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Partition Function

Recall from Lecture 4:

@ Quantum Mechanical Partition Function after integrating momenta:

] Tl |3 () v

(5.1)

Z(T) = limp e / [H W)

together with xy11 = x1.
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Partition Function

@ We can again write Z(T) in continuum form

Z = C/x(o):x(ﬁ) Dx exp [— /05 dr <,; <d);(:)>2 + V(X(T))>]

(5.2)
where C is a constant factor that for fixed N is given by
m \N/2
C=(— . :
(27T€> (5.3)
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N
Partition Function

@ The factor C is divergent for N — oo
@ However, C is independent from the potential V(x)

@ Therefore, even though C is divergent, it contains no dynamical
information. We (physicists) will simply not worry about it.
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Partition Function

@ So we have
Z= C/ Dx e ¢, (5.4)
x(0)=x(8)

o We call 5
Se — / drl, (55)
0

the “Euclidean” action and

2
Le=7 (d);(:) ) + V(x(7)), (5.6)

the “Euclidean” Lagrangian
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Partition Function

@ For the moment being, these labels (“action”, “Lagrangian”) are
rather mysterious

@ Let’s try to give some meaning to them by transforming our
“imaginary” time variable to “real time" t:

T =it (5.7)
We find )
m [ dx(t)
L —— %4 :
e -7 (%52) + v, (5.9)
which is nothing else but potential minus kinetic energy of a classical
particle
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Partition Function

@ Let’s turn the argument around

@ Starting with the classical Lagrangian of a point particle in potential

V(x)
L= g <d);it)> — V(%) (5.9)

we can do a transformation to imaginary time

t— —iT (5.10)
and get the Euclidean Lagrangian from

Le = —L(t = —iT). (5.11)
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Partition Function

@ There is more:

@ The action for a classical point particle is defined as

S:/dtL, (5.12)

where L is the classical Lagrangian from before
o If we also transform the action to imaginary time, we have
e e Jdhe — oS¢ (5.13)

with Sg the Euclidean action (5.5)
o Note: we have to put the integration limits 7 € [0, 3] in Sg by hand
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N
Partition Function

o To summarize, starting with the classical Lagrangian of a point
particle (5.9) we get the quantum mechanical partition function Z(T)
by writing

Z=C / Dx e ¢, (5.14)
x(0)=x(B)
where we get e € from

lim e = e % (5.15)
t——IT

and where C is a (divergent) constant
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