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Review

@ We have discussed the Schwarzschild solution to the Einstein Field
Equations in lectures 22, 23

@ This is a spherically symmetric & static solution

@ The solution is for empty space (no matter), except near the center
(for r > rs)

@ Very much like the gravitational field of a planet in space!

@ The Schwarzschild solution is the generalization of Newton's
gravitational potential for a mass in outer space!
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Geodesics for Schwarzschild

@ Let's consider a particle in the Schwarzschild spacetime

o If it was Newton gravity, the particle would follow a trajectory in the
gravitational field of the planet

@ In GR, the particle’s trajectory is dictated by the geodesic equation

@ So our aim for this lecture is to find trajectories for Schwarzschild,
and compare to “orbits” in Newtonian gravity

@ This is hard to do directly

@ We will use an alternative route for conserved quantities using Killing
vectors
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-
Killing Vectors

@ The Schwarzschild solution is static and spherically symmetric
@ As a consequence, the Schwarzschild metric obeys

0t8uw =0, 0Opguw =0. (25.1)

@ We have at least two Killing vectors (see lecture 24)!

@ One can show that there is at least one additional Killing vector
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@ The Killing vectors are
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Conserved Quantities

@ There is a conserved quantity associated with each Killing vector
@ For the Schwarzschild solution, these conserved quantities are

dt

—Kl'u, = =K uut = —Kt,od— = E (“Energy”) (25.3)
T
(the minus sign is convention)
o Furthermore:
K d¢ I 12
ol = Ky3 pr =L ("Angular Momentum") (25.4)

@ In addition, there is a third conserved quantity. For the following
discussion, we choose it to be equal to zero:
do

KQ#U —K02d =0. (25.5)
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Conserved Quantities

@ Lower-index Killing vectors are found from upstairs-index through
metric contraction

@ To be explicit, we have

~(1-%)

0
Kep = gu Kt = gu ot = gu = 0 (25.6)
0
@ Proceeding in a similar fashion, we get
0
0
Kon=tn=| o | (25.7)
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]
Conserved Quantities

@ Using these explicit formulas for the Killing vectors, the conserved
quantities are

_ rs dt 2.2 dqb
E = (1 7) E, L = r-sin QE . (258)
@ In addition, the third conservation law is
do
= 0, or 6 =const. (25.9)

@ For simplicity, in the following we choose the constant as

0 = (25.10)

s
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Massive Particle

@ For a massive particle, it's proper time is related to the line element as

dr? = —g dxtdx” . (25.11)

@ We can rewrite this condition by dividing both sides by d7 to find

dx* dx?

—1=g,— . 25.12
Eu dr dr (25.12)

@ Of course, this is nothing but our normalization condition for the

e ; uo— dxt
particle’s velocity u# =

utu, = —1. (25.13)
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Towards equations of motion

@ Let’s write out this condition in components:

dt \ 2 dr? do\? do\?
—1=gu <dT> + & (dT> + &0 <dT> + oo (dT> (25.14)

@ Next, use the conserved quantities to express this equation as

E? dr\? 2
-1= &t~ T & <> + 8pp 5 - (2515)
8tt dr 8o
@ For the Schwarzschild solution g, = —é% = A(lr) so that
dr\? 12
—A(r) = —E? + <r> + A(r)—. (25.16)
dr g¢¢
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Towards equations of motion

@ Next consider gy = r?sin® 6 and recall that we set § = 5 using the

third Killing vector

@ This gives
dr\? A(r)
_ _ 2 ar Alr) 2
A(r)=—-E~+ <d7_> + P L. (25.17)

@ When plugging in the Schwarzschild solution A(r) =1 — = we finally

get
dr\? rs L2 5
<dT> + (1 - 7) <1 + r2> = E2. (25.18)
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The equations of motion

@ For an arbitrary manifold, the equations of motion for a particle are
given by the geodesic equation

d?xH p dx® dx?
Y T 25.1
dr? B dr dr 0 (25.19)

@ This equation is difficult to solve

@ Using instead conserved quantities resulting from the symmetries of
the spacetime, we found a much simpler equation of motion

dr\? Is L?
ar 1_7) 14— ) =E2, 25.20
(dT) + ( r ( + r2> ( )
where L, E are constants of motion.
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