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N
Partition Function

Recall from Lecture 5:

Z = C/ Dxe (6.1)
x(0)=x(8)

where given a classical action S we have
lim e® = e ¢, (6.2)

t——iT

and where C is a (divergent) constant
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Review

@ In Lecture 2, we calculated the quantum mechanical partition
function Z(T) for the harmonic oscillator using the known energy

eigenvalues, finding
1

2(T) = 2sinh (%)

(6.3)

@ In this Lecture, we calculate the same Z(T) by solving the path
integral

@ The calculation is very different, but the result has to be the same
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Fourier Decomposition

@ For the harmonic oscillator, the Euclidean action is

Se = /Oﬁ dr ('2" (d);(:)>2 + m“2;2(7)> : (6.4)

@ The action is quadratic in the coordinate x(7), suggesting we could
use Fourier series to simplify the problem

@ The periodicity of the path integral x(0) = x(/3) leads to

x(r)=T Z e x, . (6.5)

n=—o0

@ Here w, = 27 Tn are the Matsubara frequencies and x, are the
Fourier coefficients

@ Note: The pre-factor of temperature T is convention
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Fourier Decomposition

e In addition to periodicity, we also require the coordinate x(7) to be
real, so
(1) =x(1), x5 =xn. (6.6)

o If we decompose the Fourier coefficients x, into real and imaginary
parts x, = a, + ib, this leads to
Xy =ap—iby=a_p+ib_, (6.7)

or
an=a—n, bp=-b_,. (6.8)

@ Moreover, note that for the zero mode by = 0.
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Fourier Decomposition

@ In the action (6.4), we have quadratic forms that give

: '
| o) = T [ drelren(69)
0 pyed 0

= T Z Xnymﬁén,fm

= T Xyn=TY xuy; (6.10)
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Action — Fourier Transformed

Using the Fourier decomposition for x(7), the action (6.4) becomes

Se = /Oﬁ dr ('; <d’;(:))2 + m“2;2(7)> : (6.11)
mT

= — Xp [iw,,iw_,, + w2] X_n,

2

n

= mTT Z [fw,,w,,, + w2] (a% + b?,) ,

n=—o0
mT &
= 5 [Wi + W2] (a5 + b3),

n=—oo

mTw? >
— 5 a%—kaZ[w%—i—uﬂ] (a2 + b2).

n=1
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Path Integral — Fourier Transformed

@ Besides the action, we also need to transform the measure of the path
integral (6.1)

@ The transform is from variables x(7) to the independent Fourier
coefficients a,, by,

@ We have

CDx=C ‘det(sx)(:)

dag [H da,,db,,] (6.12)
n=1

@ We may regard the combination C ‘detéX(T) as another constant
ox(T)
C' = C|det——= 6.13
a5 (6.13)
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Path Integral — Fourier Transformed

@ Putting everything together, we have
/dao/ [H da,,db]

@ All integrals are Gaussian:

a —mTE [w%—i—wQ](a%—i-bﬁ)

(6.14)

2 ™
dxe o = |T. 1
/xe - (6.15)

o ™
= . 1
V mTw? }:[1 mT (w2 + w?) (6.16)
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@ Therefore,




-
Solving the Path Integral

@ The constant C’ still needs to be determined

@ The calculation of C’ proceeds via effective field theory matching, and
is assigned as a homework problem

@ One finds

T o mTw?
= V2rmT [ 720 (6.17)
7r s
n=1
@ Plugging C’ into (6.16), we have

T oy W2 T4 1
zM=-Ilzlmz=cll—5 (6.18)
n:lw”—i—w n= 11+(27THT)
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-
Solving the Path Integral

@ Using the identity

() _ 7T <1+ X2> , (6.19)

in (6.18) finally gives
Z(T)= ————~ 6.20
(7) 2sinh (5%) (6.20)

@ This matches the result from Lecture 2 given in Eq. (6.3)
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