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Review

@ We discussed closed circular orbits for the Schwarzschild solution
@ Let’s now generalize this to non-circular orbits
@ We will compare again compare orbits in GR to Newtonian gravity

@ A key application of our calculation is a prediction for perihelon
advance — an important observational test of GR!
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Equations of motion

@ In lecture 25, we found that a massive particle with energy E and
angular momentum L has the GR equations of motion

E2 — (j;)Q + (1 - L:) <1 + i) . (27.1)

@ In lecture 26, we considered circular orbits with r = const so that
L =0
@ Let's now look for non-circular orbits with % #0
@ Recall that we have conserved quantities such as the angular
momentum
L= r2@

- (27.2)
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|
Equations of motion

@ In lecture 25, we found that a massive particle with energy E and
angular momentum L has the GR equations of motion

E2 — (Z)Q + (1 - L:) <1 + i) : (27.3)

o For non-circular orbits, multiply (27.3) by (9%)% = Z%

4 2 4
E2% - (j;) + (1 — i:) <r2 n £2> . (27.4)

@ Now define the inverse radius as a new variable:

©-

1
u=-, du:—r—zdr:—uzdr (27.5)

paul.romatschke®@colorado.edu GR — Lecture 27 Spring 2021 4/12



Equations of motion

@ For a non-circular orbit g—‘d’) # 0, so we can divide and get

d%u 3rs 5 rs
W‘FU—?U — 2L2

=0. (27.6)

@ This is a non-linear ODE; cannot solve exactly analytically
@ Two choices:

@ Do approximations
@ Solve numerically
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Equations of motion — Linear Approximation

@ Equations of motion:

d2u+u—%u2— rs

do? 2 212

=0. (27.7)

o First approximation: neglect nonlinear (u?) term:

d%u rs
— =—. 27.
P +u 52 (27.8)
@ Can solve exactly:
I's
u= 52 + acos(p + ). (27.9)

o It's an ellipse! Keppler's law!

paul.romatschke®@colorado.edu GR — Lecture 27 Spring 2021 6 /12



Equations of motion — Beyond Linear Approximation

@ Let's now include the non-linear term:

d?u 3rs 5 rs
P R T

(27.10)

@ We could try looking for solutions which are close to Kepler's law:

2L2 + accos(p + ) + 0u = Ugeppler + O0u, du << u. (27.11)

@ Plugging (27.11) into (27.10) and linearizing in du we get

d?su 3rs 5

d¢2 +ou=— 2 uKeppler

(27.12)

@ Solving this is possible, but complicated!
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Equations of motion — Beyond Linear Approximation (2)

@ Let's now include the non-linear term:

d?u 3rs 5 rs
P ST

=0. (27.13)

@ ¢ =1, but we will pretend ¢ < 1 to get a solution

@ Instead of linearizing around u = ukeppler, We could try adjusting the
Kepplerian frequency

@ Specifically, let's do

u= Co+ acos(pC + B) + ecoycos (2¢ + (o) , (27.14)

where Co = 575 + ey, Gt =1+ea
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Equations of motion — Beyond Linear Approximation (2)

@ Plugging this into (27.13) and linearizing in € < 1, we find a solution
with

3rs r2 5 3r2 rsa2
o= <L52+2O‘ Ca=-ab o=-"C (113

paul.romatschke®@colorado.edu GR — Lecture 27 Spring 2021 9/12



Orbits — Newton vs. Einstein

Keppler: planetary motion is elliptic
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Orbits — Newton vs. Einstein

Einstein: planetary motion is elliptic with moving shape
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]
Getting Quantitative

@ The moving shape found in GR is distinct from Newton gravity
@ It can be used as a observational test for GR

o If GR is the correct theory (rather than Newton gravity), then e.g.
planetary motion in our solar system should show this “advance” of
the elliptic shape

@ We will study quantitative predictions vs. observations for Mercury in
the next lecture
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