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Review

The Schwarzschild solution is a solution to the equations of GR

We discussed the Schwarzschild solution for a mass in outer space

We derived an equation of motion for a massive particle for the
Schwarzschild solution

In this lecture, we consider circular orbits for a particle

We will compare circular orbits in GR to Newtonian gravity
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Equations of motion

In lecture 25, we found that a massive particle with energy E and
angular momentum L has the GR equations of motion
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This is similar to the “energy balance” in classical Newtonian
mechanics

Specifically consider a particle with mass m and velocity v in a
potential V (r)

In classical Newtonian mechanics, the particle’s energy E would be
given by

E =
mv2

2
+ mV (r) . (26.2)
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Equations of motion

If the particle’s velocity is radial v = dr
dτ , so the Newtonian theory

gives
E
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We can compare this to the GR equation of motion (26.1)
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We conclude that for GR, there is an “energy-budget” similar to
classical mechanics

The only difference between GR and Newton is the form of the
potential V (r)
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Gravitational Potential

In Newton’s theory of gravity, the gravitational potential away from a
body of mass M is VN(r) = −GM

r

For a particle of angular momentum L, in classical mechanics there is
an additional potential term given by VL(r) = L2

2r2

So the potential for a particle in classical (Newtonian) mechanics we
have

Vclass(r) = VN(r) + VL(r) = − GM

r
+

L2

2r2
. (26.5)

By contrast, in GR we find from (26.1)
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paul.romatschke@colorado.edu GR – Lecture 26 Spring 2021 5 / 9



Circular Orbits – Newton

Circular orbits mean radius does not change: dr
dτ = 0

Stable circular orbits are found from the minimum of the potential

For classical (Newton) mechanics, we have

0 =
dVclass

dr
=

GM

r2
− L2

r3
(26.7)

So for Newton gravity, stable circular orbits are found for

r =
L2

GM
. (26.8)

For Newton gravity, orbits are stable for all L
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Circular Orbits – Einstein

Circular orbits mean radius does not change: dr
dτ = 0

Stable circular orbits are found from the minimum of the potential

For GR we have

0 =
dV

dr
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GM
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+
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r4
(26.9)

So for GR we get

r2 − L2

GM
r + 3L2 = 0 , r =

L2

2GM
±
√

L4

4G 2M2
− 3L2 . (26.10)

Stable circular orbits exist as long as L2

4G2M2 ≥ 3 or

|L| ≥
√

12GM ≡ Lc . (26.11)
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Circular Orbits – Einstein

For GR, there is a minimum angular momentum L = Lc =
√

12GM
below which orbits are no longer stable

There is an associated minimum radius rISCO :

rISCO =
L2c

2GM
= 6GM . (26.12)

We call this the Innermost Stable Circular Orbit (ISCO)

In relation to the Schwarzschild horizon rs = 2GM we have

rISCO = 3rs . (26.13)
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Circular Orbits – Einstein

Sketch of GR orbits
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