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Review

@ In lecture 10, we derived the geodesic equation

d?xH dx® dxP
— 4, =0, 16.1
dr? tlag dr dr ( )

. 2n . .
o We discussed that dd:: is not a vector under coordinate
transformations

@ In this lecture, we will define a new operation that does transform
properly under coordinate transformations
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Vectors and Non-Vectors

@ Recall that we are interested in non-linear coordinate transformations
dx! — dx'* = R dx" | (16.2)

where R, does depend on the coordinates
@ In the geodesic equation, we have the Christoffel symbols FZB
@ We may ask ourselves how these transform under (16.2)

@ A somewhat tedious exercise shows that

_ 1\ B Ox'* OxY 9xP’
raﬁ_R“ (R )a(R 1)/3 H

M, . — — . 16.
BB gxa 9xB Ox> OxP (16.3)

o Clearly, '} ; is not a tensor under (16.2)
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Vectors under General Coordinate Transformations

e If A* is a vector under (16.2), 9,A* will in general not be a vector
because of coordinate dependence of R,

@ In more detail, using A* — A" = R, A® we have

O, A" — DA = 9., (RM AY) = R OLA® + AR, . (16.4)

@ The second term spoils general covariance of d, A*
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Repairing Covariance

o Very explicitly, using R", = 8><a we have

XM 9xP

LA = R A 4 A O
% GA"+ Ox*OxB Ox'V

(16.5)

@ The offending second piece looks a lot like the transformation of the
Christoffels, cf. (16.3)

@ Let's consider the combination

B A+ T AP =V, Al (16.6)

e Using the transformation properties of both I',, and A*, it is
straightforward to show that

I I aAlp . pp(p—1\ B «a
VAR = VA" = RE(R™Y) PV A% (16.7)
S = Lo 15 Y



The Covariant Derivative

@ One can generalize this idea to arbitrary rank tensors

@ Defining
H1H2. fon — H1H2--fn P11 Y Q2.
VVX p1P2---Pm aVX pP1P2---Pm + rVaX P1P2---Pm
M2 Y H1Q...fin Pn YHIH2...0
+rl/CXX P1P2---Pm + R + rz/aX P1P2---Pm
B P12 fon _ B H1H2. fn
Fl,plX Bpmenpm prmX R

these combinations transform as tensors under (16.2)

e We call V,, the (geometric-) covariant derivative and will employ this
symbol in order to distinguish it from the usual derivative (9,,)
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Examples of The Covariant Derivative

Examples for the covariant derivative include

@ Scalars:
@ Vectors:
VX" = 0, XH 4 T X" (16.9)
@ Rank 2 tensors:
VX = 9,X0 4 Te XPP 4 T8 X (16.10)
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Importance of Covariant Derivative

@ Covariant derivative generalizes “flat-space” identities
e For instance, d,j* = 0 is not covariant under (16.2)
@ Instead of 8Mj“ = 0, the correct current conservation law is

V" =0. (16.11)

@ This has important consequences. For instance, on a curved manifold
Ot = =T #0 (16.12)

(sort of like Coriolis force: not “real force”, but you'll feel it anyway!)
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Importance of Covariant Derivative

@ The same holds true for energy-momentum conservation. We have
VT =0=0,T" + T, T + T, T, (16.13)

which in general implies 9, T # 0
@ Specifically
O TH = —Th, T =T, TH, (16.14)
so our notion of energy-conservation as in Minkowski space-time no

longer holds in GR

@ Defining “energy” can become tricky in dynamical situations involving
gravity!
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