# Quantum Mechanics as a Path Integral (III)

paul.romatschke@colorado.edu

PHYS 7270, Fall 2020

## References

• Laine and Vuorinen, "Basics of Thermal Field Theory", Chapter 1:

► https://arxiv.org/pdf/1701.01554.pdf

#### Recall from Lecture 4:

• Quantum Mechanical Partition Function after integrating momenta:

$$Z(T) = \lim_{N \to \infty} \int \left[ \prod_{i=1}^{N} \frac{dx_i}{\sqrt{2\pi\epsilon/m}} \right] e^{-\epsilon \sum_{j=0}^{N} \left[ \frac{m}{2} \left( \frac{x_{j+1} - x_j}{\epsilon} \right)^2 + V(x_j) \right]},$$
(5.1)

together with  $x_{N+1} = x_1$ .

• We can again write Z(T) in continuum form

$$Z = C \int_{x(0)=x(\beta)} \mathcal{D}x \exp \left[ -\int_0^\beta d\tau \left( \frac{m}{2} \left( \frac{dx(\tau)}{d\tau} \right)^2 + V(x(\tau)) \right) \right]$$
(5.2)

where C is a constant factor that for fixed N is given by

$$C = \left(\frac{m}{2\pi\epsilon}\right)^{N/2} \,. \tag{5.3}$$

- The factor C is divergent for  $N \to \infty$
- However, C is independent from the potential V(x)
- Therefore, even though C is divergent, it contains no dynamical information. We (physicists) will simply not worry about it.

So we have

$$Z = C \int_{x(0)=x(\beta)} \mathcal{D}x \, e^{-S_E} \,, \tag{5.4}$$

We call

$$S_E = \int_0^\beta d\tau L_E \,, \tag{5.5}$$

the "Euclidean" action and

•

$$L_E = \frac{m}{2} \left( \frac{dx(\tau)}{d\tau} \right)^2 + V(x(\tau)), \qquad (5.6)$$

the "Euclidean" Lagrangian

- For the moment being, these labels ("action", "Lagrangian") are rather mysterious
- Let's try to give some meaning to them by transforming our "imaginary" time variable to "real time" t:

$$\tau = it \tag{5.7}$$

We find

$$L_E \rightarrow -\frac{m}{2} \left(\frac{dx(t)}{dt}\right)^2 + V(x),$$
 (5.8)

which is nothing else but potential minus kinetic energy of a classical particle

- Let's turn the argument around
- Starting with the classical Lagrangian of a point particle in potential V(x)

$$L = \frac{m}{2} \left( \frac{dx(t)}{dt} \right)^2 - V(x)$$
 (5.9)

we can do a transformation to imaginary time

$$t \to -i\tau \tag{5.10}$$

and get the Euclidean Lagrangian from

$$L_E = -L(t = -i\tau). (5.11)$$

- There is more:
- The action for a classical point particle is defined as

$$S = \int dt \, L \,, \tag{5.12}$$

where L is the classical Lagrangian from before

• If we also transform the action to imaginary time, we have

$$e^{iS} \to e^{-\int d\tau L_E} = e^{-S_E},$$
 (5.13)

with  $S_E$  the Euclidean action (5.5)

• Note: we have to put the integration limits  $\tau \in [0, \beta]$  in  $S_E$  by hand

 To summarize, starting with the classical Lagrangian of a point particle (5.9) we get the *quantum mechanical* partition function Z(T) by writing

$$Z = C \int_{x(0)=x(\beta)} \mathcal{D}x \, e^{-S_E} \,,$$
 (5.14)

where we get  $e^{-S_E}$  from

$$\lim_{t \to -i\tau} e^{iS} = e^{-S_E} \,, \tag{5.15}$$

and where C is a (divergent) constant