\prime} R_{i m} g_{i j} R_{j n} x_{n}^{\prime} \equiv x_{m}^{\prime} g_{m n}^{\prime} x_{n}^{\prime}=L^{\prime 2} \tag{2.18}
\end{equation*}
$$

- We therefore get a transformation rule for the metric tensor:

$$
\begin{equation*}
g_{m n}^{\prime}=R_{i m} g_{i j} R_{j n}=R_{i m} R_{j n} g_{i j} \tag{2.19}
\end{equation*}
$$

- For rotations, it is easy to show that (homework!)

$$
\begin{equation*}
g_{i j}=g_{i j}^{\prime}=\delta_{i j} \tag{2.20}
\end{equation*}
$$

- The Euclidean metric is invariant under rotations
- The length of a 3-vector is invariant under rotations of the coordinate system $L^{2}=L^{\prime 2}$

