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Review

We have discussed the Schwarzschild solution to the Einstein Field
Equations in lectures 22, 23

This is a spherically symmetric & static solution

The solution is for empty space (no matter), except near the center
(for r ≥ rs)

Very much like the gravitational field of a planet in space!

The Schwarzschild solution is the generalization of Newton’s
gravitational potential for a mass in outer space!
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Geodesics for Schwarzschild

Let’s consider a particle in the Schwarzschild spacetime

If it was Newton gravity, the particle would follow a trajectory in the
gravitational field of the planet

In GR, the particle’s trajectory is dictated by the geodesic equation

So our aim for this lecture is to find trajectories for Schwarzschild,
and compare to “orbits” in Newtonian gravity

This is hard to do directly

We will use an alternative route for conserved quantities using Killing
vectors
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Killing Vectors

The Schwarzschild solution is static and spherically symmetric

As a consequence, the Schwarzschild metric obeys

∂tgµν = 0 , ∂φgµν = 0 . (25.1)

We have at least two Killing vectors (see lecture 24)!

One can show that there is at least one additional Killing vector

The Killing vectors are

Kµ
t = δµt =


1
0
0
0

 , Kµ
θ = δµθ =


0
0
1
0

 , Kµ
φ = δµφ =


0
0
0
1

 .

(25.2)
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Conserved Quantities

There is a conserved quantity associated with each Killing vector

For the Schwarzschild solution, these conserved quantities are

−Kµ
t uµ = −Kt,µu

µ = −Kt,0
dt

dτ
= E (“Energy′′) (25.3)

(the minus sign is convention)

Furthermore:

Kφ,µu
µ = Kφ,3

dφ

dτ
= L (“Angular Momentum′′) (25.4)

In addition, there is a third conserved quantity. For the following
discussion, we choose it to be equal to zero:

Kθ,µu
µ = Kθ,2

dθ

dτ
= 0 . (25.5)
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Conserved Quantities

Lower-index Killing vectors are found from upstairs-index through
metric contraction

To be explicit, we have

Kt,µ = gµνK
µ
t = gµνδ

µ
t = gtν =


−(1 − rs

r )
0
0
0

 . (25.6)

Proceeding in a similar fashion, we get

Kφ,µ = gφµ =


0
0
0

r2 sin2 θ

 . (25.7)
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Conserved Quantities

Using these explicit formulas for the Killing vectors, the conserved
quantities are

E =
(

1 − rs
r

) dt

dτ
, L = r2 sin2 θ

dφ

dτ
. (25.8)

In addition, the third conservation law is

dθ

dτ
= 0 , or θ = const . (25.9)

For simplicity, in the following we choose the constant as

θ =
π

2
. (25.10)
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Massive Particle

For a massive particle, it’s proper time is related to the line element as

dτ2 = −gµνdx
µdxν . (25.11)

We can rewrite this condition by dividing both sides by dτ to find

−1 = gµν
dxµ

dτ

dxν

dτ
. (25.12)

Of course, this is nothing but our normalization condition for the
particle’s velocity uµ = dxµ

dτ

uµuµ = −1 . (25.13)
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Towards equations of motion

Let’s write out this condition in components:

−1 = gtt

(
dt

dτ

)2

+ grr

(
dr

dτ

)2

+ gθθ

(
dθ

dτ

)2

+ gφφ

(
dφ

dτ

)2

(25.14)

Next, use the conserved quantities to express this equation as

−1 = gtt
E 2

g2
tt

+ grr

(
dr

dτ

)2

+ gφφ
L2

g2
φφ

. (25.15)

For the Schwarzschild solution grr = − 1
grr

= 1
A(r) so that

−A(r) = −E 2 +

(
dr

dτ

)2

+ A(r)
L2

gφφ
. (25.16)
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Towards equations of motion

Next consider gφφ = r2 sin2 θ and recall that we set θ = π
2 using the

third Killing vector

This gives

−A(r) = −E 2 +

(
dr

dτ

)2

+
A(r)

r2
L2 . (25.17)

When plugging in the Schwarzschild solution A(r) = 1 − rs
r we finally

get (
dr

dτ

)2

+
(

1 − rs
r

)(
1 +

L2

r2

)
= E 2 . (25.18)

paul.romatschke@colorado.edu GR – Lecture 25 Spring 2021 10 / 11



The equations of motion

For an arbitrary manifold, the equations of motion for a particle are
given by the geodesic equation

d2xµ

dτ2
− Γµαβ

dxα

dτ

dxβ

dτ
= 0 . (25.19)

This equation is difficult to solve

Using instead conserved quantities resulting from the symmetries of
the spacetime, we found a much simpler equation of motion(

dr

dτ

)2

+
(

1 − rs
r

)(
1 +

L2

r2

)
= E 2 , (25.20)

where L,E are constants of motion.
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