Manifolds

paul.romatschke@colorado.edu

Spring 2021

What are manifolds?

There probably is a formal definition, but I don't know it So instead, I'll give you some examples of manifolds

Example Euclidean space \mathbb{R}^N

- Consider Euclidean space in N-dimensions: \mathbb{R}^N
- Zero dimensions \mathbb{R}^0 : •
- ullet One dimensions \mathbb{R}^1 :

- Two dimensions \mathbb{R}^2 :
- . . .
- Coordinates on \mathbb{R}^N : $x_i = (x_1, x_2, \dots, x_N)$
- Metric on \mathbb{R}^N : δ_{ij}

Example N-sphere S^N

- Next consider the sphere in N-dimensions S^N
- Zero dimensions S^0 : The same as \mathbb{R}^0 !
- One dimension S^1 :

• Two dimensions S^2 :

- Austrian version:
- S^2 : coordinates $x_i = \begin{pmatrix} \phi \\ \theta \end{pmatrix}$; Metric $g_{ij} = \begin{pmatrix} R^2 & 0 \\ 0 & R^2 \sin \theta \end{pmatrix}$
- All *S*^{*N*}: genus 0

Example N-torus T^N

- Next consider the torus in N-dimensions T^N
- Two dimensions T^2 :

Example N-torus T^N

- Next consider the torus in N-dimensions T^N
- Two dimensions T^2 (American version):

- Torus is always genus 1
- ullet Can view torus \mathcal{T}^N as compactification of \mathbb{R}^N
- For instance T^2 as compactification of \mathbb{R}^2 ; can get toroidal coordinates from coordinate transformation of \mathbb{R}^2

Example: double-torus

- Next consider the double-torus
- It looks like this:

• Double torus is genus 2

Example: triple-torus

- Next consider the triple-torus
- German version:

• Triple torus is genus 3

Example: Klein bottle

- More complicated 2-dimensional manifolds: Klein Bottle
- Looks like this:

- Genus 2
- Non-orientable

Geodesics

 Geodesic is the path that takes minimal time from A to B on a manifold

 $\bullet \ \ \mathsf{Example} \ \mathbb{R}^2:$

• Example S^2 :

Our universe as a manifold

Manifolds

We've discussed several 2d manifolds, such as

• *S*²:

Triple torus: • Is there an edible version of the double-torus?

