Manifolds paul.romatschke@colorado.edu Spring 2021 #### What are manifolds? There probably is a formal definition, but I don't know it So instead, I'll give you some examples of manifolds ## Example Euclidean space \mathbb{R}^N - Consider Euclidean space in N-dimensions: \mathbb{R}^N - Zero dimensions \mathbb{R}^0 : • - ullet One dimensions \mathbb{R}^1 : - Two dimensions \mathbb{R}^2 : - . . . - Coordinates on \mathbb{R}^N : $x_i = (x_1, x_2, \dots, x_N)$ - Metric on \mathbb{R}^N : δ_{ij} # Example N-sphere S^N - Next consider the sphere in N-dimensions S^N - Zero dimensions S^0 : The same as \mathbb{R}^0 ! - One dimension S^1 : • Two dimensions S^2 : - Austrian version: - S^2 : coordinates $x_i = \begin{pmatrix} \phi \\ \theta \end{pmatrix}$; Metric $g_{ij} = \begin{pmatrix} R^2 & 0 \\ 0 & R^2 \sin \theta \end{pmatrix}$ - All *S*^{*N*}: genus 0 # Example N-torus T^N - Next consider the torus in N-dimensions T^N - Two dimensions T^2 : ## Example N-torus T^N - Next consider the torus in N-dimensions T^N - Two dimensions T^2 (American version): - Torus is always genus 1 - ullet Can view torus \mathcal{T}^N as compactification of \mathbb{R}^N - For instance T^2 as compactification of \mathbb{R}^2 ; can get toroidal coordinates from coordinate transformation of \mathbb{R}^2 ## Example: double-torus - Next consider the double-torus - It looks like this: • Double torus is genus 2 ## Example: triple-torus - Next consider the triple-torus - German version: • Triple torus is genus 3 ### Example: Klein bottle - More complicated 2-dimensional manifolds: Klein Bottle - Looks like this: - Genus 2 - Non-orientable #### **Geodesics** Geodesic is the path that takes minimal time from A to B on a manifold $\bullet \ \ \mathsf{Example} \ \mathbb{R}^2:$ • Example S^2 : ## Our universe as a manifold #### Manifolds We've discussed several 2d manifolds, such as • *S*²: Triple torus: • Is there an edible version of the double-torus?