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Partition Function

Recall from Lecture 4:

Quantum Mechanical Partition Function after integrating momenta:

Z (T ) = limN→∞

∫ [ N∏
i=1

dxi√
2πε/m)

]
e
−ε
∑N

j=0

[
m
2

(
xj+1−xj

ε

)2
+V (xj )

]
,

(5.1)
together with xN+1 = x1.

paul.romatschke@colorado.edu PHYS 7270, Lecture 5 PHYS 7270, Fall 2020 3 / 10



Partition Function

We can again write Z(T) in continuum form

Z = C

∫
x(0)=x(β)

Dx exp

[
−
∫ β

0
dτ

(
m

2

(
dx(τ)

dτ

)2

+ V (x(τ))

)]
(5.2)

where C is a constant factor that for fixed N is given by

C =
( m

2πε

)N/2
. (5.3)
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Partition Function

The factor C is divergent for N →∞
However, C is independent from the potential V (x)

Therefore, even though C is divergent, it contains no dynamical
information. We (physicists) will simply not worry about it.
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Partition Function

So we have

Z = C

∫
x(0)=x(β)

Dx e−SE , (5.4)

We call

SE =

∫ β

0
dτLE , (5.5)

the “Euclidean” action and

LE =
m

2

(
dx(τ)

dτ

)2

+ V (x(τ)) , (5.6)

the “Euclidean” Lagrangian
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Partition Function

For the moment being, these labels (“action”, “Lagrangian”) are
rather mysterious

Let’s try to give some meaning to them by transforming our
“imaginary” time variable to “real time” t:

τ = it (5.7)

We find

LE → −
m

2

(
dx(t)

dt

)2

+ V (x) , (5.8)

which is nothing else but potential minus kinetic energy of a classical
particle
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Partition Function

Let’s turn the argument around

Starting with the classical Lagrangian of a point particle in potential
V (x)

L =
m

2

(
dx(t)

dt

)2

− V (x) (5.9)

we can do a transformation to imaginary time

t → −iτ (5.10)

and get the Euclidean Lagrangian from

LE = −L(t = −iτ) . (5.11)
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Partition Function

There is more:

The action for a classical point particle is defined as

S =

∫
dt L , (5.12)

where L is the classical Lagrangian from before

If we also transform the action to imaginary time, we have

e iS → e−
∫
dτLE = e−SE , (5.13)

with SE the Euclidean action (5.5)

Note: we have to put the integration limits τ ∈ [0, β] in SE by hand
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Partition Function

To summarize, starting with the classical Lagrangian of a point
particle (5.9) we get the quantum mechanical partition function Z(T)
by writing

Z = C

∫
x(0)=x(β)

Dx e−SE , (5.14)

where we get e−SE from

lim
t→−iτ

e iS = e−SE , (5.15)

and where C is a (divergent) constant
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