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Review

In lecture 10, we derived the geodesic equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 . (16.1)

We discussed that d2xµ

dτ2
is not a vector under coordinate

transformations

In this lecture, we will define a new operation that does transform
properly under coordinate transformations
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Vectors and Non-Vectors

Recall that we are interested in non-linear coordinate transformations

dxµ → dx ′µ = Rµνdx
ν , (16.2)

where Rµν does depend on the coordinates

In the geodesic equation, we have the Christoffel symbols Γµαβ
We may ask ourselves how these transform under (16.2)

A somewhat tedious exercise shows that

Γ′µαβ = Rµµ′(R
−1) α′

α (R−1) β′

β Γµ
′

α′β′ −
∂x ′µ

∂xα′∂xβ′
∂xα

′

∂xα
∂xβ

′

∂xβ
. (16.3)

Clearly, Γµαβ is not a tensor under (16.2)
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Vectors under General Coordinate Transformations

If Aµ is a vector under (16.2), ∂νA
µ will in general not be a vector

because of coordinate dependence of Rµν

In more detail, using Aµ → A′µ = RµαAα we have

∂νA
µ → ∂′νA

′µ = ∂′ν (RµαA
α) = Rµα∂

′
νA

α + Aα∂′νR
µ
α . (16.4)

The second term spoils general covariance of ∂νA
µ
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Repairing Covariance

Very explicitly, using Rµα = ∂x ′µ

∂xα we have

∂′νA
′µ = Rµα∂

′
νA

α + Aα
∂x ′µ

∂xα∂xβ
∂xβ

∂x ′ν
(16.5)

The offending second piece looks a lot like the transformation of the
Christoffels, cf. (16.3)

Let’s consider the combination

∂νA
µ + ΓµνρA

ρ ≡ ∇νAµ . (16.6)

Using the transformation properties of both Γµνρ and Aµ, it is
straightforward to show that

∇νAµ → ∇′νA′µ = Rµα(R−1) β
ν ∇βAα . (16.7)
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The Covariant Derivative

One can generalize this idea to arbitrary rank tensors

Defining

∇νXµ1µ2...µn
ρ1ρ2...ρm = ∂νX

µ1µ2...µn
ρ1ρ2...ρm + Γµ1ναX

αµ2...µn
ρ1ρ2...ρm

+Γµ2ναX
µ1α...µn

ρ1ρ2...ρm + . . .+ ΓµnναX
µ1µ2...α

ρ1ρ2...ρm

−Γβνρ1X
µ1µ2...µn

βρ2...ρm
− . . .− ΓβνρmX

µ1µ2...µn
ρ1ρ2...β

these combinations transform as tensors under (16.2)

We call ∇µ the (geometric-) covariant derivative and will employ this
symbol in order to distinguish it from the usual derivative (∂µ)
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Examples of The Covariant Derivative

Examples for the covariant derivative include

Scalars:
∇νX = ∂νX . (16.8)

Vectors:
∇νXµ = ∂νX

µ + ΓµναX
α . (16.9)

Rank 2 tensors:

∇νXαβ = ∂νX
αβ + ΓανρX

ρβ + ΓβνρX
αρ (16.10)
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Importance of Covariant Derivative

Covariant derivative generalizes “flat-space” identities
For instance, ∂µj

µ = 0 is not covariant under (16.2)
Instead of ∂µj

µ = 0, the correct current conservation law is

∇µjµ = 0 . (16.11)

This has important consequences. For instance, on a curved manifold

∂µj
µ = −Γµµαj

α 6= 0 (16.12)

(sort of like Coriolis force: not “real force”, but you’ll feel it anyway!)
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Importance of Covariant Derivative

The same holds true for energy-momentum conservation. We have

∇µTµν = 0 = ∂µT
µν + ΓµµαT

αν + ΓνµαT
µα , (16.13)

which in general implies ∂µT
µν 6= 0

Specifically
∂µT

µν = −ΓµµαT
αν − ΓνµαT

µα , (16.14)

so our notion of energy-conservation as in Minkowski space-time no
longer holds in GR

Defining “energy” can become tricky in dynamical situations involving
gravity!
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